A New Class of Stereoselective Reducing Agents, Lithium Di(3-methyl-2-butyl)alkoxyborohydrides

Sung Dong Cho,* Hyang Ju Lim, Hong Ju Kim, and Jin Soon Cha[†]

Division of Physics and Chemistry, Chosun University, Gwangju 501-759, Korea [†]Department of Chemistry, Yeungnam University, Gyongsan 712-749, Korea Received September 9, 2002

Key Words : Lithium di(3-methyl-2-butyl)alkoxyborohydrides, Stereoselective reduction, Cyclic ketone reduction, Less stable alcohol isomer

We have synthesized a new class of reducing agents, lithium di(3-methyl-2-buthyl)alkoxyborohydrides [LiSia₂B-(OR)H], and have examined its stereoselectivity in the reduction of cyclic ketones. The degree of stereoselectivity exhibits a close correlation with the bulkiness of alkoxy substituent in the reagent. Especially, the *t*-butoxy derivative reveals an excellent stereoselectivity at 0 and -20 °C, comparable to the results previously achieved by lithium trisiamylborohydride,¹ potassium 9-*t*-butyl-9-boratabicyclo-[3.3.1]nonane,² and lithium (2,3-dimethyl-2-butyl)-*t*-butoxy-borohydride.³

The reagents were prepared by adding a solution of *tert*butyllithium⁴ in pentane to a solution of di(3-methyl-2butyl)alkoxy borane(Sia₂BOR) in THF at 25 °C (eq. 2). The solution of Sia₂BOR was also readily prepared by reacting a solution of disiamylborane in THF with the corresponding alcohols at 0 °C (eq. 1).

LiSia₂B(OR)H

previously achieved with lithium trisiamylborohydride (LiSia₃BH),¹ potassium 9-*t*-butyl-9-boratabicyclo[3.3.1]nonane (K9-^{*t*}Bu-9-BBNH)² and lithium(2,3-dimethyl-2butyl)-*t*-butoxyborohydride (LiThx^{*t*}BuOBH₂),³ even higher than the selectivity obtained by lithium tri-*s*-butylborohydride (Li^sBu₃BH)₅and potassium 9-(2,3-dimethyl-2-butoxy)-9-boratabicyclo[3.3.1]nonane (K9-OThx-9-BBNH).^{1b}

In recent years, new developments in the area of stereoselective reduction of cyclic ketones have been exceptionally promising.^{5~8} Substituted borohydrides, such as LiSia₃BH,¹ K9-'Bu-9-BBNH² and LiThx'BuOBH₂³ reduce cyclic ketones to the corresponding alcohols of the thermodynamically less stable isomers in the range of 95-100% stereoselctivity. On the other hand, alane and its derivatives, such as aluminum hydride,⁸ diisobutylaluminum hydride,^{9a} A*l*-isopropoxydiisobutylalane,^{9b,c} and 1-pyrrolyldiisobutyalane,^{9d} convert cyclic ketones to the corresponding alcohols of the thermodynami-

Table 1. Stereoselective Reduction of Cyclic Ketones with LithiumDi(3-methyl-2-butyl)alkoxyborohydrides[LiSia2B(OR)H] at 0 and $-20 \ ^{\circ}C^{a,b,c}$

Vataria	Reaction	R in LiSia ₂ B(OR)H ^d		
Ketone	temperaure (°C)	Et	<i>i</i> -Pr	<i>t</i> -Bu
2-Methylcyclopentanone	0	95	98	99.5
	-20	97	99	>99.9
2-Methylcyclohexanone	0	95	98	99.5
	-20	97	99.5	>99.9
3-Methylcyclohexanone	0	92	95	97
	-20	93	96.5	98.5
4-Methylcyclohexanone	0	90	91	92
	-20	92	93	94
4-t-Butylcyclohexanone	0	90	94	96
	-20	92	96	98
3,3,5-	0	95	98	99.5
Trimethylcyclohexanone	-20	96.5	99.5	>99.9
Norcamphor	0	94	98	98
	-20	95.5	99.5	99.5
Camphor	0^e	95	98	99

