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Recently, some electron donor-acceptor (DA) system that
employs porphyrins or chlorins as electron donors and
fullerene as electron acceptor have already prepared and
examined for the mimicry of photosynthetic reaction cen-
ters.1 And also such compounds have potential applications
in photodynamic therapy (PDT). In particular, the chlorin
linked systems would be of great interest,2 since the excita-
tion possibility at the chlorin long-wavelength Q-band,
which is missing from the electronic spectrum of fully con-
jugated porphyrins, enables the achievement of higher quan-
tum yields in solar energy conversions. The chlorins are
known to possess a variety of photophysical and electro-
chemical properties, which provide an opportunity to tune
the energetics of photoinduced charge separation. Therefore,
they have well characterized photophysical properties. In
this respect, photoinduced electron transfer systems com-
prising fullerene seems to be excellent combinations for
revealing basic photophysical properties of donor linked
fullerene system.

Many research groups have reported biological applica-
tion of fullerene and fullerene derivatives.3 In terms of bio-
logical activity the formation of singlet oxygen is crucial
because it can be applied for the cleavage of biomolecules.
Efficient formation of 3C60 was seen in porphyrin-C60 dyads
under certain conditions, indicating that singlet oxygen can
be generated efficiently by selecting the linkage and sol-
vents.4 In addition, the increase of the absorption cross sec-
tion by both porphyrin and C60 chromophores is also advan-
tageous. Therefore, C60 linked porphyrin or chlorin com-
pounds will provide a new opportunity for the design of
photodynamic agents in cancer or viral therapy. 

Now we are reporting the synthesis of covalently linked
chlorin-fullerene dyads. The novel chlorin-fullerene dyads
have great potential for preparing not only promising models
for photosynthetic reaction centers, but also for constructing
a wide variety of chlorin-based compounds of biological sig-
nificance.

Methyl pyropheophorbide a (MPPa) 1 which was extract-
ed from the alga5 Spilurina maxima was reacted with 30%
hydrobromic acid in acetic acid followed by treatment with
an appropriate diol to give alcohols 2 and 3 as diastereo-
meric mixtures.6 Oxidation of alcohols with sulfur trioxide-
pyridine complex, DMSO and triethylamine produced alde-
hydes 4 and 5.7 The coupling reaction of aldehydes with N-

methylglycine and C60 in toluene at reflux gave the pyrroli-
dine-linked chlorin-fullerene dyads 6 and 7,8 respectively.

The structures of all compounds were determined by spec-
troscopic analysis such as 1H NMR, IR, UV-Vis, and Fluo-
rescence spectroscopy. MALDI-TOF MS spectra exhibited
the corresponding M+ ion peak (m/z) 1371 for 6 and 1398
for 7.9

To a great extent the absorption spectrum of dyads is a
simple superposition of the spectra of chlorin and C60. Small
perturbations in the spectrum of the dyads indicate a weak
electronic interaction between the chlorin and the fullerene
chromophores in the ground state. Whereas dyads 6-8 con-
taining the fullerene moieties showed a remarkable decrease
in fluorescence, which indicates a rapid quenching of the
chlorin excited singlet state by fullerene.

Conformational studies and detailed photophysical studies,
such as fluorescence lifetime measurements, time-resolved

Scheme 1. (a) (i) 30% HBr in acetic acid, (ii) 1,3-propanediol or
1,5-pentanediol, MC, K2CO3 (2: 53%, 3: 58%, two steps); (b)
SO3·pyridine, DMSO, triethylamine (quantitative); (c) C60, sar-
cosine, toluene, reflux (6: 41%, 7: 40%); (d) Zn(OAc)2·2H2O, MC,
reflux (quantitative).
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transient absorption spectroscopy, singlet oxygen quantum
yield, are under investigation.
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