Expedient Synthesis of 5-Benzoylpyrimidine-2,4-diones from Baylis-Hillman Adducts

Jeong Mi Kim, Eun Sun Kim, and Jae Nyoung Kim*
Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757, Korea
*E-mail: kimjn@chonnam.ac.kr
Received November 7, 2008, Accepted February 6, 2009

Key Words: Baylis-Hillman adducts, Pyrimidine-2,4-diones, PCC oxidation

The synthesis and modification of pyrimidine-2,4-dione (uracil) derivatives has received much attention due to their importance in nucleic acid chemistry as well as in synthetic organic chemistry. ${ }^{1-3}$ Most of the modifications involved the introduction of various substituents at the 5- or 6-position of uracil ring. ${ }^{1,2}$ Recently numerous chemical transformations of Baylis-Hillman adducts have been published involving the synthesis of various heterocyclic compounds. ${ }^{3-5}$

The synthesis of 5-benzyluracil 2a starting from BaylisHillman adduct was reported by us recently. ${ }^{5} 5$-Benzoyluracil and related compounds are also important, ${ }^{1 a, b, 2}$ thus we examined the oxidation of 5-benzyluracil 2a into 5-benzoyl derivative $\mathbf{4 a}$ as in Scheme 1. The reaction of $\mathbf{2 a}$ with SeO_{2} or KMnO_{4} showed no reaction while with PCC (pyridinium chlorochromate) or $\mathrm{CrO}_{3} / \mathrm{AcOH}$ produced low yield of product. ${ }^{6}$

Thus we decided to prepare $\mathbf{4 a}$ by the oxidation of 5-benzylideneuracil derivative 3a with PCC, which was efficiently used for the oxidation of similar compounds by us recently. ${ }^{7}$ As reported, 5-benzyl derivative 2a was obtained from 1a with strong base such as NaOEt or t-BuOK. ${ }^{5}$ When the reaction of 1a was carried out under the influence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in DMF at elevated temperature, 5-benzyl derivative

2a was the major product again. Fortunately, 5-benzylidene compound 3a was obtained as the major product (82%) when we run the reaction under the influence of a catalytic amount of $\mathrm{K}_{2} \mathrm{CO}_{3}$ (0.2 equiv) in DMF at room temperature. With this benzylidene compound 3a, we examined the PCC oxidation and obtained the benzoyl derivative $\mathbf{4 a}$ in good yield (78\%). Encouraged by the results we prepared $\mathbf{3 b}$-f and examined the oxidation to 5-benzoyluracils $\mathbf{4 b}$-f and the results are summarized in Scheme 2 and Table 1.

The synthesis of starting materials $\mathbf{1 b}$-f was carried out as reported. ${ }^{5}$ Cyclization of $\mathbf{1 b}$-e was carried out under the same conditions ($\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, rt, 8 h), and we obtained 3b-e in $63-92 \%$ yields. However, 5-benzyl derivative was formed as the major product when we run the reaction of thiourea derivative $1 \mathbf{1 f}$ under the same conditions even at room temperature presumably by the base-mediated isomerization process of 3f. Thus we carried out the reaction in water without base at refluxing temperature for long time for the synthesis of $\mathbf{3 f}$. With these benzylidene compounds 3b-f, the following oxidation was carried out with PCC (2.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at refluxing temperature to obtain $\mathbf{4 b - g}$ in $63-80 \%$ yields. As in entries $1-4, N$-substituents (R_{1} and R_{2}) did not affect the reactivity and the reactions with hexylidene

Scheme 1

Scheme 2

Table 1. Synthesis of 5-benzylidene- and 5-benzoyl pyrimidines

Entry	Substrate 1	Conditions a	Compound 3 $(\%)$	Product 4 $(\%)^{b}$
1	$\mathbf{1 a}$	A	$\mathbf{3 a}(82)$	$\mathbf{4 a}(78)$
2	$\mathbf{1 b}$	A	$\mathbf{3 b}(92)$	$\mathbf{4 b}(73)$
3	$\mathbf{1 c}$	A	$\mathbf{3 c}(90)$	$\mathbf{4 c}(63)$
4	$\mathbf{1 d}$	A	$\mathbf{3 d}(90)$	$\mathbf{4 d}(80)$
5	$\mathbf{1 e}$	A	$\mathbf{3 e}(63)$	$\mathbf{4 e}(65)$
6	$\mathbf{1 f}$	B	$\mathbf{3 f}(64)$	$\mathbf{4 f (6 6)}$

