Convenient Synthesis of Optically Pure α-Mono and α, α-Disubstituted β-Amino Acids

Hyun Soo Lee, Jung Dae Park, and Dong H. Kim*
Center for Integrated Molecular Systems, Division of Molecular and Life Sciences, Pohang University of Science and Technology, San 31 Hyojadong, Pohang 790-784, Korea Received January 10, 2003

Abstract

Optically pure α-mono- and α, α-disubstituted β-amino acids were conveniently prepared in four steps and in $27-40 \%$ overall yields from the correspondingly substituted racemic β-hydroxy acids that can be readily obtained from diethyl malonate. In the synthesis, (S)-phenylethylamine has been used as a resolving agent and as a source of the amino group in the β-amino acids.

Key Words : α-Monosubstituted β-amino acids, α, α-Disubstituted β-amino acids, β-Lactams, (S)-Phenylethylamine

Introduction

β-Amino acids and their cyclyzed derivatives such as β lactams have received much attention in recent years owing to their interesting biological activities. ${ }^{1}$ A variety of pharmacologically important natural products such as paclitaxel, ${ }^{2}$ dolastatins, ${ }^{3}$ and jasplakinolide ${ }^{4}$ contain β-amino acids as a constituent. β-Amino acids are also found in proteins although in much less abundance compared with α amino acids. Oligomers of β-amino acids have been the subject of intensive research because of their interesting folding patterns. ${ }^{5}$ Accordingly, numerous synthetic strategies for the preparation of β-amino acids have been reported. ${ }^{6}$

Recently, we reported a convenient synthesis of optically active α - and β-disubstituted amino acids from the corresponding β-hydroxy carboxylic acids. ${ }^{7}$ We now wish to report synthesis of enantiomerically pure α-mono and α, α disubstituted β-amino acids from the correspondingly substituted racemic β-hydroxy acids that can be readily obtained from diethyl malonate. In the present synthesis, (S) phenylethylamine is employed as a source for the amino group in the β-amino acids and as a resolving agent to yield readily separable diastereoisomeric amide intermediates which can be readily transformed into the target compounds.

The synthetic route is shown in Scheme 1. β-Hydroxy acids (1) were coupled at room temperature with (S)-phenylethylamine using 1-(dimethylaminopropyl)-3-ethylcarbodiimide (EDCI) in the presence of 1-hydroxybenzotriazole hydrate (HOBT) and triethylamine in methylene chloride solution to give 2 in excellent yield. The amide mixture (2) thus obtained in a diastereoisomeric mixture (about $1: 1$ ratio) was separated readily by flash column chromatography to yield $\mathbf{2}$ in an optically pure form. In the cases of $\mathbf{2 a}$ and $\mathbf{2 e}$, the diastereomers were more easily separated as β lactams in the subsequent step. Conversion of 2 into β lactams $\mathbf{3}$ was effected in excellent yield by mesylation of
*To whom correspondence should be address: Fax: +82-54-2795877 or +82-54-279-8142. E-mail: dhkim@ postech.ac.kr
the hydroxyl followed by treatment with sodium hydride in DMF. The lactam formation reaction under the Mitsunobu conditions was effective only in the case of $\mathbf{2 d}$ and $2 \mathbf{e}$. The β-lactams were then hydrolyzed under the acidic conditions using 6 N HCl to give N-alkylated β-amino acids that were subjected to hydrogenolysis in methanol containing a small amount of acetic acid and palladium hydroxide on charcoal. ${ }^{8}$ The resulting β-amino acids in the form of HCl salt were converted into a salt free form by treatment with DOWEX ion exchange resin. The stereochemical assignments for the β-amino acids thus obtained were made by comparing their specific rotations with those of respective authentic compounds reported in the literature (Table 1), and the stereochemistry of each intermediate in the syntheses was accordingly established. The α-mono and α, α-disubstituted racemic β-hydroxy acids used for the present synthesis were readily prepared, as illustrated in Scheme 2, starting 2-mono or 2,2-disubstituted 1,3-propanediol that were obtained from diethyl malonate.

Experimental Section

Melting points were taken on a Thomas-Hoover capillary melting point apparatus and were uncorrected. IR spectra were recorded on a Bruker Equinox 55 FT-IR spectrometer. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were obtained with a Bruker AM 300 (300 MHz) NMR spectrometer using tetramethylsilane as the internal standard. Mass spectral data were obtained with Micro Mass Platform II 8410E spectrometer. Optical rotations were measured on a Rudolp Research Autopol III digital polarimeter. Silica gel 60 (230-400 mesh) was used for flash chromatography and thin layer chromatography (TLC) was carried out on silica coated glass sheets (Merck silica gel 60 F-254). Elemental analyses were performed at Pohang University of Science and Technology, Pohang, Korea.
($2 R, 1$ 'S)- and ($2 S, 1 ' S$)-2-Hydroxymethyl-3-methyl- N -(1'-phenylethyl)butyramide ($(2 R, 1 ' S)$ - and ($2 S, 1 ' S$)- and 2b). 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydro-

