A New and Facile Synthesis of 2-Pyridones

Young Kwan Ko, ${ }^{*}$ Seung Chul Lee, ${ }^{\dagger}$ Dong Wan Koo, Mankil Jung, ${ }^{\dagger}$ and Dae-Whang Kim
Bio-organic Division, Korea Research Institute of Chemical Technology, Taejon 305-600, Korea
${ }^{\dagger}$ Department of Chemistry, Yonsei University, Seoul 120-749, Korea
Received October 24, 2000

Keywords : 2-Pyridone, Coumalic acid, 4-(Methoxymethylene)-2-pentenedioate, Dienamino ester.

So far, a number of biologically active compounds possessing 2-pyridone moiety have been known. ${ }^{1}$ On the other hand, 5 -carboxy-2-pyridone has been used as a key intermediate for the synthesis of recently developed insecticide Imidacloprid acting on the nicotinergic acetylcholine receptor. ${ }^{2}$ There have been several reports for the synthesis of carbo-alkoxy-2-pyridones from alkyl coumalate. ${ }^{3}$ However, preparations of alkyl coumalate from coumalic acid have some problems such as low yield or use of expensive coupling agent. ${ }^{4}$ Also, the yields for the synthesis of N -aryl-5-car-boalkoxy-2-pyridones from alkyl coumalate were poor. ${ }^{3 a}$ Other synthetic methods for carboalkoxy-2-pyridones consist of cyclization of dienamino esters prepared from enamino ester ${ }^{5 \mathrm{a}}$ or cyclic sulfonamide. ${ }^{5 \mathrm{~b}}$ In spite of many literature procedures, use of dimethyl 4-(methoxymethylene)-2pentenedioate for 2-pyridone synthesis has not been known.
In this note, we want to report a new and facile synthesis of 2-pyridones $\mathbf{4}$ from readily available coumalic acid $\mathbf{1}$ via dimethyl 4-(methoxymethylene)-2-pentenedioate $\mathbf{2 a} / \mathbf{2 b}$ and dienamino ester intermediates $\mathbf{3}$. Reaction of coumalic acid $\mathbf{1}$ with acetyl chloride in refluxing methanol afforded $\mathbf{2 a} / \mathbf{2 b}$ as a mixture of geometrical isomers.
We obtained 2a as a major compound along with minor geometrical isomer, that could be anticipated from literature. ${ }^{6}$ This mixture of $\mathbf{2 a} / \mathbf{2 b}$ was reacted with various amines to give dienamino esters $\mathbf{3}$, which could be isolated or cyclized directly to produce the corresponding 5-carbo-methoxy-2-pyridones 4 in high yield.

The results are summarized in Table 1.
From the reaction of $\mathbf{2 a} / \mathbf{2} \mathbf{b}$ with aqueous ammonia or benzylamine at low temperature ($0 \sim-20^{\circ} \mathrm{C}$), we could isolate dienamino ester 3a or $\mathbf{3 c}$ as a single isomer. Dienamino ester 3a was easily cyclized by refluxing in xylene under DBU catalyst to afford $\mathbf{4 a}$ in 77% yields. Various N-substituted 2-pyridones $\mathbf{4 b}-\mathbf{4 f}$ could be obtained in one-pot reaction via in situ generated dienamino esters from a mixture of $\mathbf{2 a} / \mathbf{2} \mathbf{b}$ in $77-97 \%$ yields. We could improve the yields for N -aryl-2-pyridones $\mathbf{4 d}-\mathbf{4 f}$, which were difficult to obtain by conventional method employing alkyl coumalate. ${ }^{3 a}$

In conclusion, the present method would be convenient and suitable for the synthesis of various 5-carboalkoxy-2pyridone derivatives.

Table 1. Synthesis of dienamino ester 3 or 2-pyridones 4 from a mixture of $\mathbf{2 a} / \mathbf{2 b}$

R	Product	Time (hr)	Yield (\%)
H	$\mathbf{3 a}$	10 min	72
	4a	3	77^{a}
n-Butyl	$\mathbf{4 b}$	5	97
Benzyl	$\mathbf{3 c}$	5 min	90
	$\mathbf{4 c}$	3	94
2-Pyridyl	$\mathbf{4 d}$	8	81
2-Thiazolyl	$\mathbf{4 e}$	5	77
Phenyl	$\mathbf{4 f}$	7	83

${ }^{a}$ Isolated yield from 3a.

