Crystal Structure and Magnetic Properties of $\operatorname{Bis}(\mathbf{N}, \mathbf{N}$-dimethyl-2thiophenemethylammonium) Tetrabromocobaltate(II) ${ }^{\dagger}$

Young-Inn Kim, Yong-Min Lee, Sung Kwon Kang, ${ }^{\dagger}$ and Sung-Nak Choi*
Department of Chemistry, Chemistry Education and Chemistry Institute for Functional Materials, Pusan National University, Pusan 609-735, Korea
${ }^{\ddagger}$ Department of Chemistry, Chungnam National University, Daejeon 305-764, Korea
Received April 12, 2002

Key Words : Antiferromagnetic super-exchange, Tetrabromocobaltate(II), Hydrogen bond, π - π interaction

Considerable interest has been shown over recent years in the transition metal halide complexes, and, among them, the tetrahalometalates with various organic countercations have been the subject of theoretical, ${ }^{1-3}$ structural, ${ }^{4-8}$ magnetostructural ${ }^{9-14}$ and spectroscopic ${ }^{15-17}$ studies. The magnetostructural relation in the tetrabromocuprate with various organic countercations has been intensively studied, and in view of the magnetic properties of these compounds, the $\mathrm{Br} \cdots \mathrm{Br}$ contact and the $\mathrm{Cu}-\mathrm{Br}-\mathrm{Cu}$ bridge are known to be quite important; ${ }^{18,19}$ the antiferromagnetic coupling in the series of tetrabromocuprate compounds is produced via a 'two-halide' $\mathrm{Cu}-\mathrm{Br} \cdots \mathrm{Br}-\mathrm{Cu}$ contact while the ferromagnetic coupling is through a 'single-halide' $\mathrm{Cu}-\mathrm{Br}-\mathrm{Cu}$ bridge. The hydrogen bonding ${ }^{20,21}$ and noncovalent π-interaction between the aromatic rings of organic cations ${ }^{13,22}$ in this type of molecules control molecular recognitions and self-assembly processes, and exercise important effects on the solid-state structure and the properties of many compounds relevant to biological and material sciences. ${ }^{23-25}$ Despite the structural similarities between the tetrabromocuprates and the tetrabromocobaltate complexes, the magneto-structural studies for the tetrabromocobaltate complexes and other cobalt(II) compounds have been rarely reported.
In this work, we report the crystal structure and magnetic behaviors of the $(\mathrm{dmamtH})_{2} \mathrm{CoBr}_{4}$ complex. The $2-(\mathrm{N}, \mathrm{N}-$ dimethylaminomethyl)thiophene (dmamt) base contains an amine group and an aromatic thiophene ring, and therefore we expected that the protonated base dmamtH ${ }^{+}$as a cation might play an important role in stabilizing the solidstate structure of the $(\mathrm{dmamtH})_{2} \mathrm{CoBr}_{4}$ complex. The magnetic behavior of the $(\mathrm{dmamtH})_{2} \mathrm{CoBr}_{4}$ complex was investigated to confirm the importance of the $\mathrm{Br} \cdots \mathrm{Br}$ separation for two-bromide super-exchange pathways in the complex.

[^0]
Experimental Section

The $(\mathrm{dmamtH})_{2} \mathrm{CoBr}_{4}$ was prepared from a direct reaction between 2-(N,N-dimethylaminomethyl)thiophene $\cdot \mathrm{HBr}$, $(\mathrm{dmamtH}) \mathrm{Br}$ and anhydrous cobalt(II) bromide. The (dmamtH)Br salt was prepared from a reaction of 2 -(N, N-dimethylaminomethyl)thiophene (dmamt) (6 mmol) with an excess of concentrated hydrobromic acid in 50 mL of ethanoltriethylorthoformate mixture solvent ($5: 1 \mathrm{v} / \mathrm{v}$). 3 mmol of cobalt(II) bromide was dissolved in 10 mL of ethanoltriethylorthoformate ($5: 1 \mathrm{v} / \mathrm{v}$). This solution was added into a $(\mathrm{dmamtH}) \mathrm{Br}$ solution. The solution was heated with stirring for 5 h , and then allowed to cool in an ice bath. The precipitates were isolated by filtration and washed with cold ethanol. The blue single crystals were obtained by recrystalization in acetonitrile. The yield of the product was 1.38 g (69.38%) based on CoBr_{2}. Anal. Calcd. for $\mathrm{CoC}_{14} \mathrm{H}_{24} \mathrm{Br}_{4} \mathrm{~N}_{2} \mathrm{~S}_{2}$: C, 25.36; H, 3.65; N, 4.23; S, 9.67. Found: C, 25.31; H, 3.66; $\mathrm{N}, 4.19$; S, 9.72. All manipulations were carried out in an open atmosphere.