The stereoselectivity of these new reagents toward representative group of cyclic ketones was examined at 0 and -20 °C, and the results are summarized in Table 1. In general, the degree of stereoselectivity exhibits a close correlation with the bulkiness of alkyl substituent in the reagent. Especially, the stereoselectivity achieved by the *t*-butoxy derivative, lithium di(3-methyl-2-butyl)-*t*-butoxy-boro hydride [LiSia₂B(O'Bu)H], is exceptionally high. As in the comparison data summarized in Table 2, its stereoselectivity performed at 0 °C is comparable to the results

^{*a*}In a mixed solvent of THF and pentane. ^{*b*}A ratio for reagent to ketone is 2 : 1. ^{*c*}Reaction for 1 h and the alcohol yields are more than 98%, unless otherwise indicated. ^{*d*}The figures are ratios in percentage of the thermodynamically less stable isomer alcohols determined by GC analysis. ^{*e*}Reacted for 72 h and the alcohol yields are around 90%.

1696 Bull. Korean Chem. Soc. 2002, Vol. 23, No. 12

Table 2. (Comparison	of Stereoselectivit	v in the Reduction	of Cyclic Ketones	s with Representative	e Reagents at 0 °	2
	panoon	or brereobereetting	<i>y</i>	or of ene metone.	, with representative	- reagenes at o	~

	Selectivity (%)					
Ketone	LiSia ₂ B (O'Bu)H	LiThx ^t BuOBH ₂ ^a	K9-OThx-9- BBNH ^b	Li ^s Bu ₃ BH ^c	LiSia ₃ BH ^b	K9- ^t Bu-9- BBNH ^d
2-Methylcyclopentanone	99.5	>99.5	98.5	99.3	99.4	99.5
3-Methylcyclohexanone	97	96	90	85	98	96
4-Methylcyclohexanone	92	92	85.5	80.5	93	94
4- <i>t</i> -Butylcyclohexanone	96	95	87	87.5	96.5	98.5
3,3,5-Trimethylcyclohexanone	99.5	>99.5	>99.9	99.8	99	99
Norcamphor	98	98	95	99.6	99	95.5
Camphor	99	>99.5	97.5	99.6	>99.9	99.9

^aData taken from ref. 3. ^bData taken from ref. 1b. ^cData taken from ref. 5. ^dData taken from ref. 2.

cally more stable isomers in the 80 to 100% range of stereoselectivity. Similarly, such stereoselectivity can also be obtained by BH₃-THF.¹⁰ Thus, the reaction of cyclic ketones with borane in refluxing THF gives the the thermodynamically more stable alcohols in higher than 98% purity. Therefore, it is worthwhile to emphasize that these are reagents of choice for converting cyclic ketones to the corresponding alcohols of one of two possible isomers.

The following procedure served to prepare Sia₂BOR. The preparation of the *t*-butoxy derivative is representative. An oven-dried, 100-mL, round-bottomed flask, equipped with a side arm, a condenser, and an adapter connected to a mercury bubbler, was cooled to 0 °C by immersion in an ice-water bath under a stream of nitrogen and maintained under a static pressure of nitrogen. The flask was charged with 40 mL of a 1.0 M solution of Sia₂BH (40 mmol) in THF. To this was added 3.1 g of *t*-BuOH (42 mmol) dropwise with stirring. After the hydrogen evolution ceased, the reaction mixture was stirred for additional 1 h at 0 °C to afford a 0.92 M of Sia₂BO'Bu: ¹¹B NMR δ 52 ppm (s) relative to BF₃·OEt₂. The ¹¹B NMR spectra of the other derivatives showed a broad single peak at δ 53 ppm for Sia₂BOEt and at δ 52 ppm for Sia₂BO'Pr.