($2 S, 1$ 'S)-2
$(2 R, 1 ' S)-2$

$\left(2 S, 1^{\prime} S\right)-3$

$(3 S, 1 ' S)-4$

(S) -5

(2R,1'S)-3

(3R, 1 'S)-4
d \downarrow

(R)-5

	R_{1}	R_{2}
	$=\mathrm{H}$	Me
b	H	i-Pro
	= H	Bn
	$=\mathrm{Me}$	Bn
	$=\mathrm{Me}$	$n-B u$

Scheme 1. (a) (S)-phenylethylamine, EDCl, HOBT, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{rt}, 1 \mathrm{~h}$, $>90 \%$; (b) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 10 \mathrm{~min}$; (c) $\mathrm{NaH}, \mathrm{DMF}, \mathrm{rt}, 4$ $\mathrm{h},>90 \%$ (two steps); (d) (i) 6 N HCl , reflux, 6 h (ii) $\mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{H}_{2}$ (3 atm), $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{AcOH}$, (iii) DOWEX resin, $>86 \%$ (three steps).
chloride ($1.88 \mathrm{~g}, 9.8 \mathrm{mmol}$), 1-hydroxybenzotriazole hydrate $(1.32 \mathrm{~g}, 9.8 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(1.5 \mathrm{~mL}, 10.8 \mathrm{mmol})$ were added to the stirred solution of $\mathbf{1 b}(1.30 \mathrm{~g}, 9.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$, and the solution was stirred for 10 min . (S)Phenylethylamine ($1.39 \mathrm{~mL}, 10.8 \mathrm{mmol}$) was added to the reaction mixture at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 1 h at room temperature. The solution was washed with 10% aqueous solution of citric acid, saturated aqueous NaHCO_{3} solution, and brine, and the organic layer was dried over MgSO_{4}. The dried solution was concentrated under reduced pressure to give the crude product ($2.22 \mathrm{~g}, 96 \%$) as a white solid in a diastereomeric mixture which was separated into $(2 R, 1 ' S)-\mathbf{2 b}(0.92 \mathrm{~g}, 40 \%)$ and $\left(2 S, 1^{\prime} S\right)-\mathbf{2 b}(1.05 \mathrm{~g}, 45 \%)$ by flash column chromatography (hexane/EtOAc $=4 / 1$ to $2 / 1$). The analytical samples were prepared by recrystallization

Table 1. Physical properties of final products

Compound	$\mathrm{mp}\left({ }^{\circ} \mathrm{C}\right)($ lit. $)$	$[\alpha]_{\mathrm{D}}($ lit. $)$
$(R)-\mathbf{5 a}$	$187-189(192-194)^{a}$	$-16.5(-15.4)^{a}$
$(S)-\mathbf{5 a}$	$187-189(192-194)^{a}$	$+16.4(+15.4)^{a}$
$(R) \mathbf{- 5 b}$	$238-240(228-230)^{b}$	$-14.3(-11.4)^{b}$
$(S)-\mathbf{5 b}$	$238-240$	+13.5
$(R) \mathbf{- 5} \mathbf{c}$	$231-233(224-226)^{b}$	$+19.9(+17.8)^{b}$
$(R)-\mathbf{5} \mathbf{c}$	$231-233(224-226)^{c}$	$-18.3(-11.0)^{c}$
$(R)-\mathbf{5 d}$	$262-264(205-206)^{d}$	$-24.3(-17.2)^{d}$
$(S)-\mathbf{5 d}$	$262-264(205-206)^{d}$	$+24.7(+17.8)^{d}$
$(R)-\mathbf{5 e}$	$240-242(187-188)^{d}$	$-8.4(-6.8)^{d}$
$(S)-\mathbf{5 e}$	$240-242(187-188)^{d}$	$+81(+7.0)^{d}$

${ }^{a}$ Kakimoto, Y. et al. J. Biol. Chem. 1961, 236, 3283. ${ }^{b}$ Jin, Y. et al. Synlett 1998, 1189. 'Juaristi, E. et al. Tetrahedron: Asymmetry 1996, 7, 2233. ${ }^{d}$ Juaristi, E. et al. Tetrahedron: Asymmetry 1998, 9, 3881.