The magnetic susceptibility measurements were made on a powered polycrystalline sample over the temperature range of 6 K to 300 K with a Quantum Design MPMS-7-SQUID susceptometer. The data was corrected for the diamagnetism of the constituent atoms with Pascal's constant.

The data for X-ray structure determination were collected on a Siemens P4 diffractometer equipped with graphite monochromated Mo K α radiation $(\lambda=0.71073 \AA$) at 293 K . The unit cell dimensions were determined on the basis of 40 reflections in the range of $4.5^{\circ}<\theta<13.0^{\circ}$. The data were collected by the $\omega-2 \theta$ technique. Empirical absorption correction was applied to the intensity data. The standard direct method was used to position the heavy atoms. The remaining non-hydrogen atoms were located from the subsequent difference Fourier synthesis. All non-hydrogen atoms were refined anisotropically except the three disordered carbon atoms on the 5 -membered rings which were refined isotropically. All hydrogen atoms were calculated in ideal positions and were riding on their respective carbon atoms ($B_{\text {iso }}=$
$1.2 B_{\text {eq }}$ or $1.5 B_{\text {eq }}$). The structure was refined in a full matrix least-squares calculation on F^{2}. All the computations were carried out with the SHELX-97 program package. ${ }^{26}$ Crystallographic data for the structure reported here have been deposited with the Cambridge Crystallographic Data Centre (Deposition No. CCDC-186168). The data can be obtained free of charge via www.ccdc.cam.ac.uk/perl/catreq/ catreq.cgi (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44-1223 336033; E-mail: deposit@ ccdc.cam.ac.uk).

Results and Discussion

The crystallographic and the molecular structure of the $(\mathrm{dmamtH})_{2} \mathrm{CoBr}_{4}$ determined and details of data collection and structural refinements for the complex are given in Table 1. The molecular geometry and thermal ellipsoids along with the numbering schemes are shown in Figure 1, and the selected bond distances and angles are listed in Table 2. The crystal structure of the $(\mathrm{dmamtH})_{2} \mathrm{CoBr}_{4}$ complex consists of discrete $\mathrm{CoBr}_{4}{ }^{2-}$ anions and dmamtH ${ }^{+}$cations held together by the $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonding. The two $\mathrm{Co}-\mathrm{Br}$ distances $[2.439(3)$ and $2.431(3) \mathrm{A}]$ involved in the

Table 1. Crystallographic data of $(\mathrm{dmamtH})_{2} \mathrm{CoBr}_{4}$

	$(\mathrm{dmamtH})_{2} \mathrm{CoBr}_{4}$
Chemical formular	$\mathrm{CoC}_{14} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{~S}_{2} \mathrm{Br}_{4}$
FW (amu)	663.04
Crystal description	Blue Irregular
Crystal size (mm)	$0.30 \times 0.30 \times 0.20$
Crystal system	Monoclinic
Space group	P2 ${ }_{1}$ c (\#14)
T(K)	293(2)
Radiation(Mo K α) ($\lambda /$ A $)$	0.71073
a (\AA)	9.460(1)
b (A)	18.070(5)
c (\AA)	13.9139(2)
$\beta\left({ }^{\circ}\right)$	100.34(1)
$\mathrm{V}\left(\AA^{3}\right)$	2339.7(8)
Z	4
$\mathrm{d}_{\text {calcd. }}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	1.882
Absorption coefficient, $\mu\left(\mathrm{mm}^{-1}\right)$	7.743
F (000)	1284
θ range for data collection (${ }^{\circ}$)	1.87 to 25.00
Index ranges	$\begin{aligned} & -1 \leq h \leq 11,-21 \leq k \leq 1, \\ & -16 \leq l \leq 16 \end{aligned}$
Reflections collected/unique	5274/4127 [R(int) $=0.0733$]
Absorption Correction	Psi-scan
Max. and min. transmission	0.417 and 0.163
Refinement method	Full-matrix least-squares on F^{2}
Data/restraints/parameters	4127 / 0/232
Goodness of fit	1.061
Final R indices [I > 2 $\sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0785^{a}, \omega \mathrm{R}_{2}=0.1596^{\text {b }}$
Extinction coefficient	0.0041(5)
Largest diff. peak and hole ($\mathrm{e} \AA^{-3}$)	0.785 and -0.887