The following procedure served for the preparation of LiSia₂B(OR)H. The preparation of the *t*-butoxy derivative is illustrative. Into a 100 mL flask was placed 27.2 mL of the solution of Sia₂BO'Bu (25 mmol) that prepared above, and the flask was kept at 25 °C by use of a refrigerating bath circulator. To the flask was added 16.2 mL of a 1.7 M solution of *tert*-butyllithium (27.5 mmol) in pentane with vigorous stirring and the reaction mixture was stirred for 12 h at 25 °C. The concentration of the reagent was estimated gasometrically by hydrolyzing an aliquot to give 0.48 M of LiSia₂B(O'Bu)H: ¹¹B NMR (THF and pentane) δ -3.7 ppm (d, *J*_{B-H} = 245.1 Hz). The ¹¹B NMR spectra of the other derivatives showed a doublet at δ -7.4 ppm (*J*_{B-H} = 242.4 Hz) for LiSia₂B(OEt)H and at δ -3.7 ppm (*J*_{B-H} = 251.7 Hz) for LiSia₂B(O'Pr)H.

The following procedure was used to explore the stereoselectivity of the reagents. In a 50-mL, round-bottomed flask was placed 2 mmole of the reagent. The flask was maintained at 0 °C (or -20 °C) by use of refrigerating bath circulator. To this flask was added 1 mmole of precooled a cyclic ketone solution in THF (2.0 M in ketone) and the reaction mixture was stirred at 0 °C (or -20 °C) for 1 h.

The reaction was then quenched by addition of 2 mL of 3 N NaOH, and the organoborane was oxidized with 30% H_2O_2 . The aqueous layer was saturated with anhydrous K_2CO_3 , and the organic layer was analyzed by GC. The ratios of isomer alcohols are summarized in Table 1.

Acknowledgment. This study was supported by research funds from Chosun university, 2000.

References and Notes

- (a) Krishnamurthy, S.; Brown, H. C. J. Am. Chem. Soc. 1976, 98, 3383. (b) Brown, H. C.; Cha, J. S.; Nazer, B. J. Org. Chem. 1984, 49, 2073.
- Cha, J. S.; Yoon, M. S.; Lee, K. W.; Lee, J. C. *Heterocycles* 1988, 27, 1455.
- 3. Cha, J. S.; Lee, D. Y.; Moon, S. J. Bull. Korean Chem. Soc. 2001, 22, 661.
- (a) Corey, E. J.; Becker, K. B.; Varma, R. K. J. Am. Chem. Soc. 1972, 94, 8616. (b) Corey, E. J.; Albonico, S. M.; Koelliker, V.; Schaaq, T. K.; Varma, R. K. Ibid. 1971, 93, 1491. (c) Corey, E. J.; Varma, R K. Ibid. 1971, 93, 7319. (d) Brown, H. C.; Kramer, G. W.; Hubbard, J. L.; Krishnamurthy, S. J. Organomet. Chem. 1980, 188, 1.
- 5. Brown, H. C.; Krishnamurthy, S. J. Am. Chem. Soc. 1972, 94, 7159.
- (a) Krishnamurthy, S. Aldrichmica Acta 1974, 7, 55. (b) Brown,
 H. C.; Krishnamurthy, S. J. Organomet. Chem. 1978, 156. (c) Brown,
 H. C.; Krishnamurthy, S. Tetrahedron 1979, 35, 567.
- Cha, J. S.; Min, S. J.; Kim, J. M.; Kwon, O. O.; Jeoung, M. K. Org. Prep. Preced. Int. 1993, 25, 444.
- Cha, J. S.; Min, S. J.; Kwon, O. O.; Lee, Y. R. Bull. Korean Chem. Soc. 2000, 21, 128.
- (a) Cha, J. S.; Kwon, O. O.; Kim, J. M.; Cho, S. D. Synlett 1997, 1465. (b) Cha, J. S.; Kwon, O. O. J. Org. Chem. 1997, 62, 3209.
 (c) Cha, J. S.; Kwon, O. O. Bull. Korean Chem. Soc. 1997, 18, 689. (d) Kwon, O. O.; Cha, J. S. Ibid. 2000, 21, 659.
- 10. Cha, J. S.; Moon, S. J.; Park, J. H. J. Org. Chem. 2001, 66, 7514.