Scheme 2. (a) $\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{OCH}_{3}\right)_{3}$, p - $\mathrm{TsOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 \mathrm{~h},>90 \%$; (b) Jones' reagent, acetone, $2 \mathrm{~h},>71 \%$; (c) $2 \mathrm{~N} \mathrm{NaOH}, \mathrm{MeOH}$, reflux, $4 \mathrm{~h},>92 \%$.
from the mixed solvent of diethyl ether and hexane.
$(2 R, 1 ' S)-\mathbf{2 b}: \mathrm{Mp} \mathrm{110-111}{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-82.2^{\circ}\left(c 0.98, \mathrm{CHCl}_{3}\right)$; IR (KBr) 3275, 2962, 1674, $1556 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR 300 MHz $\left(\mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{~d}, 3 \mathrm{H}), 0.94(\mathrm{~d}, 3 \mathrm{H}), 1.50(\mathrm{~d}, 3 \mathrm{H}), 1.92(\mathrm{~m}$, $1 \mathrm{H}), 2.05(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{br}, 1 \mathrm{H}), 3.82(\mathrm{~m}, 2 \mathrm{H}), 5.15(\mathrm{~m}, 1 \mathrm{H})$, 6.03 (br, 1H), 7.24-7.37 (m, 5H); ${ }^{13} \mathrm{C}$ NMR 300 MHz $\left(\mathrm{CDCl}_{3}\right) \delta 20.56,21.43,22.09,27.87,49.13,56.12,62.18$, 126.29, 126.56, 127.74, 129.04, 143.44, 174.53; Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{2}$: C, $71.46 ; \mathrm{H}, 8.99$; N, 5.95. Found: C, 71.26; H, 9.05; N, 6.00.
$\left(2 S, 1^{\prime} S\right)$-2b: Mp $135-136{ }^{\circ} \mathrm{C} ; \quad[\alpha]_{\mathrm{D}}-101.9^{\circ}$ (c 1.32 , CHCl_{3}); IR (KBr) 3315, 2973, 1643, $1549 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 0.97(\mathrm{~d}, 6 \mathrm{H}), 1.49(\mathrm{~d}, 3 \mathrm{H}), 1.91(\mathrm{~m}$, $1 \mathrm{H}), 2.07(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{br}, 1 \mathrm{H}), 3.77(\mathrm{~m}, 2 \mathrm{H}), 5.15(\mathrm{~m}, 1 \mathrm{H})$, 6.12 (br, 1H), 7.23-7.36 (m, 5H); ${ }^{13} \mathrm{C}$ NMR 300 MHz $\left(\mathrm{CDCl}_{3}\right) \delta 20.63,21.44,22.13,27.76,49.01,56.12,62.18$, 126.30, 126.49, 127.74, 129.07, 143.47, 174.59; Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{2}$: C, $71.46 ; \mathrm{H}, 8.99 ; \mathrm{N}, 5.95$. Found: C, 71.47; H, 9.09; N, 5.93.
$(2 R, 1 ' S)$ - and ($2 S, 1$ 'S)-2-Hydroxymethyl-3-phenyl- N (1 '-phenylethyl)propionamide ($(2 R, 1 ' S)$ - and ($2 S, 1 ' S$)-2c) were similarly prepared from $\mathbf{1 c}$ in 46% and 47% yield, respectively. The analytical samples were prepared by recrystallization from the mixed solvent of diethyl ether and hexane.
$(2 R, 1 ' S)-2 \mathbf{c}: \operatorname{Mp} 130-132{ }^{\circ} \mathrm{C} ; \quad[\alpha]_{\mathrm{D}}-102.2^{\circ}$ (c 1.00 , CHCl_{3}); IR (KBr) 3261, 2966, 1644, $1569 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR
$300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 1.22(\mathrm{~d}, 3 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{dd}$, $1 \mathrm{H}), 2.96(\mathrm{dd}, 1 \mathrm{H}), 3.03(\mathrm{dd}, 1 \mathrm{H}), 3.74(\mathrm{~m}, 2 \mathrm{H}), 4.99(\mathrm{~m}$, 1H), 5.76 (br, 1H), 7.16-7.33 (m, 10H); ${ }^{13} \mathrm{C}$ NMR 300 MHz $\left(\mathrm{CDCl}_{3}\right) \delta 21.98,35.78,49.01,50.98,63.69,126.40,126.98$, 127.72, 129.05, 129.40, 139.63, 143.37, 173.91; Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2}$: C, 76.29; H, 7.47; N, 4.94. Found: C, 76.29; H, 7.52; N, 5.00.
$(2 S, 1 ' S)-2 \mathbf{c}: \mathrm{Mp} \mathrm{108-110}{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-73.5^{\circ}\left(c 1.03, \mathrm{CHCl}_{3}\right)$; IR (KBr) 3328, 2972, 1645, $1557 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR 300 MHz $\left(\mathrm{CDCl}_{3}\right) \delta 1.40(\mathrm{~d}, 3 \mathrm{H}), 2.54(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{dd}, 1 \mathrm{H}), 2.94$ (dd, 1H), $3.04(\mathrm{dd}, 1 \mathrm{H}), 3.77(\mathrm{~m}, 2 \mathrm{H}), 5.04(\mathrm{~m}, 1 \mathrm{H}), 5.89(\mathrm{br}$, $1 \mathrm{H}), 7.00-7.25(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta$ $22.11,35.61,48.97,50.97,63.78,126.44,126.83,127.58$, 128.93, 129.00, 139.43, 143.13, 173.84; Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2}$: C, 76.29; H, 7.47; N, 4.94. Found: C, 75.99; H, 7.53; N, 5.34.