[^1]

Figure 1. ORTEP-3 diagram of $(\mathrm{dmamtH})_{2} \mathrm{CoBr}_{4}$ with hydrogen bonding showing the atom-numbering scheme and 30% probability ellipsoids.

Table 2. Selected bond lengths (\AA) and angles (deg) for the (dmamtH) $)_{2} \mathrm{CoBr}_{4}$

Co-Br1	$2.439(3)$	N7'-C8'	$1.49(2)$
Co-Br2	$2.431(3)$	N7-C9	$1.48(2)$
Co-Br3	$2.404(3)$	N7'-C9'	$1.49(2)$
Co-Br4	$2.387(3)$	C2-C3	$1.54(4)$
S1-C2	$1.62(2)$	C2'-C3' $^{\prime}$	$1.50(3)$
S1'-C2'	$1.56(2)$	C3-C4	$1.45(3)$
S1-C5	$1.726(15)$	C3'-C4'	$1.43(4)$
S1'-C5'	$1.679(17)$	C4-C5	$1.60(2)$
N7-C6	$1.512(18)$	C4'-C5'	$1.55(2)$
N7'-C6'	$1.525(19)$	C5-C6	$1.494(19)$
N7-C8	$1.46(2)$	C5'-C6' $^{\prime}$	$1.47(2)$
Br4-Co-Br3	$114.11(11)$	C3-C2-S1	$112.9(16)$
Br4-Co-Br2	$108.80(10)$	C3'-C2'-S1'	$110.0(18)$
Br3-Co-Br2	$106.19(10)$	C4-C3-C2	$116(2)$
Br4-Co-Br1	$109.02(11)$	C4'-C3'-C2'	$117(2)$
Br3-Co-Br1	$108.05(10)$	C3-C4-C5	$100.8(18)$
Br2-Co-Br1	$110.66(10)$	C3'-C4'-C5'	$101.6(17)$
C2-S1-C5	$94.0(11)$	C4-C5-S1	$115.9(12)$
C2'-S1'-C5'	$97.8(12)$	C4'-C5'-S1'	$113.2(12)$
C8-N7-C6	$112.0(14)$	C6-C5-S1	$119.4(12)$
C8'-N7'-C6'	$115.9(15)$	C6'-C5'-S1'	$124.7(12)$
C8-N7-C9	$113.4(17)$	C6-C5-C4	$124.7(13)$
C8'-N7'-C9'	$111.6(14)$	C6'-C5'-C4'	$122.1(15)$
C9-N7-C6	$112.0(14)$	C5-C6-N7	$115.5(12)$
C9'-N7'-C6'	$110.2(14)$	C5'-C6'-N7'	$111.8(13)$

hydrogen bonding are slightly longer than the other two CoBr distances [2.404(3) and 2.387(3) A] and the slight elongation of these bond distances is presumably due to a reduction of electron density on the bromide ions. The $\mathrm{Br}-$ $\mathrm{Co}-\mathrm{Br}$ bond angles vary within the range $106.19(10)$ $114.11(11)^{\circ}$. The average bond angle of $\mathrm{Br}-\mathrm{Co}-\mathrm{Br}$ is 109.4° and the average dihedral angle between two $\mathrm{Br}_{2} \mathrm{Co}$ planes is 87.7° as the $\mathrm{CoBr}_{4}{ }^{2-}$ unit maintains a nearly perfect tetrahedral geometry around the Co atom. The hydrogen bond distances and bond angles along with the dihedral angles between two $\mathrm{Br}_{2} \mathrm{Co}$ planes are summarized in Table 3. There are no important bonding interactions between tetrabromo-

