A Novel Synthesis of 3,9-Dialkyl and 8-Aryl-3,9-dimethylxanthines

Shaker Youssif,* Azza El-Kafrawy, Besheer Bayoumy, and Said El-Bahaie

Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt Received September 6, 2001

Several compounds of 3,9-dialkylxanthines were prepared from 1-methyl-6-chlorouracil *via* nucleophillic reactions with different aliphatic amines, followed by nitrosation, reduction, formaylation and finally dehydrocyclization. On the other hands, a series of 8-aryl-3,9-dimethylxanthines were synthesized by dehydrocyclization of 5-arylamido-1-methyl-6-methylaminouracils either by fussion or oxidation of 5-arylidine-amino-1-methyl-6-methylaminouracils using sodium periodate. Phosphoryl chloride was found to be uneffective reagent for dehydrocyclization that, gave another products from 1,3-oxazolo[5,4-d] pyrimidines.

Keywords: 3,9-Dialkylxanthines, 5-Arylidineamino-, 5-Arylamidouracils, 8-Aryl-3,9-dimethylxanthines, Oxazolopyrimidine-6-one.

Purine derivatives and their analogues have critical roles in various biological processes and considerable attention has been given to the field of purine chemistry in a search for potential antagonists.^{1,2} The syntheses of purines generally involved the condensation-cyclization of 6-amino-5-nitrosopyrimidines with several carbon sources, such as benzylideneaniline, 3,4 aromatic aldehydes, 5 quarternized Mannich bases,⁶ Vilsmeier reagents⁷ and amide acetals⁸ or by the reaction of 6-anilinouracils with 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD)⁹ as nitrogen source. 3,9-dimethylxanthines has been prepared by various methods. 10-13 8-Arylpurines have been synthesized either by dehydrocyclization of 4amino-5-arylamidopyrimidines with phosphoryl chloride, 14,15 phosphoric acid¹⁶ and by dry heating, ¹⁷ or by cyclization of Schiffs base analogues using ferric chloride, ¹⁸ nitrobenzene, ¹⁹ or bisulfite adduct of aldehydes.²⁰ We report herein the synthesis of some purine analogues, namely 3,9-dimethyl-, and 8-aryl-3,9-dimethylxanthines.

The sequence starting from 6-chloro-1-methyluracil (1a)^{21,22} is the most favored method for the synthesis of 3,9-dimethylxanthine. The treatment of 6-chloro-1-methyl- and/or 6-chloro-1-propyluracil (1a, b) with different alkyl amines such as methyl-, isopropyl-, *n*-butyl-, neopentylamine in ethanol were heated under reflux for a short period to afford 1-alkyl-6-alkylaminouracil 2a-h. The nitrosation of compounds 2a-h using sodium nitrite in acetic acid at room temperature gave 5-nitroso derivatives 3a-g which on reductive formylation gave 4a-g. The dehydrocyclization of 5-formamidouracils 4a-g using a mixture of formamide/formic acid led to the formation of 5a-g as shown in (Scheme 1) in a moderate yields. ¹H-nmr data were shown in Tables 1, 2 and 3.

In the course of nitrosation step for the preparation of 3c, g the 3,8-dialkylxanthine derivatives 6a, b were formed simultaneously. The structures were confirmed by 1 H-nmr (DMSO-d₆) at δ 13.1 (s, 1H, NH(3)), 11.07 (s, 1H, NH(9)) and MS: m/z (%) = M⁺ 208 (70), M-CH₂CH₃ 179 (63), 137

i) alkylamine, EtOH; ii) NaNO₂/AcOH; iii) Zn/ HCOOH; iv) HCONH₂/ HCOOH

Compd. No.	R	R ¹
5a	CH ₃	CH ₃
5b	CH ₃	$CH(CH_3)_2$
5c	CH ₃	(CH2)3CH3
5d	CH ₃	$CH_2C(CH_3)_3$
5e	CH ₂ CH ₂ CH ₃	CH ₃
5f	CH ₂ CH ₂ CH ₃	(CH ₂) ₃ CH ₃
5g	CH ₂ CH ₂ CH ₃	$CH_2C(CH_3)_3$

Scheme 1

Where $R = CH_3$, $CH_2CH_2CH_3$

Table 1. ¹H-nmr spectral data for **2b-h**, δ -values in DMSO-d₆

Comnd no		n			
Compd. no.	N ₁ -alkyl	N ₃ -H	C ₅ -H	C ₆ -NH	another signal
2b	3.18 (s, 3H, CH ₃)	10.41 (s, 1H)	4.5 (s, 1H)	6.19 (d, 1H)	3.5 (m, 1H, CH), 1.5 (d, 6H, 2CH ₃)
c	3.18 (s, 3H, CH ₃)	10.41 (s, 1H)	4.47 (s, 1H)	6.67 (t, 1H)	3.02 (q, 2H, CH ₂), 1.51 (m, 2H, CH ₂), 1.32 (m, 2H, CH ₂), 0.88 (t, 3H, CH ₃)
d	3.25 (s, 3H, CH ₃)	10.43 (s, 1H)	4.66 (s, 1H)	6.38 (t, 1H)	2.88 (d, 2H, CH ₂), 0.92 (s, 9H, 3CH ₃)
e	3.71 (t, 2H, CH ₂)	10.42 (s, 1H)	4.41 (s, 1H)	6.94 (q, 1H)	1.52 (m, 2H, CH ₂), 0.92 (t, 3H, CH ₃)
f	3.79 (t, 2H, CH ₂)	10.40 (s, 1H)	4.5 (s, 1H)	6.18 (d, 1H)	3.51 (m, 1H, CH), 1.45 (m, 2H, CH ₂), 1.14 (d, 6H, 2CH ₃), 0.83 (t, 3H, CH ₃)
g	3.72 (t, 2H, CH ₂)	10.39 (s, 1H)	4.45 (s, 1H)	6.70 (t, 1H)	3.02 (m, 2H, CH ₂), 1.48 (m, 4H, 2CH ₂), 1.28 (m, 2H, CH ₂), 0.86 (2t, 6H, 2CH ₃)
h	3.84 (t, 2H, CH ₂)	10.39 (s, 1H)	4.65 (s, 1H)	6.46 (t, 1H)	2.88 (d, 2H, CH ₂), 1.51 (m, 2H, CH ₂), 0.85 (s, 9H, 3CH ₂)