($2 R, 1$ 'S)- and ($2 S, 1$ 'S)-2-Hydroxymethyl-2-methyl-3-phenyl- N-(1'-phenylethyl) propionamide ($(2 R, 1 ' S)$ - and ($\mathbf{2 S}, \mathbf{1} \mathbf{S} \mathbf{S}$-2d) were similarly prepared from $\mathbf{1 d}$ in 44% and 47% yield, respectively. The analytical samples were prepared by recrystallization from the mixed solvent of diethyl ether and hexane.
(2R,1'S)-2d: Mp 129-131 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}-50.8^{\circ}$ (c $\left.1.89, \mathrm{MeOH}\right)$; IR (KBr) 3250, 2915, 1635, $1545 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR 300 MHz $\left(\mathrm{CDCl}_{3}\right) \delta 1.05(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~d}, 3 \mathrm{H}), 2.80(\mathrm{~d}, 1 \mathrm{H}), 3.03(\mathrm{~d}$, $1 \mathrm{H}), 3.53-3.61(\mathrm{~m}, 3 \mathrm{H}), 5.06(\mathrm{~m}, 1 \mathrm{H}), 6.20(\mathrm{br}, 1 \mathrm{H}), 7.14-$ $7.31(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 19.72,22.13$, $42.26,47.70,49.03,68.94,126.35,127.03,127.68,128.56$, 129.08, 130.80, 137.44, 143.66, 176.40; Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{2}$: C, 76.73; H, 7.80; N, 4.71. Found: C, 76.82; H, 7.88; N, 4.73.
($2 S, 1$ 'S)-2d: $\mathrm{Mp} 95-97{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}-81.5^{\circ}$ (c $1.34, \mathrm{MeOH}$); IR (KBr) 3292, 2929, 1631, $1545 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR 300 MHz $\left(\mathrm{CDCl}_{3}\right) \delta 1.04(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~d}, 3 \mathrm{H}), 2.80(\mathrm{~d}, 1 \mathrm{H}), 3.03(\mathrm{~d}$, $1 \mathrm{H}), 3.30(\mathrm{dd}, 1 \mathrm{H}), 3.59(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{~m}, 1 \mathrm{H}), 6.09(\mathrm{br}$, $1 \mathrm{H}), 7.07-7.32(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta$ 19.66, 22.06, 42.20, 47.71, 49.07, 69.08, 126.57, 126.89, $127.69,128.52,129.01,130.71,137.29,143.29,176.27$; Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{2}$: C, 76.73; H, 7.80; $\mathrm{N}, 4.71$. Found: C, 76.73; H, 7.82; N, 4.73.
($3 R, 1$ 'S)- and (3S,1'S)-3-Methyl-1-(1'-phenylethyl)-azetidin-2-one ($(3 R, 1 ' S)$ - and (3S,1'S)-4a). 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride $(2.20 \mathrm{~g}$, 11.5 mmol), 1-hydroxybenzotriazole hydrate ($1.55 \mathrm{~g}, 11.5$ $\mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(1.77 \mathrm{~mL}, 12.7 \mathrm{mmol})$ were added to the stirred solution of $\mathbf{1 a}(1.20 \mathrm{~g}, 11.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$, and the solution was stirred for 10 min . (S)-Phenylethylamine $(1.63 \mathrm{~mL}, 12.7 \mathrm{mmol})$ was added to the reaction mixture at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 1 h at room temperature. The solution was washed with 10% aqueous solution of citric acid, saturated aqueous NaHCO_{3} solution, and brine, and the organic layer was dried over MgSO_{4}. The dried solution was concentrated under reduced pressure to give the crude product in a diastereomeric mixture which was purified by flash column chromatography (hexane/ $\mathrm{EtOAc}=4 / 1$ to $2 / 1$) to afford $\mathbf{2 a}(2.15 \mathrm{~g}, 90 \%)$ as a colorless oil. Methanesulfonyl chloride ($0.96 \mathrm{~mL}, 12.4 \mathrm{mmol}$) and