Table 3. Dihedral angles (${ }^{\circ}$) between A and B planes, and hydrogen bonding for the $(\mathrm{dmamtH})_{2} \mathrm{CoBr}_{4}$

A	B		Dihedral Angles $\left({ }^{\circ}\right)$	
$\mathrm{Br} 1-\mathrm{Co}-\mathrm{Br} 2$	$\mathrm{Br} 3-\mathrm{Co}-\mathrm{Br} 4$	$89.40(8)$		
$\mathrm{Br} 1-\mathrm{Co}-\mathrm{Br} 3$	$\mathrm{Br} 2-\mathrm{Co}-\mathrm{Br} 4$	$86.61(7)$		
$\mathrm{Br} 1-\mathrm{Co}-\mathrm{Br} 4$	$\mathrm{Br} 2-\mathrm{Co}-\mathrm{Br} 3$	$87.21(7)$		
Hydrogen bonding	$\mathrm{N}-\mathrm{H}$	$\mathrm{H} \cdots \mathrm{Br}$	$\mathrm{N} \cdots \mathrm{Br}$	$\angle \mathrm{N}-\mathrm{H}-\mathrm{Br}$
mode	(\AA)	(\AA)	(\AA)	$\left({ }^{\circ}\right)$
$\mathrm{N} 7-\mathrm{H} 7 \cdots \mathrm{Br} 1$	0.910	2.419	3.314	167.91
$\mathrm{~N} 7{ }^{\top}-\mathrm{H} 7{ }^{\top} \cdots \mathrm{Br} 2$	0.910	2.475	3.336	157.96

cobaltate anions; the nearest nonbonded $\mathrm{Co} \cdots \mathrm{Br}$ distance is $6.293 \AA$ and there is no single-bromide bridge of the type $\mathrm{Co}-\mathrm{Br}-\mathrm{Co}$. However, there are two relatively short $\mathrm{Co}-\mathrm{Br} \cdots$ $\mathrm{Br}-\mathrm{Co}$ contact pathways; the shortest $\mathrm{Br} \cdots \mathrm{Br}$ contact of $4.465 \AA\left(\mathrm{Br} 2 \cdots \mathrm{Br} 1^{\prime}\right)$ in the structure is $0.6 \AA$ longer than the sum of the bromine ion van der Waals radii ($3.9 \AA$). The two bromine atoms in this pathway are also involved in the hydrogen bonding interaction, and the tortional angle of $\mathrm{Co}-$ $\mathrm{Br} \cdots \mathrm{Br}-\mathrm{Co}$ plane is -33.6°. The second shortest $\mathrm{Br} \cdots \mathrm{Br}$ contact of $4.660 \AA\left(\mathrm{Br} 4 \cdots \mathrm{Br} 4{ }^{\prime \prime}\right)$ is $\sim 0.8 \AA$ longer than van der Waals radii, but two cobalt and two bromine atoms are on the same plane with the $\mathrm{Co}-\mathrm{Br} \cdots \mathrm{Br}$ angle of 140.59°. The distance between two Co atoms is $8.882 \AA$. The aromatic thiophene ring of the cation is nearly perfectly planar and two adjacent thiophene rings are strictly parallel, face to face stacked with an interplanar distance of ca. $3.48 \AA$, indicating the presence of π-interaction between the aromatic thiophene rings. These rings are offset one from another by $2.34 \AA$ with a staggered orientation. There is an inversion center $i\left(=S_{2}\right)$ at the center of the cavity produced by an array of dmamtH ${ }^{+}$ cations and $\mathrm{CoBr}_{4}{ }^{2-}$ anions as it is shown in Figures 2 and 3b.
The $\mathrm{Br} \cdots \mathrm{Br}$ contact distances of 4.465 and $4.660 \AA$ might be short enough to allow the magnetic super-exchange to

Figure 2. A molecular packing diagram along with (100) plane in a unit cell for $(\mathrm{dmamtH})_{2} \mathrm{CoBr}_{4}$ showing 30% probability ellipsoids. Intermolecular hydrogen bonds are shown with short-dashed lines and a $\pi-\pi$ stacking interaction between two thiophene rings is denoted by long-dashed line.