${ }^{\bar{a}}$ Conditions $\mathrm{A}^{\mathrm{A}} \mathrm{K}_{2} \mathrm{CO}_{3}$ (0.2 equiv), DMF, rt, 8 h ; Conditions B: $\mathrm{H}_{2} \mathrm{O}$, reflux, 48 h . ${ }^{b}$ Conditions: PCC (2.0 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 8 h .
derivative (entry 5) and thiourea derivative (entry 6) also showed same reactivity.
In summary, we developed an efficient way for the preparation of 5-benzoylpyrimidine-2,4-dione derivatives from BaylisHillman adducts by using PCC oxidation of 5-benzylidene derivatives as the key step.

Experimental Section

Synthesis of starting materials was carried out as reported ${ }^{5}$ and the spectroscopic data of unknown compounds, $\mathbf{1 b}, \mathbf{1 e}$ and $\mathbf{1 f}$, are as follows. Compounds $\mathbf{1 a - d}$ and $\mathbf{1 f}$ were obtained as pure E isomers, but compound $\mathbf{1 e}$ was separated as an E / Z mixture ($E / Z=4: 1$). However, compound $3 \mathrm{e}(E$ form) could be isolated in pure state from the corresponding $Z-3 \mathbf{e}$ derived from the minor $Z-\mathbf{1 e}$.

Compound 1b: 80%; colorless oil; IR (film) 3424, 1716, $1681 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.73(\mathrm{~s}, 3 \mathrm{H}), 4.98(\mathrm{~s}$, $2 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 6.95-7.07(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.37(\mathrm{~m}, 12 \mathrm{H})$, $7.71(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 44.12,52.14$, $119.28,122.84,128.26$ (2C), 128.41, 128.75, 128.87, 129.13, 129.26, 129.82, 134.41, 138.87, 139.75, 143.43, 154.22, 168.16.

Compound 1e: 94\%; colorless oil; IR (film) 3358, 1716, $1645 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (major $\left.E, \mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.86(\mathrm{t}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.15-1.43(\mathrm{~m}, 6 \mathrm{H}), 2.12(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.67$ $(\mathrm{s}, 3 \mathrm{H}), 4.11(\mathrm{~s}, 2 \mathrm{H}), 4.42-4.50(\mathrm{~m}, 4 \mathrm{H}), 6.20(\mathrm{t}, J=5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.90(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.33(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR (minor $\left.Z, \mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.89(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$), 1.15-1.43 (m, 6H), $2.43(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 4.00$ ($\mathrm{s}, 2 \mathrm{H}$), $4.42-4.50(\mathrm{~m}, 4 \mathrm{H}), 5.47(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.33(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (major + minor, $\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 13.76,13.84,22.22,22.25,28.34,28.49$, 28.66, 29.33, 31.24, 31.34, 42.15, 44.81, 44.91, 48.78, 49.26, $49.56,51.36,51.90,126.49,126.75,126.89,126.92,127.07$, $127.34,127.39,127.52,127.77,128.24,128.31,128.37$, 128.44, 137.87, 138.00, 139.57, 139.71, 145.68, 147.66, $158.36,158.99,167.51,168.36$ (1 C is overlapped).

Compound 1f: 96\%; colorless oil; IR (film) 3411, 3304, 1713, 1697, 1257, $1202 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $3.68(\mathrm{~s}, 3 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 4.83(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.90(\mathrm{~s}$, $2 \mathrm{H}), ~ 6.89-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.99-7.01(\mathrm{~m}, 2 \mathrm{H}), 7.04-7.11$ (m, $3 \mathrm{H}), 7.17-7.33(\mathrm{~m}, 9 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 43.95,50.09,52.14,53.51,126.51,126.81,126.85$, $127.29,127.42,127.77,128.08,128.31,128.58,128.85$, 133.14, 136.11, 137.84, 143.75, 167.96, 183.95.