$\mathrm{Et}_{3} \mathrm{~N}(1.74 \mathrm{~mL}, 12.4 \mathrm{mmol})$ were added to the stirred solution of $\mathbf{2 a}(2.15 \mathrm{~g}, 10.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ and the solution was stirred for 10 min . The reaction mixture was washed with 1 N HCl and the organic layer was dried over MgSO_{4}. The dried solution was concentrated under reduced pressure to give a mesylated product in a white solid. The product was dissolved in DMF and the solution was cooled to $0{ }^{\circ} \mathrm{C}$. To the solution, $\mathrm{NaH}(0.50 \mathrm{~g}, 12.4 \mathrm{mmol}, 60 \%$ dispersion in mineral oil) was added and the reaction mixture was stirred for 4 h . The solution was diluted with EtOAc, and washed with 5% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution to remove DMF. The organic layer was dried over MgSO_{4} and concentrated under reduced pressure to give the crude product ($1.80 \mathrm{~g}, 92 \%$) in a diastereomeric mixture. The diastereomeric mixture was separated by flash column chromatography (hexane/EtOAc $=8 / 1$ to $4 / 1$) to give $(3 R$, 1'S)-4a ($0.87 \mathrm{~g}, 44 \%$) and ($3 S, 1 ' S$)-4a ($0.67 \mathrm{~g}, 34 \%$) as colorless oil.
(3R,1'S)-4a: $[\alpha]_{\mathrm{D}}-83.8^{\circ}$ (c 1.19, CHCl_{3}); IR (neat) 2968, $1743 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 1.30(\mathrm{~d}, 3 \mathrm{H}), 1.58$ $(\mathrm{d}, 3 \mathrm{H}), 2.82(\mathrm{dd}, 1 \mathrm{H}), 3.09(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{t}, 1 \mathrm{H}), 4.91(\mathrm{q}$, $1 \mathrm{H}), 7.25-7.38(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta$ 14.01, 18.92, 43.63, 45.10, 51.63, 127.09, 127.92, 129.07, 141.16, 171.01; MS (EI) m/z $189\left(\mathrm{M}^{+}\right)$.
(3S,1'S)-4a: $[\alpha]_{\mathrm{D}}-136^{\circ}$ (c $0.5, \mathrm{CHCl}_{3}$); IR (neat) 2969, $1743 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 1.25(\mathrm{~d}, 3 \mathrm{H}), 1.57$ $(\mathrm{d}, 3 \mathrm{H}), 2.63(\mathrm{dd}, 1 \mathrm{H}), 3.13(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{t}, 1 \mathrm{H}), 4.94(\mathrm{q}$, $1 \mathrm{H}), 7.25-7.39(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta$ 13.89, 18.71, 43.66, 44.99, 51.47, 127.07, 127.90, 129.07, 141.14, 170.98; MS (EI) $m / z 189\left(\mathrm{M}^{+}\right)$.
(3R,1'S)- and (3S,1'S)-3-Butyl-3-methyl-1-(1'-phenyl-ethyl)azetidin-2-one ($3 R, 1 ' S$)- and ($3 S, 1 ' S$)-4e) were similarly prepared from 1e in 44% and 39% yield, respectively.
$(3 R, 1 ' S)-4 \mathrm{e}:[\alpha]_{\mathrm{D}}-70.6^{\circ}\left(c 0.89, \mathrm{CHCl}_{3}\right)$; IR (neat) 2958, $1744 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 0.91$ (dd, 3 H), $1.22(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~m}, 4 \mathrm{H}), 1.57(\mathrm{~d}, 3 \mathrm{H}), 1.60(\mathrm{~m}, 2 \mathrm{H}), 2.69$ $(\mathrm{d}, 1 \mathrm{H}), 3.06(\mathrm{~d}, 1 \mathrm{H}), 4.95(\mathrm{q}, 1 \mathrm{H}), 7.26-7.38(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 14.36,18.76,19.73,23.44,27.30$, $34.75,49.70,50.90,53.61,127.13,127.89,129.05,141.06$, 173.47; MS (EI) m/z $246\left(\mathrm{M}^{+}\right)$.
(3S,1'S)-4e: $[\alpha]_{\mathrm{D}}-75.7^{\circ}\left(c 0.94, \mathrm{CHCl}_{3}\right.$); IR (neat) 2957, $1743 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 0.84(\mathrm{dd}, 3 \mathrm{H})$, $1.23(\mathrm{~m}, 4 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{~d}, 3 \mathrm{H}), 2.87$ (dd, 2H), $4.94(\mathrm{q}, 1 \mathrm{H}), 7.27-7.38(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR 300 $\mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 14.32,18.59,19.89,23.40,27.31,34.72$, 49.76, 50.92, 53.62, 127.18, 127.90, 129.02, 141.11, 173.56; MS (EI) $m / z 246\left(\mathrm{M}^{+}\right)$.
(3R,1'S)-3-Isopropyl-1-(1'-phenylethyl)azetidin-2-one ($(\mathbf{3 R}, \mathbf{1} \mathbf{S} \mathbf{)} \mathbf{- 4 b})$. Methanesulfonyl chloride $(0.30 \mathrm{~mL}, 3.8$ $\mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.54 \mathrm{~mL}, 3.8 \mathrm{mmol})$ were added to the stirred solution of ($2 R, 1^{\prime} S$) -2b ($750 \mathrm{mg}, 3.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ and the solution was stirred for 10 min . The reaction mixture was washed with 0.1 N HCl , and the organic layer was dried over MgSO_{4}. The dried solution was concentrated under reduced pressure to give a mesylated product as a white solid. The product was dissolved in DMF