Scheme 1

Scheme 2

Experimental Section

General. Most starting materials were used without further purification. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR were measured by Varian Gemini- 200 MHz spectrometer. Chemical shifts were expressed in ppm downfield from TMS used as internal standard. IR spectra were obtained by Digilab FTS-165 FTIR spectrometer. Melting point was measured by Thomas hoover capillary melting point apparatus. All chromatographic separations were performed on Merck silica gel 60 ($70-230$ mesh). Mass data were obtained by Micromass AutoSpec mass-spectrometer (EI, $70 \mathrm{eV} 200{ }^{\circ} \mathrm{C}$).
Preparation of dimethyl 4-(methoxymethylene)-2-pentenedioate ($\mathbf{2 a} / \mathbf{2 b}$). Acetyl chloride ($2.83 \mathrm{~mL}, 21.41 \mathrm{mmol}$) was dropwise added to a coumalic acid $(3.00 \mathrm{~g}, 21.41 \mathrm{mmol})$ in $\mathrm{MeOH}(30 \mathrm{~mL})$ over 10 min at $0^{\circ} \mathrm{C}$. The reaction mixture was refluxed for 10 hr in oil bath, cooled to room temperature followed by concentration. The reaction mixture was diluted with ethyl acetate and washed by brine (30 mL) and extracted with ethyl acetate $(3 \times 30 \mathrm{~mL})$, filtered through MgSO_{4}. The filtrate was concentrated in vacuo to afford crude product which was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc}: n\right.$-Hexane $\left.=1: 5\right)$ to give a mixture of $\mathbf{2 a}$ and $\mathbf{2 b}(4.00 \mathrm{~g})$ as a yellow solid.
Yield 93% (a ratio of $\mathbf{2 a}$ to $\mathbf{2 b}=7.3: 1$), mp $56-57{ }^{\circ} \mathrm{C}$ (recrystallized with ether $/ n$-hexane); ${ }^{1} \mathrm{H}$ NMR $(200 \mathrm{MHz}$, CDCl_{3}): 2a $\delta 3.65-3.88(\mathrm{~m}, 6 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 6.61(\mathrm{~d}, J=$ $16.28 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=16.28 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}) ; \mathbf{2 b} \delta$ $3.65-3.88(\mathrm{~m}, 6 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 6.45(\mathrm{~d}, J=9.82 \mathrm{~Hz}, 1 \mathrm{H})$, $7.79\left(\mathrm{dd}, J_{1}=9.82 \mathrm{~Hz}, J_{2}=2.54 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.29-8.31(\mathrm{~m}, 1 \mathrm{H})$; IR (KBr) $1721 \mathrm{~cm}^{-1}$; MS: m/z $200\left(\mathrm{M}^{+}\right)$.

General procedure for the preparation of enamino ester (3a, 3c). Amine was added to a mixture of $\mathbf{2 a} / \mathbf{2 b}$ in THF (5 mL) at low temperature ($0 \sim-20^{\circ} \mathrm{C}$). After 10 min , the reaction mixture was diluted with ethyl acetate $(10 \mathrm{~mL})$, washed by brine $(20 \mathrm{~mL})$. The aqueous phase was extracted with ethyl acetate $(3 \times 20 \mathrm{~mL})$. The combined organic layers was dried over MgSO_{4}, filtered and concentrated in vacuo to afford crude solid product which was purified by column chromatography and recrystallization in ether $/ n$-hexane system.
Preparation of dimethyl (2E,4Z)-4-aminomethylene-2pentenedioate (3a). Yield 72%, white solid, $\mathrm{mp} 138{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.73$ (s, 3 H), 3.81 (s, 3H), $5.50-$ $5.80(\mathrm{br}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=15.87 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=15.87$ $\mathrm{Hz}, 1 \mathrm{H}), 8.30-8.60(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 50.904, 51.162, 56.882, 97.027, 109.294, 111.516, 143.339, 154.536, 169.155; IR (KBr) $1694 \mathrm{~cm}^{-1}$; MS: m/z $185\left(\mathrm{M}^{+}\right)$.