Typical procedure for the synthesis of 3a. A mixture of 1 a ($207 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(14 \mathrm{mg}, 0.1 \mathrm{mmol})$ in DMF $(3.0 \mathrm{~mL})$ was stirred at room temperature for 8 h . After the usual aqueous workup and column chromatographic purification process (hexanes/ether, 1:1) compound 3a was obtained as a white solid, $157 \mathrm{mg}(82 \%)$. Other compounds were synthesized similarly and their spectroscopic data are as follows.

Compound 3a: 82%; white solid, mp 122-124 ${ }^{\circ} \mathrm{C}$; IR (KBr) $1699,1667,1216 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.23(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 7.14-7.17(\mathrm{~m}, 2 \mathrm{H})$, $7.23-7.40(\mathrm{~m}, 11 \mathrm{H}), 7.46-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.84(\mathrm{t}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 44.62,44.63,51.65$, $122.82,127.28,127.84,128.01,128.36,128.73,128.74$, $128.82,129.42,129.70,134.03,135.94,137.88,138.80$, 152.71, 163.91; ESIMS $m / z 383\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

Compound 3b: 92\%; white solid, mp 198-200 ${ }^{\circ} \mathrm{C}$; IR (KBr) $1713,1678,1225 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.87(\mathrm{~d}$, $J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.49(\mathrm{~m}, 15 \mathrm{H}), 7.99(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 47.96,122.95,125.62,126.93$, 128.28, 128.82 (2C), 128.90, 129.09, 129.69, 129.85, 133.78, 135.75, 139.74, 141.42, 151.99, 164.20.

Compound 3c: 90%; white solid, mp $185-187^{\circ} \mathrm{C}$; IR (KBr) $\left.3200,1699,1261 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(CDCl} 3,300 \mathrm{MHz}\right) \delta 4.29(\mathrm{~d}$, $J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 7.18-7.43(\mathrm{~m}, 10 \mathrm{H}), 7.86(\mathrm{t}, J=$ $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 45.52$, $50.57,122.05,127.96,128.08,128.83,128.89,129.73,129.92$, $133.78,135.70,139.24,151.69,163.98$.

Compound 3d: 90\%; white solid, mp 295-297 ${ }^{\circ} \mathrm{C}$ (dec.); IR $(\mathrm{KBr}) 3149,1682,1373 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 300 \mathrm{MHz}\right)$ $\delta 4.80(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.47(\mathrm{~m}$, $9 \mathrm{H}), 7.74(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 10.70(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 75 \mathrm{MHz}\right) \delta 48.59,123.68,125.96,126.46,128.84$, $128.89,129.58,130.17,133.75,136.64,141.58,151.14$, 164.01; ESIMS m/z $279\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

Compound 3e: 63%; colorless oil; IR (film) 1704, 1666, $1453 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.85(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.15-1.43(\mathrm{~m}, 6 \mathrm{H}), 1.96-2.03(\mathrm{~m}, 2 \mathrm{H}), 3.88-3.90(\mathrm{~m}$, $2 \mathrm{H}), 4.66(\mathrm{~s}, 2 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 6.90-6.97(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.37$ $(\mathrm{m}, 8 \mathrm{H}), 7.42-7.46(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 13.85, 22.31, 27.76, 28.01, 31.31, 43.10, 44.34, 51.43, 122.70, 127.17, 127.79, 127.92, 128.29, 128.66, 128.78, 136.06, 137.98, 142.91, 153.05, 163.39.

Compound 3f: 64%; white solid, mp $136-138{ }^{\circ} \mathrm{C}$; IR (KBr) $1686,1448,1174 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.37(\mathrm{~d}$, $J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.31(\mathrm{~s}, 2 \mathrm{H}), 5.80(\mathrm{~s}, 2 \mathrm{H}), 7.03-7.06(\mathrm{~m}, 2 \mathrm{H})$, $7.22-7.35(\mathrm{~m}, 11 \mathrm{H}), 7.43-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.79(\mathrm{t}, J=2.1 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 46.93,50.04,58.61$, $122.43,127.08,127.78,127.94,128.02,128.30,128.79$, $128.87,129.44,129.58,133.64,135.07,137.82,139.88$, 161.39, 181.18.