Figure 3. The two possible magnetic super-exchange pathways in a unit cell [(100) plane] for the $(\mathrm{dmamtH})_{2} \mathrm{CoBr}_{4}$ complex. The 30% probability ellipsoids are used. The $\mathrm{Br} \cdots \mathrm{Br}$ contacts are shown with short-dashed lines. And a π - π stacking interaction is shown in the same way as in Figure 2.

Figure 4. A plot of temperature against the reciprocal magnetic susceptibility of $(\mathrm{dmamtH})_{2} \mathrm{CoBr}_{4}$.
occur antiferromagnetically between two paramagnetic cobalt(II) centers of two different $\mathrm{CoBr}_{4}{ }^{2-}$ anions. The unpaired electron density in 3d metal ions is substantially delocalized out on to the 4 p orbitals of the bromide ion due to the small energy difference between them. ${ }^{9,15}$ Previous workers reported the presence of a weak antiferromagnetic super-exchange via $\mathrm{Co}-\mathrm{O} \cdots \mathrm{O}$-Co contact in $\left[\mathrm{Co}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO}\right)_{6}\right]-$ $\left[\mathrm{NO}_{3}\right]_{2}$ where the distance of the $\mathrm{O} \cdots \mathrm{O}$ contact is $5.53 \AA .{ }^{27}$ This type of the magnetic exchange pathway with the $\mathrm{Br} \cdots \mathrm{Br}$ contact distances of $3.80-4.55 \AA$ is well established experimentally and theoretically for the tetrabromocuprate compounds. ${ }^{3,12,18,28}$ The strength of these interaction, which are invariable antiferromagnetic, decreases rapidly with the $\mathrm{Br} \cdots \mathrm{Br}$ distance. ${ }^{14}$
The room temperature magnetic moment of the $(\mathrm{dmamtH})_{2}-$ CoBr_{4} complex is 4.69 BM and is typical for noninteracting or weak interacting high spin d^{7} cobalt ions. The effective magnetic moments were calculated by $\mu_{e f f}=2.828\left(\chi_{M} \times T\right)^{1 / 2}$. As the temperature is lowered, the effective magnetic moment is practically constant down to about 20 K , but it decreases upon further cooling from 20 K to $6 \mathrm{~K}\left(\mu_{\text {eff }}=4.41\right.$ BM at 20 K and 3.86 BM at 6 K). Magnetic susceptibility data of the $(\mathrm{dmamtH})_{2} \mathrm{CoBr}_{4}$ are well described by the

Curie-Weiss law, $\chi_{M}=C /(T-\theta)$, with a negative temperature intercept (θ) of -3.14 K and a slope corresponding to a Curie constant of $\mathrm{C}=2.81 \mathrm{~cm}^{3} \mathrm{Kmol}^{-1}$ as it is shown in Figure 4.

Conclusion

The crystalline structure of $(\mathrm{dmamtH})_{2} \mathrm{CoBr}_{4}$ is stabilized by the intramolecular hydrogen bonding interaction and the π-interaction between aromatic thiophene rings stacked in the parallel fashion. These interactions also provide two relatively short $\mathrm{Co}-\mathrm{Br} \cdots \mathrm{Br}-\mathrm{Co}$ contact pathways in the solidstate structure of the complex. The decrease in the effective magnetic moment upon cooling from 20 K to 6 K , and the negative value of Curie-Weiss constant θ suggest the presence of weak anti-ferromagnetic interactions in this complex. Based on the structural data described above, it is reasonable to suggest that the possible magnetic super-exchange pathways are two $\mathrm{Co}-\mathrm{Br} \cdots \mathrm{Br}-\mathrm{Co}$ contacts denoted by pathway (a) or pathway (b) in Figure 3.

Acknowledgment. This research was supported by the Korean Science and Engineering Foundation (KOSEF Project No. R01-2001-000055-0).