and the solution was cooled to $0{ }^{\circ} \mathrm{C}$. To the solution was added $\mathrm{NaH}(0.154 \mathrm{~g}, 3.8 \mathrm{mmol}, 60 \%$ dispersion in mineral oil) and the reaction mixture was stirred for 4 h . The solution was diluted with ethyl acetate and washed with 5% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution to remove DMF. The organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The crude product was purified by flash column chromatography (hexane/EtOAc $=8 / 1$ to $4 / 1$) to give $(3 R, 1 ' S)-\mathbf{4 b}(630$ $\mathrm{mg}, 91 \%$) as a white solid which was recrystallized from the mixed solvent of diethyl ether and hexane. Mp $57-58{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}-96.5^{\circ}\left(c 1.03, \mathrm{CHCl}_{3}\right) ;$ IR (KBr) 2961, $1723 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 0.95(\mathrm{~d}, 3 \mathrm{H}), 1.05(\mathrm{~d}, 3 \mathrm{H}), 1.58$ $(\mathrm{d}, 3 \mathrm{H}), 1.97(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{t}, 1 \mathrm{H}), 4.92(\mathrm{q}$, $1 \mathrm{H})$, 7.27-7.37 (m, 5H); ${ }^{13} \mathrm{C}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta$ 18.89, 20.25, 20.32, 28.33, 40.85, 51.39, 55.70, 127.16, 127.93, 129.06, 141.04, 169.89; Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}$: C, 77.38; H, 8.81; N, 6.45. Found: C, 77.52; H, 8.90; N, 6.41 .
(3S,1'S)-3-Isopropyl-1-(1'-phenylethyl)azetidin-2-one $((\mathbf{3 S}, \mathbf{1} \mathbf{S}) \mathbf{- 4 b})$ was similarly prepared from $\left(2 S, 1^{\prime} S\right)-\mathbf{2 b}$ in 93% yield as a colorless oil. $[\alpha]_{\mathrm{D}}-87.1^{\circ}\left(c 1.18, \mathrm{CHCl}_{3}\right)$; IR (neat) 2958, $1743 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 0.87$ $(\mathrm{d}, 3 \mathrm{H}), 1.00(\mathrm{~d}, 3 \mathrm{H}), 1.56(\mathrm{~d}, 3 \mathrm{H}), 1.91(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{dd}$, $1 \mathrm{H}), 2.91(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{t}, 1 \mathrm{H}), 4.96(\mathrm{q}, 1 \mathrm{H}), 7.25-7.37(\mathrm{~m}$, $5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 18.53,20.32,28.40$, 40.78, 51.02, 55.80, 127.17, 127.91, 129.04, 141.08, 169.89; MS (EI) $m / z 218\left(\mathrm{M}^{+}\right)$.
(3R,1'S)-3-Benzyl-1-(1'-phenylethyl)azetidin-2-one ((3R, $\mathbf{1}$ 'S)-4c) was similarly prepared from ($2 R, 1^{\prime} S$)-2c in 90% yield as a white solid which was recrystallized from the mixed solvent of diethyl ether and hexane. $\mathrm{Mp} 82-83{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}-92.3^{\circ}\left(c 0.88, \mathrm{CHCl}_{3}\right)$; IR (KBr) 2987, $1721 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 1.42(\mathrm{~d}, 3 \mathrm{H}), 2.90(\mathrm{dd}, 1 \mathrm{H}), 2.99$ (dd, 1H), $3.06(\mathrm{~m}, 2 \mathrm{H}), 3.37(\mathrm{~m}, 1 \mathrm{H}), 4.83(\mathrm{q}, 1 \mathrm{H}), 7.15-7.30$ $(\mathrm{m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 18.88,34.61,42.39$, $49.70,51.92,126.29,126.91,127.05,127.90,128.87$, $129.05,129.40,138.47,140.94,169.53$; Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}: \mathrm{C}, 81.47$; H, 7.22; N, 5.28. Found: C, 81.59 ; H, 7.34; N, 5.29.
(3S,1'S)-3-Benzyl-1-(1'-phenylethyl)azetidin-2-one ((3S, 1'S)-4c) was similarly prepared from ($2 S, 1$ 'S)-2c in 92% yield as a colorless oil. $[\alpha]_{\mathrm{D}}+27.7^{\circ}\left(c \quad 0.98, \mathrm{CHCl}_{3}\right)$; IR (neat) 2972, $1743 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 1.52$ (d, 3H), 2.77 (dd, 1H), 2.90 (dd, 1H), 3.06 (dd, 2H), 3.25 (t, $1 \mathrm{H}), 3.42(\mathrm{~m}, 1 \mathrm{H}), 4.89(\mathrm{q}, 1 \mathrm{H}), 7.03-7.27(\mathrm{~m}, 5 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 18.67,34.53,42.29,49.87,51.29$, 126.31, 126.91, 127.74, 128.08, 128.88, 128.99, 129.35, $138.48,140.85,169.48$; MS (EI) $m / z 266\left(\mathrm{M}^{+}\right)$.