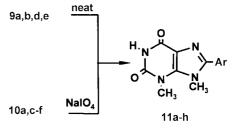
Table 2. ¹H-nmr spectral data for compounds (**3a-g**) in DMSO-d₆

Compd no				δ-ррт	
Compd. no	. N ₁ -alkyl	N ₃ -H	C ₆ -NH	C ₆ -N-alkyl	another signal
3a	3.41 (s, 3H, CH ₃)	15.29 (s, 1H)	11.28 (q, 1H)	3.13 (d, 3H, CH ₃)	_
b	3.43 (s, 3H, CH ₃)	13.82 (s, 1H)	11.30 (s, 1H)	3.07 (m, 1H, CH)	1.08 (d, 6H, 2CH ₃)
c	3.43 (s, 3H, CH ₃)	13.84 (s, 1H)	10.97 (t, 1H)	3.5 (s, 2H, CH ₂)	0.87 (t, 3H, CH ₃), 1.66 (m, 2H, CH ₂), 2.65 (m, 2H, CH ₂)
d	3.38 (s, 3H, CH ₃)	16.01 (s, 1H)	10.98 (s, 1H)	3.56 (d, 2H, CH ₂)	0.98 (s, 9H, 3CH ₃)
e	3.73 (t, 2H, CH ₂)	13.88 (s, 1H)	11.26 (q, 1H)	3.07 (d, 3H, CH ₃)	1.55 (m, 2H, CH ₂), 0.78 (t, 3H, CH ₃)
f	3.69 (t, 2H, CH ₂)	13.86 (s, 1H)	11.27 (q, 1H)	3.19 (p, 2H, CH ₂)	1.48 (m, 4H, 2CH ₂), 1.27 (m, 2H, CH ₂), 0.79 (m, 6H,
					2CH ₃)
g	3.78 (t, 2H, CH ₂)	13.92 (s, 1H)	11.32 (t, 1H)	3.12 (d, 2H)	1.62 (m, 2H, CH ₂), 0.85 (t, 3H, CH ₃), 0.89 (s, 9H, 3CH ₃)

Table 3. ¹H-nmr spectral data for (**4a-g**), δ-values in DMSO-d₆

2 1	δ-ppm						
Compd. no. —	N_1	N ₃ -H	5-NH	6-NH	5-CHO	another signals	
13a	3.24 (s, 3H, CH ₃)	10.78s	8.68d	6.58q	8.33d	2.87(d, 3H)	
			8.01d	6.39q	7.76d		
b	3.28 (s, 3H, CH ₃)	10.87s	8.74d	6.59q	8.1d	1.12 (d, 6H),	
			8.22d	6.28q	7.76d	3.28 (m, 1H)	
c	3.28 (s, 3H, CH ₃)	10.8s	8.68d	6.12q	8.08d	0.85 (t, 3H)	
		10.24s	8.24d	5.97q	7.74d	1.26 (m, 2H)	
						1.43 (m, 2H)	
d	3.35 (s, 3H, CH ₃)	10.98d	9.00d	5.85q	8.10d	0.84 (s, 9H)	
				5.45q	7.74d	2.98 (d, 2H)	
e	3.74 (t, 2H, CH ₂)	10.81s	8.64d	6.46t	8.07d	0.84 (t, 3H)	
		10.72s	8.28d	6.32t	7.73d	1.94 (m, 2H)	
${f f}$	3.78 (t, 2H, CH ₂)	10.77s	8.71d	6.34t	8.07d	0.84 (2t, 6H)	
			8.28d	6.13t	7.75d	1.21 (m, 2H)	
						1.45 (m, 4H)	
g	3.8 (t, 2H, CH ₂)	10.97s	8.96d	5.68t	8.09d	0.83 (3t, 3H)	
			8.35d	8.39t	7.72d	1.56 (m, 2H)	
						2.9 (d, 2H)	

(22), 98 (7), 48 (100), 29 (49).


The nitrosation of compound **2f** did not give the expected 5-nitroso analogue, but instead gave 3,3-dimethyl-5-propyl-6,8-dioxo-5,6,7,8-tetrahydro-3H-pyrimido[5,4-c]-1,2,5-oxadiazine (**7**), upon stirring with sodium nitrite and acetic acid for 12h at room temperature. The structure of the compound **7** was confirmed by ¹H-nmr, mass and uv spectra. Its uv spectrum was identical to that of the analogous 3,3,5,7-tetramethyl-6,8-dioxo-5,6,7,8-tetrahydro-3H-pyrimido[5,4-c]-1,2,5-oxadiazine, prepared by Goldner.²³ The mass spectrum of the compound **7** showed MS: m/z = M⁺ 238, M⁺-CH₃ 223, M⁺-CH₃CN 197, M⁺-CH₃NCO 181 and other fragment ions.

Treatment of 5-amino-l-methyl-6-methylaminouracil (8), (which was prepared by the hydrogenolysis of 1-methyl-6-methylamino-5-nitrosouracil (3a)¹¹) with aroyl chlorides under proper conditions (benzoyl chloride, 4-methyl-, 2-chlorobenzoyl chloride in 1 N NaOH at 0 °C, with 4-nitrobenzoyl chloride in ethyl acetate in presence of sodium bicarbonate

No.	Ar
10a	C ₆ H ₅
10b	4-CH ₃ OC ₆ H ₄
10c	2-NO ₂ C ₆ H ₄
10d	3-NO ₂ C ₆ H ₄
10e	4-Pyridyl
10f	2-Furvl

No.	Ar
9a	C ₆ H ₅
9b	4-CH ₃ C ₆ H ₄
9c	2-Cl.C ₆ H ₄
9d	4-NO ₂ C ₆ H ₄
9e	4-CF ₃ C ₆ H ₄

Scheme 2

No.	Ar.	No.	Ar.
11a	-C ₆ H ₅	11e	2-NO ₂ .C ₆ H ₄
11b	4-CH ₃ .C ₆ H ₄	11f	3-NO ₂ .C ₆ H ₄
11c	2-Cl.C ₆ H ₄	11g	4-pyridyl
11d	4-CF ₃ .C ₆ H ₄	11h	2-furyl

Scheme 3

at 0 °C, or with 4-triflouromethylbenzoyl chloride in pyridine at room temperature) afforded the corresponding 5-arylamido-1-methyl-6-methylaminouracils (**9a-e**) in a good yields (Scheme 2). The uv spectra of these compounds showed close resemblance of absorptions between 204 and 265 nm.