References

1. Desjardins, S. R.; Penfield, K. W.; Cohen, S. L.; Musselman, R. L.; Solomon, E. I. J. Am. Chem. Soc. 1983, 105, 4590.
2. McDonald, R. G.; Riley, M. J.; Hitchman, M. A. Inorg. Chem. 1988, 27, 894.
3. Straatman, P.; Block, R.; Jansen, L. Phys. Rev. 1984, B29, 1415.
4. Halvorson, K. E.; Patterson, C.; Willett, R. D. Acta Cryst. 1990, B46, 508.
5. Bontchev, P. R.; Ivanova, B. B.; Bontchev, R. P.; Mehandjiev, D. R. Polyhedron 2001, 20, 231.
6. Llopis, M. J.; Alzuet, G.; Martin, A.; Borras, J.; Garcia-Granda,
S.; Diaz, R. Polyhedron 1993, 12, 2499.
7. Weselucha-Birczynska, A.; Oleksyn, B.; Paluszkiewicz, C.; Sliwinski, J. J. Mol. Struct. 1999, 511-512, 301.
8. Valdes-Martinez, J.; Alstrum-Acevedo, J. H.; Toscano, R. A.; Her-nandez-Ortega, S.; Espinosa-Perez, G.; West, D. X.; Helfrich, B. Polyhedron 2002, 21, 409.
9. Luque, A.; Sertucha, J.; Castillo, O.; Roman, P. Polyhedron 2002, 21, 19.
10. Marzotto, A.; Clemente, D. A.; Benetollo, F.; Valle, G. Polyhedron 2001, 20, 171.
11. Sertucha, J.; Luque, A.; Lloret, F.; Roman, P. Polyhedron 1998, 17, 3875.
12. Long, G. S.; Wei, M.; Willett, R. D. Inorg. Chem. 1997, 36, 3102.
13. Roman, P.; Sertucha, J.; Luque, A.; Lezama, L.; Rojo, T. Polyhedron 1995, 15, 1253.
14. Rubenacker, G. V.; Waplak, S.; Hutton, S. L.; Haines, D. N.; Drumheller, J. E. J. Appl. Phys. 1985, 57, 3341.
15. Smith, D. W. Coord. Chem. Rev. 1976, 21, 93.
16. Hitchman, M. A.; Cassidy, P. J. Inorg. Chem. 1979, 18, 1745.
17. Ferguson, J. J. Chem. Phys. 1964, 40, 3406.
18. Lander, C. P.; Turnbull, M. M.; Galeriu, C.; Giantsidis, J.; Woodward, F. M. Phys. Rev. 2001, B63, 100402.
19. Matsumoto, T.; Miyazaki, Y.; Albrecht, A. S.; Landee, C. P.; Turnbull, M. M.; Sorai, M. J. Phys. Chem. 2000, B104, 9993.
20. Aakeröy, C. B.; Nieuwenhuyzen, M. J. Am. Chem. Soc. 1994, 116, 10983.
21. Subramanian, S.; Zaworotko, M. J. Coord. Chem. Rev. 1994, 137, 357.
22. Stoddart, J. F. Chem. Br. 1991, 714.
23. Desiraju, G. R. Crystal Engineering; The Design of Organic Solids; Elsevier: New York, 1989.
24. Desiraju, G. R. Acc. Chem. Res. 1991, 24, 290.
25. Dahl, T. Acta Chem. Scand. 1994, 48, 95.
26. Sheldrick, G. M. SHELXL97 and SHELXS97, Program for the Refinement of Crystal Structures; University of Göttingen: Germany, 1997.
27. van der Bilt, A.; Joung, K. O.; Carlin, R. L.; De Jongh, L. J. Phys. Rev. 1981, B24, 445.
28. Snively, L. O.; Seifert, P. L.; Emerson, K. J.; Drumheller, J. E. Phys. Rev. 1981, B24, 5349.

[^0]: ${ }^{\dagger}$ This paper is dedicated to the late Professor Sang Chul Shim for his distinguished achievements in photochemistry.
 *Corresponding Author. E-mail: sunachoi@pusan.ac.kr

[^1]: ${ }^{a} \mathrm{R}_{1}=\Sigma\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}} \| / \Sigma\right| F_{\mathrm{o}} \mid{ }^{b} \omega \mathrm{R}_{2}=\left[\Sigma_{\omega}\left(F_{0}^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2} / \Sigma_{\omega}\left(F_{\mathrm{o}}{ }^{2}\right)^{2}\right]^{1 / 2}$.