(3R,1'S)-3-Benzyl-3-methyl-1-(1 '-phenylethyl)azetidin$\mathbf{2 - o n e}((\mathbf{3 R}, \mathbf{1} \mathbf{S}) \mathbf{- 4 d})$ was similarly prepared from $\left(2 R, 1^{\prime} S\right)$ 2d in 93% yield as a colorless oil. $[\alpha]_{\mathrm{D}}-69.7^{\circ}$ (c 1.01, CHCl_{3}); IR (neat) 2967, $1743 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR 300 MHz $\left(\mathrm{CDCl}_{3}\right) \delta 1.16(\mathrm{~d}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{~d}, 1 \mathrm{H}), 2.68(\mathrm{~d}$, $1 \mathrm{H}), 3.04(\mathrm{~d}, 1 \mathrm{H}), 3.07(\mathrm{~d}, 1 \mathrm{H}), 4.75(\mathrm{q}, 1 \mathrm{H}), 7.02-7.07(\mathrm{~m}$, $2 \mathrm{H}), 7.24-7.32(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta$ 18.51, 20.54, 40.93, 48.21, 51.32, 54.43, 126.30, 126.99, $127.75,128.63,128.95,130.49,137.56,140.90,172.45$; MS
(EI) $m / z 279\left(\mathrm{M}^{+}\right)$.
(3S,1'S)-3-Benzyl-3-methyl-1-(1'-phenylethyl)azetidin$\mathbf{2 - o n e}((\mathbf{3 S}, \mathbf{1} \mathbf{S}) \mathbf{- 4 d})$ was similarly prepared from ($2 S, 1^{\prime} S$)-2b in 93% yield as a white solid which was recrystallized from the mixed solvent of diethyl ether and hexane. $\mathrm{Mp} 98-99^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}+1.4^{\circ}\left(c 1.16, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}(\mathrm{KBr}) 2972,1734 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~d}, 3 \mathrm{H}), 2.67$ $(\mathrm{d}, 1 \mathrm{H}), 2.83(\mathrm{~d}, 1 \mathrm{H}), 2.94(\mathrm{~d}, 1 \mathrm{H}), 3.02(\mathrm{~d}, 1 \mathrm{H}), 4.82(\mathrm{q}$, $1 \mathrm{H})$, 6.77-6.80 (m, 2H), 7.16-7.29 (m, 8H); ${ }^{13} \mathrm{C}$ NMR 300 $\mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 18.68,20.99,40.69,48.01,50.25,54.73$, 126.72, 127.05, 127.48, 128.78, 128.87, 130.49, 137.48, 140.51, 172.62; Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}: \mathrm{C}, 81.68$; H, 7.58; N, 5.01. Found: C, 81.70; H, 7.60; N, 5.06.
(\boldsymbol{R})-3-Amino-2-methylpropanoic acid ((\boldsymbol{R})-5a). β-Lactam $(3 R, 1 ' S)-\mathbf{4 a}(320 \mathrm{mg}, 1.7 \mathrm{mmol})$ was suspended in 6 N HCl and the mixture was heated under reflux for 6 h . The solvent was removed under reduced pressure and residue was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$ containing water $(1 \mathrm{~mL})$ and acetic acid $(0.25 \mathrm{~mL})$, and was subjected to hydrogenolysis in the presence of $\mathrm{Pd}(\mathrm{OH})_{2}(20 \mathrm{wt} . \%, 0.2 \mathrm{~g})$ under hydrogen (3 atm) for 24 h at room temperature. The reaction mixture was filtered and the filtrate was concentrated under reduced pressure to afford $(R)-\mathbf{5 a}$ as a HCl salt which was adsorbed on an acidic ion-exchange resin (Dowex 50WX 8). The resin was washed with distilled water until the washings were neutral, and then the free amino acid was eluted with 1.5 M aqueous $\mathrm{NH}_{4} \mathrm{OH}$ solution. Evaporation of the eluent gave crystalline $(R)-5 \mathbf{a}(150 \mathrm{mg}, 86 \%)$. Mp 187-189 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}$ $-16.5^{\circ}\left(c 0.81, \mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR $300 \mathrm{MHz}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 0.98(\mathrm{~d}$, $3 \mathrm{H}), 2.39(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $300 \mathrm{MHz}\left(\mathrm{D}_{2} \mathrm{O}\right)$ $\delta 15.70,39.78,43.13,182.20 ;$ MS (EI) $m / z 103\left(\mathrm{M}^{+}\right)$.
(S)-3-Amino-2-methylpropanoic acid ((S)-5a) was similarly prepared from ($3 S, 1^{\prime} S$)-4a in 87% yield as a crystalline solid. Mp 187-189 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+16.4^{\circ}\left(c 0.90, \mathrm{H}_{2} \mathrm{O}\right)$. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those of (R)-5a.