Reaction of compound **8** with different aromatic aldehydes namely, benzaldehyde, 4-anisaldehyde, 2-nitro-, 3-nitrobenzaldehyde, pyridine-4-caboxaldehyde and 2-furaldehyde with stirring at room temperature for 15-60 min gave the corresponding Schiffs bases 5-arylidineamino-6-methylamino-uracils (**10a-f**) in good yields (Scheme 2).

Dehydrative cyclization of the compounds **9a-e** by heating at 280-320 °C and oxidation of compounds **10a-f** by refluxing with sodium periodate in absolute ethanol for 3-36h gave the corresponding 8-aryl-3,9-dimethylxanthines (**11a-i**) (Scheme 3). The structures of these compounds were proved by elemental analyses, uv spectral data which were similar to those of 8-arylpurines¹⁶ except the compounds **11c** and **11f** which exhibit a hypsochromic shift due to the planarity of 8-aryl with the xanthine ring.

An attempt was made to prepare 8-arylpurines by the action of freshly distilled phosphoryl chloride on compounds **9**, but 2-aryl-5-methyl-4-methylamino-1,3-oxazolo[5,4-d] pyrimidine-6-one (**12a**, **b**) were formed instead on heating with phosphoryl chloride at 90 °C in an oil bath. (Scheme 3) 1 H nmr for compound **12a** shows doublet for the methyl group of NHCH₃(6) at δ = 3.39, quartet for NH at δ = 8.11 and the absence of NH(3) group. On the other hand, when **9b** was heated under reflux with phosphoryl chloride for 3.5 h two products: 2,6-dichloro-9-methyl-8-(2-chlorophenyl)-purine (**13**) and 2-(2-chlorophenyl)-5-methyl-4-methylamino-1,3-oxazolo[5,4-d]pyrirnidine-6-one (**14**) were isolated. (Scheme 4). We conclude that the POCl₃ at 90 °C acts as dehydrocyclizing agent but at higher temperature acts as a halogenated and dehydrocyclizing agent.

Experimental Section

All melting points were recorded on an electrothermal gallenkamp apparatus and are uncorrected. The ¹H nmr

Scheme 4

spectra were recorded on a Bruker AC 250 spectrometer in d (ppm) and with tetramethylsilane as the internal standard. The UV spectra were determined with Perkin Elmer, Lambda 5 or I5 spectrophotometer; λ_{max} in nm (log ε). The microanalyses were performed in the microanalytical laboratory of the Faculty of Chemistry, Konstanz University, Germany.

1-Methyl-, or 1-propyl-6-chlorouracil (**1a, b**). ^{21,22} These compounds were prepared according to the reported method ^{21,22}

1-Alkyl-6-alkylaminouracil (2a-h). A mixture of **1a** and/ or **1b** (25.5 mmol) in absolute ethanol (15 mL) and alkylamines (150 mmol) (40% ethanolic methylamine, isopropyl, 50% ethanolic *n*-butyl and neopentylamine) were heated under reflux for 15 min. After cooling, the precipitated product was collected by filtration, dried in the oven and recrystallised from appropriate solvent into colourless crystals (Table 1).

2a:¹¹ m.p. 275-77°; 77% yield; $R_f(SG) = 0.33A$; uv (methanol): 265 (4.35), 203 (4.15). Recrystallized from water. Anal. Calcd. for $C_6H_9N_3O_2$: C, 46.44; H, 5.85; N, 27.08. Found: C, 46.51; H, 6.12; N, 26.78.

2b: m.p. 266-68°; 84% yield; $R_f(SG) = 0.39A$; uv (methanol): 267 (4.33), 204 (4.20). Recrystallized from water. Anal. Calcd. for $C_8H_{13}N_3O_2$: C, 52.45; H, 7.15; N, 22.93. Found: C, 51.85; H, 7.03; N, 22.48.

2c: m.p. 212-14°; 96% yield; $R_f(SG) = 0.70B$; uv (methanol): 267 (4.37), 204 (4.22); Recrystallized from water. Anal. Calcd. for $C_9H_{15}N_3O_2$: C, 54.81; H, 7.66; N, 21.30. Found: C, 54.41; H, 7.66; N, 21.37.

2d: m.p. 237°; 69% yield; $R_f(SG) = 0.18A$; uv (methanol): 268 (4.27), 203 (3.90); Recystallized from methanol. Anal. Calcd. for $C_{10}H_{17}N_3O_2$: C, 56.85; H, 8.11; N, 19.89. Found: C, 56.73; H, 8.17; N, 19.98.

2e: m.p. 215°; 71% yield; $R_f(SG) = 0.43A$; uv (methanol): 266 (4.33), 204 (4.09). Recrystallized from methanol. Anal. Calcd. for $C_8H_{13}N_3O_2$: C, 52.44; H, 7.14; N, 22.90. Found: C, 54.45; H, 7.15; N, 23.45.

2f: m.p. 219°; 83% yield; $R_f(SG) = 0.59A$; uv (methanol): 268 (4.36), 203 (4.20). Recrystallized from acetone. Anal. Calcd. for $C_{10}H_{17}N_3O_2$: C, 56.86; H, 8.11; N, 19.89. Found: C, 56.49; H, 8.20; N, 20.25.

2g: m.p. 212-13°; 88% yield; $R_f(SG) = 0.46A$; uv (methanol): 267 (4.36), 203 (4.19). Recrystallized from ethanol. Anal. Calcd. for $C_{11}H_{19}N_3O_2$: C, 58.68; H, 8.49; N, 18.66. Found: C, 58.70; H, 8.34; N, 18.88.

2h: m.p. 202-03°; 83% yield; $R_f(SG) = 0.62A$; uv (methanol): 269 (4.29), 204 (4.11). Recrystallized from methanol. Anal. Calcd. for $C_{12}H_{21}N_3O_2$: C, 60.23; H, 8.83; N, 17.56. Found: C, 60.12; H, 8.91; N, 17.74.

1-Alkyl-6-alkylamino-5-nitrosouracil (3a-g). Compound 2a-e and/or 2g, h (19 mmol) was dissolved in water (40 mL), then sodium nitrite (22 mmol) and acetic acid (70 mmol) were added with stirring for 3h in an ice bath. There was generally a color changes in these reactions to either red, pink or violet. The precipitated product was collected by filtration, washed with ether and dried in the dessicator for 48h to afford 3a-g.