Typical procedure for the synthesis of $\mathbf{4 a}$. A mixture of $\mathbf{3 a}$ $(153 \mathrm{mg}, 0.4 \mathrm{mmol})$ and $\mathrm{PCC}(173 \mathrm{mg}, 0.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(5 \mathrm{~mL})$ was heated to reflux for 8 h . The reaction mixture was filtered through a Celite pad and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrates and washings were combined and solvent was removed. After column chromatographic purification (hexanes/ ether, 1:1) compound $\mathbf{4 a}$ was obtained as a white solid, 124 $\mathrm{mg}(78 \%)$. Other compounds were synthesized similarly and
their spectroscopic data are as follows.
Compound 4a: 78\%; white solid, mp 115-117 ${ }^{\circ} \mathrm{C}$; IR (KBr) 1716, 1673, 1605, $1448 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ 4.97 (s, 2H), $5.13(\mathrm{~s}, 2 \mathrm{H}), 7.21-7.40(\mathrm{~m}, 10 \mathrm{H}), 7.44-7.54(\mathrm{~m}$, $3 \mathrm{H}), 7.65-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ MHz) $\delta 44.71,53.06,113.33,127.75,128.03,128.25,128.37$, $128.76,129.11,129.15,129.22,132.89,134.42,136.24$, 137.41, 147.75, 150.89, 160.03, 190.68; ESIMS m/z 397 $\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

Compound 4b: 73\%; white solid, mp 239-241 ${ }^{\circ} \mathrm{C}$; IR (KBr) 1722, 1681, 1659, $1259 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ 7.26-7.31 (m, 2H), 7.36-7.57 (m, 11H), 7.80-7.84 (m, 2H), $8.16(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 114.30,126.34$, 128.20, 128.26, 128.98, 129.32, 129.40, 129.44, 129.69, 133.04, $134.42,137.50,138.42,148.80,150.36,160.23,190.69$.
Compound $\mathbf{4 c}: 63 \%$; white solid, $\mathrm{mp} 192-193{ }^{\circ} \mathrm{C}$; IR (KBr) $3188,1694,1452 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 5.00(\mathrm{~s}$, $2 \mathrm{H}), 7.30-7.43(\mathrm{~m}, 7 \mathrm{H}), 7.52-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.70-7.74(\mathrm{~m}$, $2 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}), 8.77(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 52.15, 114.09, 128.13, 128.37, 128.97, 129.31, 129.39, 133.16, 134.29, 137.18, 150.01, 150.23, 160.20, 190.15.

Compound 4d: 80%; white solid, mp $240-241^{\circ} \mathrm{C}$; IR (KBr) 3163, 1709, $1305 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ 7.43-7.52 (m, 7H), 7.60-7.65 (m, 1H), 7.82-7.84 (m, 2H), $8.07(\mathrm{~s}, 1 \mathrm{H}), 11.80(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 113.43, 127.01, 128.24, 128.71, 129.15, 129.31, 132.93, 137.64, 138.45, 149.60, 149.95, 161.32, 190.52; ESIMS m/z $293\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

Compound 4e: 65\%; colorless oil; IR (film) 1715, 1688, $1662,1449 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.88(\mathrm{t}, J=6.9$ $\mathrm{Hz}, 3 \mathrm{H}), 1.26-1.35(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.67(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}$), 4.98 ($\mathrm{s}, 2 \mathrm{H}$), 5.15 (s, 2H), 7.23-7.40 (m, 8H), 7.44-7.48 (m, 2H), $8.21(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ $\delta 13.90,22.48,23.40,31.35,42.58,44.81,53.35,112.16$, 127.76, 128.22, 128.45, 128.80, 128.89, 129.17, 134.44, 136.30, 148.33, 150.97, 160.55, 197.06; ESIMS m/z 391 $\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

Compound 4f: 66%; white solid, mp 135-137 ${ }^{\circ} \mathrm{C}$; IR (KBr) 1692, 1666, $1224 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 5.56(\mathrm{~s}$, $2 \mathrm{H}), 5.76(\mathrm{~s}, 2 \mathrm{H}), 7.22-7.56(\mathrm{~m}, 13 \mathrm{H}), 7.66-7.69(\mathrm{~m}, 2 \mathrm{H})$, $7.95(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 50.77,59.26$, 115.81, 127.58, 128.12, 128.18, 128.24, 128.59, 128.81, 129.19, 129.29, 133.24, 134.03, 135.49, 136.96, 146.71, 157.79, 177.96, 190.31; ESIMS m/z $413\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

Acknowledgments. This work was supported by the Korea Research Foundation Grant funded by the Korean Government
(MOEHRD, KRF-2007-313-C00417). Spectroscopic data was obtained from the Korea Basic Science Institute, Gwangju branch.