Preparation of dimethyl (2E,4Z)-4-[(benzylamino)-methylene]-2-pentenedioate (3c). Yield 90%, white solid, $\mathrm{mp} 108{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.78$ $(\mathrm{s}, 3 \mathrm{H}), 4.48(\mathrm{~d}, J=5.90 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=15.67 \mathrm{~Hz}$, $1 \mathrm{H}), 7.20-7.48(\mathrm{~m}, 7 \mathrm{H}), 9.00-9.30(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 50.927,51.087,52.960,95.305,108.111$, 127.311, 128.168, 129.018, 136.687, 143.211, 157.010, 169.170, 169.496; IR (KBr) 1709, $1655 \mathrm{~cm}^{-1}$; MS: m/z 275 $\left(\mathrm{M}^{+}\right)$.

General procedure for the preparation of 5-pyridones ($\mathbf{4 a \sim 4 f}$). Enamino ester 3a (1.00 mmol) in xylene (5 mL) under DBU (0.05 mmol) catalyst (for $\mathbf{4 a}$) or enamino ester solution which was in situ generated by the reaction of amine $(1.10 \mathrm{mmol})$ with a mixture of $\mathbf{2 a} / \mathbf{2 b}(1.00 \mathrm{mmol})$ in DMF (5 mL) (for $\mathbf{4 b} \sim \mathbf{4 f}$) was refluxed to the end of cyclization. Then the mixture was cooled to room temperature, diluted with diethyl ether and washed with brine (20 mL). The reaction mixture was extracted with diethyl ether ($3 \times$ 20 mL), and filtered through MgSO_{4}. The filtrate was concentrated in vacuo to afford solid product which was purified by column chromatography and recrystallization in ether $/ n$ hexane system.

Methyl 6-oxo-1,6-dihydro-3-pyridinecarboxylate (4a). Yield 77%, white solid, mp $164-165{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.87(\mathrm{~s}, 3 \mathrm{H}), 6.58(\mathrm{~d}, J=9.56 \mathrm{~Hz}, 1 \mathrm{H}), 8.00$ (dd, $\left.J_{1}=11.62 \mathrm{~Hz}, J_{2}=1.82 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.21(\mathrm{~d}, J=2.44 \mathrm{~Hz}$, 1 H), 12.90-13.20 (br, 1 H); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 52.141, 111.046, 119.588, 139.759, 140.988, 164.520, 165.475; IR (KBr) 1707, $1656 \mathrm{~cm}^{-1}$; MS: m/z 153 (M+).

Methyl 1-butyl-6-oxo-1,6-dihydro-3-pyridinecarboxylate (4b). Yield 97%, brown oil; ${ }^{1} \mathrm{H}$ NMR (200 MHz , CDCl_{3}): $\delta 0.96(\mathrm{t}, J=7.50 \mathrm{~Hz}, 3 \mathrm{H}), 1.41(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{~m}$, $2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{t}, J=7.12 \mathrm{~Hz}, 2 \mathrm{H}), 6.50(\mathrm{~d}, J=9.56$ $\mathrm{Hz}, 1 \mathrm{H}), 7.82\left(\mathrm{dd} J_{1}=9.56 \mathrm{~Hz}, J_{2}=2.52 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.19(\mathrm{dd}$, $\left.J_{1}=1.84 \mathrm{~Hz}, J_{2}=0.62 \mathrm{~Hz}, 1 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.520,19.703,31.158,50.184,51.913,109.400,119.656$, 138.189, 142.740, 162.297, 164.664; IR (KBr) 1721, 1665 $\mathrm{cm}^{-1} ;$ MS: m/z $209\left(\mathrm{M}^{+}\right)$.

Methyl 1-benzyl-6-oxo-1,6-dihydro-3-pyridinecarboxylate (4c). Yield 94%, white solid, mp $90-91{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.83(\mathrm{~s}, 3 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 6.59(\mathrm{~d}, J=$ $9.56 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.45(\mathrm{~m}, 5 \mathrm{H}), 7.85\left(\mathrm{dd}, J_{1}=12.00 \mathrm{~Hz}, J_{2}\right.$ $=2.40 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=2.65 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 51.989,52.603,109.961,119.990,128.175$, $128.365,129.017,135.511,138.507,142.642,162.441$, 164.633; IR (KBr) 1713, $1660 \mathrm{~cm}^{-1}$; MS: m/z $243\left(\mathrm{M}^{+}\right)$.