The mother liquor of compound **3c**, **g** was evaporated in vacuo till dryness, water (10 mL) added and the precipitate collected by filtration, dried in the oven and recrystallized from ethanol to give compounds **6a** and **6b** respectively.

3a: m.p. 180°; 88% yield; $R_f(SG) = 0.49A$; uv (methanol): 314 (3.80), 230 (4.11).

3b: m.p. 140°; 34% yield; $R_f(SG) = 0.30F$; uv (methanol): 315 (3.50), 228 (3.80) Anal. Calcd. for $C_8H_{12}N_4O_3$: C, 45.28; H, 5.70; N, 26.40. Found: C, 45.12; H, 5.71; N, 25.94.

3c: m.p. 128°; 40% yield; $R_f(SG) = 0.70A$; uv (methanol): 317 (3.99), 229 (4.25) Anal. Calcd. for $C_9H_{14}N_4O_3$: C, 47.78; H, 6.23; N, 24.76. Found: C, 48.01; H, 6.02; N, 24.82.

3d: m.p. 137°; 71% yield; $R_f(SG) = 0.77A$; uv (methanol): 318 (3.90), 230 (4.20) Anal. Calcd. for $C_{10}H_{16}N_4O_3$: C, 49.99; H, 6.71; N, 23.32. Found: C, 49.96; H, 6.73; N, 23.05.

3e: m.p. 152°; 72% yield; $R_f(SG) = 0.55A$; uv (methanol): 314 (3.80), 230 (4.11) Anal. Calcd. for $C_8H_{12}N_4O_3$: C, 45.28; H, 5.69; N, 26.41. Found: C, 45.07; H, 5.70; N, 26.31

3f: m.p. 76°; 72% yield; $R_f(SG) = 0.52A$; uv (methanol): 314 (3.70), 229 (4.10). Anal. Calcd. for $C_{11}H_{18}N_4O_3$: C, 51.95; H, 7.12; N, 22.03. Found: C, 51.86; H, 6.95; N, 21.96.

3g: m.p. 105° ; 63% yield; $R_f(SG) = 0.38B$; uv (methanol): 312 (3.60), 230 (4.09). Anal. Calcd. for $C_{12}H_{20}N_4O_3$: C, 53.71; H, 7.51; N, 20.88. Found: C, 53.67; H, 7.51; N, 20.60.

6a: m.p. 320-22°; 24% yield; $R_f(SG) = 0.65B$; 1H nmr: δ 13.11 (s, 1H, NH(3)), 11.08 (s, 1H, NH(9)), 3.35 (s, 3H, CH₃ (1)), 2.58 (t, 2H, CH₂), 1.07 (m, 2H, CH₂), 0.09 (t, 3H, CH₃). Anal. Calcd. for $C_9H_{12}N_4O_2$: C, 51.91; H, 5.81; N, 27.01. Found: C, 51.93; H, 5.81; N, 26.83.

6b: m.p. $>320^\circ$; 26% yield; $R_f(SG) = 0.59B$. Anal. Calcd. for $C_{12}H_{18}N_4O_2$: C, 57.58; H, 7.24; N, 22.38. Found: C, 57.47; H, 7.26; N, 22.16.

1-Alkyl-6-alkylamino-5-formamidouracil (**4a-g**). A mixture of compounds **3a-g** (5 mmol), zinc dust (30 mmol) and formic acid (0.58 mmol) were heated under reflux for 15 min. The reaction mixture was filtered on hot and the filterate was evaporated *in vacuo* till dryness, then ethanol (10 mL) was added. The precipitated product was filtered, dried in the oven and recrystallized from appropriate solvent.

4a: m.p. 321°; 61% yield; uv (methanol): 271 (4.22), 205 (4.12).

4b: m.p. 240°; 72% yield; $R_f(SG) = 0.67B$; uv (methanol): 272 (4.00), 206 (3.95); recrystallized from methanol; Anal. Calcd. for $C_9H_{14}N_4O_3$: C, 47.78; H, 6.19; N, 24.77. Found: C, 47.69; H, 6.24; N, 25.05.

4c: m.p. 223°; 75% yield; $R_f(SG) = 0.79E$; uv (methanol): 272 (4.01), 207 (4.01); recrystallized from methanol; Anal. Calcd. for $C_{10}H_{16}N_4O_3$: C, 50.00; H, 6.71; N, 23.32. Found: C, 49.81; H, 6.62; N, 23.68.

4d: m.p. 215°; 82% yield; $R_f(SG) = 0.32A$; uv (methanol): 275 (4.20), 207 (4.18); recrystallized from methanol; Anal. Calcd. for $C_{11}H_{18}N_4O_3$: C, 51.98; H, 7.10; N, 22.04. Found: C, 51.80; H, 7.13; N, 21.66.

4e: m.p. 195°; 74% yield; $R_f(SG) = 0.50E$; uv (methanol): 272 (4.23), 202 (4.19); recrystallized from ethanol; Anal. Calcd. for $C_9H_{14}N_4O_3$: C, 47.78; H, 6.23; N, 24.76. Found: C, 48.02; H, 6.70; N, 23.37.

4f: m.p. 184-86°; 36% yield; $R_f(SG) = 0.70A$; uv (methanol): 273 (4.24), 204 (4.18); recrystallized from methanol; Anal. Calcd. for $C_{12}H_{20}N_4O_3$: C, 53.71; H, 7.49; N, 20.88. Found: C, 53.11; H, 7.53; N, 20.96.

4g: m.p. 190-92°; 57% yield; $R_f(SG) = 0.72B$; uv (methanol): 274 (4.38), 203 (4.34); recrystallized from ethanol; Anal. Calcd. for $C_{13}H_{22}N_4O_3$: C, 55.30; H, 7.80; N, 19.72. Found: C, 54.83; H, 7.74; N, 19.50.

3,9-Dimethylxanthines (**5a-g**). A mixture of compound **4a-g** (2 mmol), formamide (3.0 mL), water (0.25 mL) and formic acid (0.25 mL) were heated at 160° for 30 min. After cooling, the precipitated crystal was collected by filtration, dried in the oven and recrystallized from appropriate solvent to give **5a-g**.

5a: m.p. 336°; 46% yield; R_f(SG) = 0.72B; uv (methanol): 265 (3.72), 235 (3.71), 202 (4.02); recrystallized from water. **5b**: m.p. 198-99°; 49% yield; R_f(SG) = 0.65E; uv (meth-

anol): 268 (3.94), 237 (3.83), 201 (4.25); recrystallized from methanol. Anal. Calcd. for $C_9H_{12}N_4O_2$: C, 51.91; H, 5.81; N, 26.91. Found: C, 51.72; H, 5.80; N, 26.70.