References and Notes

1. Modifications of 5- and 6-positions of uracil derivatives, see: (a) Abarbri, M.; Knochel, P. Synlett 1999, 1577-1578. (b) Singh, P.; Paul, K.; Holzer, W. Org. Biomol. Chem. 2005, 3, 3958-3965. (c) Berillon, L.; Wagner, R.; Knochel, P. J. Org. Chem. 1998, 63, 9117-9121. (d) Kumar, S.; Malik, V.; Kaur, N.; Kaur, K. Tetrahedron Lett. 2006, 47, 8483-8487.
2. For the synthesis and applications of 5-aroyluracil derivatives, see: (a) Abarbri, M.; Thibonnet, J.; Berillon, L.; Dehmel, F.; Rottlander, M.; Knochel, P. J. Org. Chem. 2000, 65, 4618-4634. (b) Matsumoto, N.; Takahashi, M. Tetrahedron 2002, 58, 10073-10079. (c) Singh, P.; Paul, K. Bioorg. Med. Chem. 2006, 14, 7183-7186. (d) Singh, P.; Paul, K. Bioorg. Med. Chem. 2006, 14, 8622-8625. (e) Kim, J. N.; Ryu, E. K. J. Org. Chem. 1992, 57 , 1088-1092. (f) Bernier, J.-L.; Henichart, J.-P.; Warin, V.; Trentesaux, C.; Jardillier, J.-C. J. Org. Chem. 1985, 28, 497-502. (g) Jachak, M. N.; Tantak, C. D.; Toche, R. B.; Badgujar, N. S. Monatsh. Chem. 2004, 135, 1529-1538.
3. For the synthesis of pyrimidine and related compounds from Baylis-Hillman adducts, see: (a) Nag, S.; Yadav, G. P.; Maulik, P. R.; Batra, S. Synthesis 2007, 911-917. (b) Kim, J. M.; Kim, S. H.; Kim, J. N. Bull. Korean Chem. Soc. 2007, 28, 2505-2507. (c) Basavaiah, D.; Satyanarayana, T. Tetrahedron Lett. 2002, 43, 4301-4303. (d) Pathak, R.; Roy, A. K.; Batra, S. Synlett 2005, 848-850.
4. For general review on Baylis-Hillman reaction, see: (a) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811-891. (b) Ciganek, E. In Organic Reactions; Paquette, L. A., Ed.; John Wiley \& Sons: New York, 1997; Vol. 51, pp 201-350. (c) Basavaiah, D.; Rao, P. D.; Hyma, R. S. Tetrahedron 1996, 52, 8001-8062. (d) Kim, J. N.; Lee, K. Y. Curr. Org. Chem. 2002, 6, 627-645. (e) Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1481-1490. (f) Singh, V.; Batra, S. Tetrahedron 2008, 64, 4511-4574 and further references cited therein.
5. Lee, C. G.; Gowrisankar, S.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 481-484.
6. The oxidation of $\mathbf{2 a}$ with PCC (4.0 equiv) $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (reflux, 72 h) afforded 19% of product $\mathbf{4 a}$, and $\mathbf{2 a}$ was recovered in 70%. The reaction of CrO_{3} (5.0 equiv) $/ \mathrm{AcOH}$ (reflux, 2 h) produced 4a in 27%. Oxidation of 2a with SeO_{2} (2.0 equiv)/EtOH (reflux, 24 h) or KMnO_{4} (2.0 equiv)/aqueous $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ (reflux, 24 h) was ineffective.
7. For the PCC oxidation of similar compounds, (a) Kim, S. J.; Lee, H. S.; Kim, J. N. Tetrahedron Lett. 2007, 48, 1069-1072. (b) Kim, S. C.; Lee, H. S.; Kim, J. N. Bull. Korean Chem. Soc. 2007, 28, 147-150. (c) Kim, S. H.; Kim, S. H.; Kim, J. N. Bull. Korean Chem. Soc. 2008, 29, 2039-2042.