Methyl 6-oxo-1-(2-pyridinyl)-1,6-dihydro-3-pyridinecarboxylate (4d). Yield 81%, white solid, mp 156-157 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.88$ (s, 3H), 6.66 (d, $J=$ $9.56 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.80-8.00(\mathrm{~m}, 3 \mathrm{H}), 8.60(\mathrm{~d}$, $J=4.88 \mathrm{~Hz}, 1 \mathrm{H}), 8.74(\mathrm{~d}, J=2.24 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 52.126,103.915,110.394,121.006,121.287$, 123.752, 137.931, 139.076, 141.678, 149.165, 161.849, 197.981; IR (KBr) 1721, $1686 \mathrm{~cm}^{-1}$; MS: m/z $230\left(\mathrm{M}^{+}\right)$.

Methyl 6-oxo-1-(1,3-thiazol-2-yl)-1,6-dihydro-3-pyridinecarboxylate (4e). Yield 77%, white solid, mp $159-160{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.94$ (s, 3H), 6.79 (d, $J=$ $9.56 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=3.45 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=3.46 \mathrm{~Hz}$, $1 \mathrm{H}), 8.00\left(\mathrm{dd}, J_{1}=12.00 \mathrm{~Hz}, J_{2}=2.40 \mathrm{~Hz}, 1 \mathrm{H}\right), 9.61-9.64$ $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 52.429,112.424$, 119.444, 120.604, 136.884, 138.090, 138.621, 150.963, 171.969, 198.004; IR (KBr) 1715, $1685 \mathrm{~cm}^{-1}$; MS: m/z 236 $\left(\mathrm{M}^{+}\right)$.

Methyl 6-oxo-1-phenyl-1,6-dihydro-3-pyridinecarboxylate (4f). Yield 83%, white solid, mp $100-101{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.86(\mathrm{~s}, 3 \mathrm{H}), 6.64(\mathrm{~d}, J=9.77 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.35-7.60(\mathrm{~m}, 5 \mathrm{H}), 7.90\left(\mathrm{dd}, J_{1}=12.20 \mathrm{~Hz}, J_{2}=2.42 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 8.22(\mathrm{~d}, J=2.65 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 52.095,103.877,109.809,120.597$, 126.362, 129.047, 129.480, 138.833, 143.279, 161.202, 162.457; IR (KBr) $1720,1674 \mathrm{~cm}^{-1}$; MS: m/z $229\left(\mathrm{M}^{+}\right)$.

References

1. (a) Singh, B.; Lesher, G. T.; Brundage, R. P. Synthesis 1991, 894. (b) Kozikowski, A. P.; Reddy, E. R.; Miller, C. P. J. C. S. Perkin Trans. I 1990, 195. (c) Singh, B.; Lesher, G. T. J. Heterocyclic Chem. 1990, 27, 2085. (d) Frister, H.; Kemper, K.; Boos, K-S.; Schlinme, E. Liebigs Ann. Chem. 1985, 3, 510.
2. (a) Shiokawa, K.; Tsuboi, S.; Moriya, K. In $8^{\text {th }}$ Interna-
tional Congress of Pesticide Chemistry Option 2000; Ragsdale, N. N., Kearney, P. C., Plimmer, J. R., Ed.; Am. Chem. Soc.: Washington DC, U. S. A., 1995; p 49. (b) Werbitzky, O.; Studer. P. US Patent 6022974; Feb. 8, 2000; Chem. Abstr. 1997, 120, 134302.
3. (a) Kidwai, M.; Bala, R. J. Indian Chem. Soc. 1993, 70(9), 773. (b) Kvita, V. Synthesis 1991, 883.
4. (a) Wiley, R. H.; Knabeschuh, L. H. J. Am. Chem. Soc. 1955, 77, 1615. (b) Boivin, J.; Heneriet, E.; Zard, S. Z. J. Am. Chem. Soc. 1994, 116(21), 739.
5. (a) Ahghelide, N.; Draghici, C.; Raileanu, D. Tetrahedron 1974, 30, 623. (b) Lee, C. H.; Chung, Y. S.; Chung, B. Y. Bull. Korean Chem. Soc. 1993, 14(5), 592.
6. Nantz, M. H.; Fuchs, P. L. Synth. Commun. 1987, 17(7), 761.