5c: m.p. 126°; 44% yield; $R_f(SG) = 0.60B$; uv (methanol): 268 (3.96), 237 (3.86), 202 (4.25); recrystallized from ethanol. Anal. Calcd. for $C_{10}H_{14}N_4O_2$: C, 54.04; H, 6.35; N, 25.21. Found: C, 54.01; H, 6.35; N, 24.83.

5d: m.p. 262-64°; 70% yield; $R_f(SG) = 0.41A$; uv (methanol): 265 (3.95), 235 (3.96), 203 (4.24); recrystallized from ethanol. Anal. Calcd. for $C_{11}H_{16}N_4O_2$: C, 55.92; H, 6.82; N, 23.71. Found: C, 55.46; H, 6.78; N, 23.69.

5e: m.p. 256-58°; 50% yield; $R_f(SG) = 0.51E$; uv (methanol): 266 (3.95), 237 (3.83), 202 (4.15); recrystallized from ethanol. Anal. Calcd. for $C_9H_{12}N_4O_2$: C, 51.91; H, 5.81; N, 26.91. Found: C, 52.08; H, 5.83; N, 27.65.

5f: m.p. 189-90°; 64% yield; $R_f(SG) = 0.46A$; uv (methanol): 265 (3.88), 236 (3.85), 202 (4.20); recrystallized from water. Anal. Calcd. for $C_{12}H_{18}N_4O_2$: C, 57.58; H, 7.24; N, 22.38. Found: C, 57.36; H, 7.05; N, 22.44.

5g: m.p. 229-30°; 19% yield; $R_f(SG) = 0.50A$; uv (methanol): 266 (3.95), 236 (3.94), 202 (4.26); recrystallized from ethanol. Anal. Calcd. for $C_{13}H_{20}N_4O_2$: C, 59.07; H, 7.62; N, 21.99. Found: C, 59.20; H, 7.62; N, 21.18.

3,3-Dimethyl-5-propyl-6,8-dioxo-5,6,7,8-tetrahydro-3H-pyrimido[**5,4-c**]-**1,2,5-oxadiazine** (7). Compound **2f** (2 mmol) was suspended in water (10 mL) with stirring in ice bath, then acetic acid (8.7 mmol) and sodium nitrite (4.0 mmol) were added, a pink color appeared which changed to white precipitate with continuous stirring. The reaction mixture kept in refrigerator for two days. The precipitate was collected by filtration, dried in the oven and recrystallized from methanol (15 mL) to afford **7** with m.p. 190°; 43% yield; uv (methanol): 281 (4.12), 208 (4.11); Anal. Calcd. for C₁₀H₁₄N₄O₃: C, 50.41; H, 5.92; N, 23.51. Found: C, 50.51; H, 5.98; N, 23.74.

5-Amino-6-methylamino-1-methyluracil (8). ¹⁸ This compound was prepared as a reported method. ¹⁸

5-Arylamido-1-methyl-6-methylaminouracils (9a-c). Compound 8 (3.0 g, 17.6 mmol) was dissolved in a solution of 1 N sodium hydroxide (30 mL) and an equimolar quantity of the aroyl chloride, benzoyl, 4-methylbenzoyl or 2-chlorobenzoyl chloride was added dropwise over a period of 0.5 h with stirring at 0 °C. The mixture was stirred for an additional 1h, and the pH of the solution was adjusted to 5 by adding conc. hydrochloric acid. The precipitate was filtered, washed with water, dried in the oven and recrystallised from ethanol (150 mL).

9a: m.p. 274 °C; 56% yield; $R_f(SG) = 0.73B$; uv (methanol): 271 (4.25), 222 (4.12), 209 (4.18). ¹H nmr: 10.75 (s, 1H, NH(C-3)), 9.03 (s, 1H, NH(C-5)), 7.90 (dd, 2H, aromatic), 7.43 (m, 3H, aromatic), 6.43 (q, 1H, NH(C-6), 3.25 (s, 3H, NMe(1)), 2.83 (d, 3H, NHMe(C-6)). Anal. Calcd. for $C_{13}H_{14}N_4O_3$: C, 56.93; H, 5.14; N, 20.42. Found: C, 56.80; H, 5.19; N, 21.00.

9b: m.p. 289°C; 64% yield; $R_f(SG) = 0.24A$; uv (methanol): 271 (4.28), 232 (4.29), 205 (4.52). ¹H nmr: 10.75 (s, 1H, NH(3)), 8.95 (s, 1H, NH(C-5)), 7.82 (d, 2H, aromatic),

7.27 (d, 2H, aromatic), 6.41 (q, 1H, NH(C-6)), 3.25 (s, 3H, NMe(1), 2.83 (d, 3H, NHMe(C-6), 2.34 (s, 3H, P-Me)). Anal. Calcd. for $C_{14}H_{16}N_4O_3$: C, 58.32; H, 5.58; N, 19.43. Found: C, 58.33; H, 5.63; N, 19.55.

9c: m.p. 303-304 °C; 58% yield; $R_f(SG) = 0.48A$; UV (methanol): 271 (4.19, 208 (4.27). 1H nmr: 10.76 (s, 1H, NH(3)), 8.96 (s, 1H, NH(C-5)), 7.39-7.95 (m, 3H, aromatic), 6.46 (q, NH(C-6)), 3.25 (s, 3H, NMe(1)), 3.0 (d, 3H, NHMe (C-6)). Anal. Calcd. for $C_{13}H_{13}C1N_4O_3$: C, 50.57; H, 4.24; N, 18.15. Found: C, 50.62; H, 4.24; N, 18.60.

1-Methyl-6-methyl amino-5-(4-nitrobenzamido)uracil (9d). Compound **8** (2.0 g, 11.7 mmol) was dissolved in sodium bicarbonate solution (l.0 g in 32 mL of water) with stirring at 0 $^{\circ}$ C, 4-nitrobenzoyl chloride (2.2 mL) in ethylacetate (30 mL) was added dropwise. The reaction mixture was stirred for an additional 2 h. The formed precipitate was filtered, washed with ether, dried in the oven and recrystallised from ethanol (100 mL), m.p. 306-308 $^{\circ}$ C; 46% yield; R_f(SG) = 0.09A; uv (methanol): 270 (4.02), 235 (4.69), 204 (3.96). 1 H nmr: 10.82 (s, 1H, NH(3)), 9.41 (s, NH(C-5)), 8.33 (d, 2H, aromatic), 8.13 (d, 2H, aromatic), 6.50 (q, 1H, NH(C-6)), 3.26 (s, 3H, NMe(1)), 2.85 (d, 3H, NHMe(C-6)). Anal. Calcd. for C₁₃H₁₃N₅O₅: C, 48.90; H, 4.10; N, 21.93. Found: C, 48.95; H, 4.14; N, 22.00.

1-Methyl-6-Methylamino-5-(4-trifluoromethylbenzamido)uracil (9e). Compound 8 (3.0 g, 17.6 mmol) was dissolved in pyridine (110 mL) and 4-trifluoromethylbenzoyl chloride (2.0 mL, 13.0 mmol) was added dropwise with stirring at room temperature for 5 h. The reaction mixture was poured on ice (150 g) and the precipitated product was collected by filtration, washed with ether, and dried to give **9e** (2.54 g). The mother liquor was evaporated in vacuo till dryness, water (30 mL) was added with stirring. The formed precipitate was filtered, washed with ether and dried to give an additional yield of **9e** (0.79 g). The product was (3.33 g) which recrystallized from a mixture of water/ethanol 2:1 to afford a colorless crystals, m.p. 283 °C; 58% yield; R_f (SG) = 0.48A; uv (methanol): 271 (4.25), 216 (4.24), 204 (4.31). ¹H nmr: 10.80 (s, 1H, NH(3)), 8.31 (s, 1H, NH), 8.09 (d, 2H, aromatic), 7.87 (d, 2H, aromatic), 6.50 (q, 1H, NH(C-6)), 3.26 (s, 3H, NMe(1)), 2.84 (d, 3H, NHMe(C-6)).

Anal. Calcd. for $C_{14}H_{13}F_3N_4O_3$: C, 49.13; H, 3.82; N; 16.36. Found: C, 49.06; H, 3.83; N, 16.20.

1-Methyl-5-arylidineamino-6-methylaminouracil (10a-f). Compound 8 (2.0 g, 1 l.7 mmol) was dissolved in water (100 mL) and a variety of equimolar amounts of aromatic aldehydes like benzaldehyde, 4-anisaldehyde, 2-nitro-, 3-nitrobenzaldehyde, pyridine-4-carboxaldehyde or 2-furaldehyde, was added with stirring at room temperature for 30 min. The precipitated product was collected by filtration, washed with methanol then ether, dried in the oven and recrystallized from a mixture of methanol/water 2:1.

10a: m.p. 235-237 °C; 57% yield; $R_f(SG) = 0.64A$; uv (methanol): 344 (4.17), 298 (4.13), 231 (4.02), 204 (4.20).

¹H nmr: 10.83 (s, 1H, NH(3)), 9.60 (s, 1H, CH(C-5)), 7.72 (dd, 2H, aromatic), 7.36 (m, 3H, aromatic), 6.92 (q, 1H, NH(C-6)), 3.26 (s, 3H, NMe(1)), 3.25 (d, 3H, NHMe(C-6)).
Anal. Calcd for $C_{13}H_{14}N_4O_2$: C, 60.45; H, 5.46; N, 21.69.

Found: C, 60.34; H, 5.41; N, 21.63.

10b: m.p. 224-226 °C; 43% yield; $R_f(SG) = 0.76A$; uv (methanol): 345 (4.36), 298 (4.27), 212 (4.27), 205 (4.26).

¹H nmr: 10.80 (s, 1H, NH(3)), 9.52 (s, 1H, CH(C-5)), 7.67 (d, 2H, aromatic), 6.95 (d, 2H, aromatic), 6.82 (q, 1H, NHMe(C-6), 3.80 (s, 3H, OMe(p)), 3.21 (s, NMe(1)), 3.19 (d, 3H, NHMe(C-6). Anal. Calcd for $C_{14}H_{16}N_4O_3$: C, 58.32; H, 5.59; N, 19.43. Found: C, 58.30; H, 5.52; N, 19.38.

10c: m.p. 231 °C; 52% yield; $R_f(SG) = 0.78B$; uv (methanol): 357 (3.99), 293 (4.15), 215 (4.25), 205 (4.34). 1H nmr: 10.90 (s, 1H, NH(3)), 9.90 (s, 1H, CH(C-5)), 8.12 (d, 1H, aromatic), 7.92 (d, 1H, aromatic), 7.70 (t, 1H, aromatic), 7.50 (t, 1H, aromatic), 7.09 (q, 1H, NHMe(C-6)), 3.32 (s, 3H, NMe(1)), 3.25 (d, 3H, NHMe(C-6)).

Anal. Calcd for $C_{13}H_{13}N_5O_4$: C, 51.48; H, 4.32; N, 23.09. Found: C, 51.44; H, 4.28; N, 23.02.

10d: m.p. 249-250 °C; 76% yield; $R_f(SG) = 0.59A$; uv (methanol): 351 (3.70), 291 (3.70), 215 (3.81). ¹H nmr: 10.90 9s, 1H, NH(3)), 9.72 (s, 1H, CH(C-5)), 8.45 (s, 1H, aromatic), 8.13 (d, 2H, aromatic), 7.66 (t, 3H, aromatic), 7.10 (q, 1H, NHMe(C-6)), 3.23 (s, 3H, NMe(1)), 3.29 (s, 3H, NHMe(C-6)). Anal. Calcd for $C_{13}H_{13}N_5O_4$: C, 51.48; H, 4.32; N, 23.09. Found: C, 51.28; H, 4.30; N, 22.98.

10e: m.p. 245-246 °C; 55% yield; $R_f(SG) = 0.48A$; uv (methanol): 368 (3.93), 291 (3.85), 237 (3.74), 203 (3.86). 1H nmr: 10.92 (s, 1H, NH(3)), 9.61 (s,1H, CH(C-5)), 8.56 (d, 2H, aromatic), 7.62 (d, 2H, aromatic), 7.16 (q, 1H, NHMe(C-6)), 3.32 (s, 3H, NMe(1), 3.29 (d, 3H, NHMe(C-6)). Anal. Calcd for $C_{12}H_{13}N_5O_2$: C, 55.59; H, 5.05; N, 27.01. Found: C, 55.51; H, 4.94; N 26.99.

10f: m.p. 223-225 °C; 19% yield; $R_f(SG) = 0.80A$; uv (methanol): 349 (4.40), 301 (4.27), 203 (4.19). ¹H nmr: 10.81 (s, 1H, NH(3)), 9.44 (s, 1H, CH(C-5)), 7.71 (d, 1H, aromatic), 6.83 (q, 1H, NH(6)), 6.75 (d, 1H, aromatic), 6.56 (d, 1H, aromatic), 3.30 (s, 3H, NMe(1)), 3.26 (d, 3H, NHMe (6)). Anal. Calcd for $C_{11}H_{12}N_4O_3$: C, 53.22; H, 4.87; N, 22.56. Found: C, 53.21; H, 4.85; N, 22.30.

8-Aryl-3,9-dimethylxanthine (11a-h).

Method A: Compound 9a, b, d, e (1.7 mmol) were heated near their melting points for 1 h. The products were dissolved in 0.5 N of sodium hydroxide (30 mL) and filtered on boiling water (30 mL) and acidified with acetic acid (5 mL). After cooling, the precipitates were collected by filtration, washed with ether, dried and recrystallized from methanol to give 11a-d.

Method B: To a suspensions solution of compound **10a**, **c-f** (1.0 mmol) in ethanol (15 mL), a solution of sodium periodate (4.0 mmol) in water (5 mL) was added. The mixtures were refluxed with stirring for 4h. After cooling, the precipitates were collected by filtration, washed with water, dried in the oven and recrystallized from methanol.

11a: m.p. 312-313 °C; 28% Yield; $R_f(SG) = 0.36$ A; uv (0.1 N HCl): 282 (3.82), 255 (3.90), 202 (4.29). ¹H nmr: 11.15 (s, 1H, NH(1)), 7.52+7.61 (m, 5H, aromatic), 3.85 (s, 3H, NMe(9)), 3.65 (s, 3H, NMe(3)). Anal. Calcd for $C_{13}H_{12}$ -N₄O₂: C, 60.92; H, 4.72; N, 21.86. Found: C, 60.88; H, 4.68; N, 21.82.

11b: m.p. > 330 °C; 85% Yield; $R_f(SG) = 0.35$ A; uv (0.1 N HCl): 287 (4.23), 249 (4.08), 203 (4.43). ¹H nmr: 11.19 (s, 1H, NH(1)), 7.54+7.50 (dd, 4H, aromatic), 3.83 (s, 3H, NMe(9)), 3.64 (s, 1H, NMe(3)), 2.37 (s, 3H, Me(p)). Anal. Calcd for C₁₄H₁₄N₄O₂: C, 62.21; H, 5.22; N, 20.72. Found: C, 62.02; H, 5.19; N, 20.88.

11c: m.p. 231 °C; 33% Yield; $R_f(SG) = 0.71 \text{ A}$; uv (0.1 N HCl): 272 (4.30), 233 (4.12), 208 (4.44). ¹H nmr: 11.23 (s, 1H, NH(1)), 7.56+7.67 (m, 4H, aromatic), 3.66 (s, 3H, NMe (9)), 3.39 (s, 3H, NMe(3)). Anal. Calcd for C₁₃H₁₁ClN₄O₂: C, 53.71; H, 3.81; N, 19.27. Found: C, 35.70; H, 3.79; N, 19.31.

11d: m.p. 321 °C; 64% Yield; $R_f(SG) = 0.46 \text{ A}$; uv (0.1 N HCl): 285 (3.96), 214 (4.29), 202 (4.16). ¹H nmr: 11.23 (s, 1H, NH(1)), 7.85-7.93 (dd, 4H, aromatic), 3.89 (s, 3H, NMe (9)), 3.65 (s, 3H, NMe(3)). Anal. Calcd for C₁₄H₁₁F₃N₄O₂: C, 51.85; H, 3.41; N, 17.27. Found: C, 51.80; H, 3.42; N, 17.25.

11e: m.p. 310-312 °C; 60% Yield; $R_f(SG) = 0.57B$; uv (0.1N HCl): 260 (4.20), 241 (4.20), 203 (4.53). ¹H nmr: 11.23 (s, 1H, NH(1)), 8.23 (d, 1H, aromatic), 7.87 (m, 2H, aromatic), 7.70 (d, 1H, aromatic), 3.73 (s, 3H, NMe(9)), 3.67 (s, 3H, NMe(3)). Anal. Calcd for C₁₃H₁₁N₅O₄: C, 51.82; H, 3.68; N, 23.24. Found: C, 51.78; H, 3.64; N, 23.21.

11f: m.p. 312-314 °C; 30% Yield; uv (0.1 N HCl): 328 (4.28), 300 (4.17), 275 (4.04), 204 (4.35). ¹H nmr: 11.26 (s, 1H, NH(1)), 8.42 (s, 1H, aromatic), 8.35 (d, 1H, aromatic), 8.10 (d, 1H, aromatic), 7.84 (t, 1H, aromatic), 3.91 (s, 3H, NMe(9)), 3,65 (s, 3H, NMe(3)). Anal. Calcd for $C_{13}H_{11}N_{5}$ -O₄: 51.82; H, 3.68; N, 23.24. Found: C, 51.80; H, 3.62; N, 23.19.

11g: m.p. 319 °C; 40% Yield; $R_f(SG) = 0.25 \text{ A}$; uv (0.1 N HCl): 351 (4.23), 267 (4.02), 202 (4.42). ¹H nmr: 11.26 (s, 1H, NH(1)), 8.73+7.64 (dd, 4H, aromatic), 3.92 (s, 3H, NMe (9)), 3.65 (s, 3H, NMe(3)). Anal. Calcd for C₁₂H₁₁N₅O₂: C, 56.02; H, 4.31; N, 27.22. Found: C, 55.98; H, 4.29; N, 27.21.

11h: m.p. 305-307 °C; 20% Yield; $R_f(SG) = 0.31 A$; uv (0.1 N HCl): 291 (4.22), 234 (4.02), 207 (4.18). ¹H nmr: 11.25 (s, 1H, NH(1)), 7.91+6.70 (m, 3H, aromatic), 3.97 (s, 3H, NMe(9)), 3.64 (s, 3H, NMe(3)). Anal. Calcd for C₁₁H₁₀N₄O₃: C, 53.65; H, 4.09; N, 22.75. Found: C, 53.64; H, 3.99; N, 22.63.

2-Aryl-6-methyl-7-methylamino-1,3-oxazolo[5,4-d]pyrimidin-5-one (12a, b). A mixture of compound 9a, b (2.0 mmol) and phosphoryl chloride was heated at 90 °C for 0.5h. The excess of phosphoryl chloride was evaporated in vacuo and the residue was poured on ice (15 g) with shaking. The precipitate was collected by filtration, washed with ether, dried in the oven and recrystallised from methanol.

12a: m.p. 320 °C, 89% yield, $R_f = 0.62$ in 1 : 9 methanol : chloroform. Anal. Calcd. for C₁₃H₁₂N₄O₂: C, 60.93; H, 4.71; N, 21.86. Found: C, 60.99; H, 4.77; N, 22.92.

12b: m.p. > 330 °C, 60% yield, $R_f = 0.53$ in 1:9 methanol: chloroform. ¹H nmr: 8.12 (q, 1H, NH(4)), 7.92-7.51 (m, 4H, aromatic), 3.41 (d, 3H, NHMe(4)), 3.32 (s, 3H, NMe(5)). Anal. Calcd. for $C_{14}H_{14}N_2O_2$: C, 62.21; H, 5.21; N, 20.94. Found: C, 61.97; H, 5.17; N, 20.94.

2,6-dichloro-9-methyl-8-(2-chloropheny1)purine (13) and 2-(2-chlorophenyl)-5-methyl-4-methylamino-l,3-oxazolo-[5,4-d] pyrirnidine-6-one (14). A mixture of compound 9a (1.0 g, 3.0 mmol) and redistilled phosphoryl chloride (30

mL) was heated under reflux for 3.5h (the color changed to dark brown after 1h from refluxing). The reaction mixture was poured on ice (20 g) with strong shaking. The precipitate was collected by filtration, dried and recrystallized from water (20 mL) giving compound 13, m.p. 295-298 °C, yield (0.23 g, 25%) and $R_f = 0.49$ (CH₃OH: CHCl₃ 1:9). Anal. Calcd. for C₁₂H₇Cl₃N₄: C, 45.96; H, 2.24; N, 17.86. Found: C, 45.95; H, 2.30; N, 18.00.

The mother liquor was left standing overnight The precipitate was collected by filtration, dried in the oven and recrystallized from methanol (20 mL) to give compound 14, m.p. 193 °C, yield (0.35 g, 34%) and $R_f = 0.84$ (CH₃OH: CHCl₃ 1 : 9). ¹H nmr: 8.19 (q, 1H, NH(4)), 7.96+7.47 (m, 4H, aromatic), 3.41 (d, 3H, NMe(4)), 3.36 (s, 3H, NMe(5)). Anal. Calcd. for C₁₃H₁₁ClN₄O₂: C, 53.71; H, 3.81; N, 19.27. Found: C, 52.80; H, 3.90; N, 19.00.

Where A; $CH_3OH/CHCl_3$ (1 : 9) B; $CH_3OH/CHCl_3$ (1 : 4) E; CH₃OH/CHCl₃ (3 : 7) F; CH₂Cl₂/CH₃OH (20 : 1).

Acknowledgment. The author wishes to thank Prof. Dr. W. Pfleiderer, Faculty of Chemistry, University of Konstanz, Germany, for many helpful discussions and to carry out this work in his laboratories.

References

- 1. Hitchings, G. H.; Elion, G. B.; Falco, E. A.; Russel, P. B.; Sherwood, M. B; VanderWerff, H. J. Biol. Chem. 1950, 1, 183.
- 2. Elion, G. B.; Hitchings, G. H.; VanderWerff, H. J. Biol. Chem. **1951**, 192, 505.
- Goldner, H.; Dietz, G.; Carstens, E. Annalen 1966, 691, 142.
- Timmis, G. M.; Cooke, J.; Spickett, R. G. W. Ciba Foundation Symposium on the Chemistry and Biology of Purines; Churchill, London, 1957; p 139.
- 5. Taylor, E. C.; Garcia, E. E. J. Am. Chem. Soc. 1964, 86, 4720.
- Yoneda, F.; Matsumura, T.; Senga, K. J. Chem. Soc. Chem. Comm. 1972, 606.
- Yoneda, F.; Higuchi, M.; Hayakawa, A. Synthesis 1975, 264.
- 8. Yoneda, F.; Matsumoto, S.; Sakuma, Y. Chem. and Pharm. Bull. (Japan), 1975, 23, 2425.
- Yoneda, F.; Sakuma, Y.; Nagamatsu, T.; Mizumoto, S. J. Chem. Soc. Perkin 1 1976, 2398.
- 10. Youssif, S.; Pfleiderer W. J. Heterocyclic Chem. 1998, 35, 949.
- 11. Pfleiderer, W.; Nubel, G. Liebigs Ann. Chem. 1961, 155.
- 12. Velkina, N. Ya.; Chaman, E. S.; Ebed, M. Zh. Obshch. Khim. **1957**, 37, 508.
- 13. Okano, T.; Goya, S.; Kaizu, T. J. Pharm. Soc. Japan 1967, 87, 469.
- 14. Falco, E. A.; Elion, G. B.; Burgi, E.; Hitchings, G. H. J. Am. Chem. Soc. 1952, 74, 4897.
- 15. Elion, G. B.; Burgi, E.; Hitchings, G. H. J. Am. Chem. Soc. 1951, 73, 5235.
- 16. Fu, S.-C. J.; Chinoporos, E.; Tirzian, H. J. Org. Chem. 1965, 30, 1916.
- 17. Albert, A.; Brown, D. J. J. Chem. Soc. 1954, 2060.
- 18. Traube, W.; Nithack, W. Ber. Dtsch. Chem. Ges. 1906, 9, 277.
- 19. Jerchel, D.; Krackt, M.; Krucker, K. Liebigs Ann. Chem. 1954, 232, 590.
- 20. Lichtenberg, D.; Bergmann, F.; Neiman, Z. J. Chem. Soc.(C) 1971, 1939.
- 21. Itoh, T.; Melik-Obanjanian, R. G.; Ishikawa, I.; Kawabara, N.; Mizuno, Y.; Honma, Y.; Hozumi, M.; Ogura, H. Chem. Pharm. Bull. 1989, 37, 3184.
- 22. Kazimierczuk, Z.; Shugar, D. Acta Biochim. Polon. 1971, 17, 325.
- 23. Goldner, H.; Dietz, G.; Carstons, E. Liebigs Ann. Chem. 1966, 692, 134.