(\boldsymbol{R})-2-Aminomethyl-3-methylbutyric acid $((\boldsymbol{R})-5 \mathrm{~b})$ was similarly prepared from $(3 R, 1 ' S) \mathbf{- 4 b}$ in 94% yield as a crystalline solid. $\operatorname{Mp} 238-239^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}-14.3^{\circ}\left(c 1.03, \mathrm{H}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR $300 \mathrm{MHz}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 0.79(\mathrm{~d}, 3 \mathrm{H}), 0.84(\mathrm{~d}, 3 \mathrm{H}), 1.85$ $(\mathrm{m}, 1 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 2.99(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR 300 MHz $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 18.91,20.24,28.85,39.26,52.26,180.75$; MS (EI) $m / z 132\left(\mathrm{M}^{+}\right)$.
(S)-2-Aminomethyl-3-methylbutyric acid ((S)-5b) was similarly prepared from ($3 S, 1^{\prime} S$) $\mathbf{4 b}$ in 96% yield as a crystalline solid. $\mathrm{Mp} 238-239^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+13.5^{\circ}\left(c \quad 1.05, \mathrm{H}_{2} \mathrm{O}\right)$. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those of $(R)-\mathbf{5 b}$.
(\boldsymbol{R})-2-Aminomethyl-3-phenylpropanoic acid $((\boldsymbol{R})$-5c) was similarly prepared from $\left(3 R, 1^{\prime} S\right)-\mathbf{4 c}$ in 92% yield as a crystalline solid. $\mathrm{Mp} 232-234{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}-18.7^{\circ}(c 0.87,1 \mathrm{~N}$ $\mathrm{HCl}) ;{ }^{1} \mathrm{H}$ NMR $300 \mathrm{MHz}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 2.71(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{~m}$, $3 \mathrm{H}), 7.15-7.28(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $300 \mathrm{MHz}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 36.56$, 41.10, 47.51, 127.12, 129.08, 129.35, 138.96, 180.08; MS (EI) $m / z 179\left(\mathrm{M}^{+}\right)$.
(S)-2-Aminomethyl-3-phenylpropanoic acid ((S)-5c) was similarly prepared from ($3 S, 1^{\prime} S$) $\mathbf{4 c}$ in 93% yield as a crystalline solid. Mp 232-234 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}+19.9^{\circ}$ (c $1.19,1 \mathrm{~N}$ $\mathrm{HCl}) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those of
(R)-5c.
(R)-3-Amino-2-benzyl-2-methylpropanoic acid ((\boldsymbol{R}) $\mathbf{5 d}$) was similarly prepared from $(3 R, 1 ' S) \mathbf{- 4 d}$ in 94% yield as a crystalline solid. Mp 262-264 ${ }^{\circ} \mathrm{C}$ dec.; $[\alpha]_{\mathrm{D}}-24.3^{\circ}(c 0.94$, $\left.\mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR $300 \mathrm{MHz}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 1.13(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{~d}, 1 \mathrm{H})$, $2.81(\mathrm{~d}, 1 \mathrm{H}), 2.89(\mathrm{~d}, 1 \mathrm{H}), 3.00(\mathrm{~d}, 1 \mathrm{H}), 7.14-7.31(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $300 \mathrm{MHz}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 21.41,43.80,46.43,46.53$, 127.28, 128.83, 130.37, 137.43, 182.14; MS (EI) m/z 193 $\left(\mathrm{M}^{+}\right)$; Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}: \mathrm{C}, 68.37 ; \mathrm{H}, 7.82 ; \mathrm{N}$, 7.25. Found: C, 68.16; H, 7.87; N, 7.24.
(S)-3-Amino-2-benzyl-2-methylpropanoic acid ((S)-5d) was similarly prepared from $(3 S, 1 ' S)-\mathbf{4 d}$ in 92% yield as a crystalline solid. Mp 262-264 ${ }^{\circ} \mathrm{C}$ dec.; $[\alpha]_{\mathrm{D}}+24.7^{\circ}$ (c 1.19, $\left.\mathrm{H}_{2} \mathrm{O}\right) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those of (R)-5d.
(R)-2-Aminomethyl-2-methylhexanoic acid ((\boldsymbol{R})-5e) was similarly prepared from $\left(3 R, 1^{\prime} S\right)-4 \mathbf{e}$ in 90% yield as a crystalline solid. Mp $240-242{ }^{\circ} \mathrm{C}$ dec.; $[\alpha]_{\mathrm{D}}-8.4^{\circ}$ (c 0.96 , $\left.\mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR $300 \mathrm{MHz}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 1.13(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{~d}, 1 \mathrm{H})$, $2.81(\mathrm{~d}, 1 \mathrm{H}), 2.89(\mathrm{~d}, 1 \mathrm{H}), 3.00(\mathrm{~d}, 1 \mathrm{H}), 7.14-7.31(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $300 \mathrm{MHz}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 21.41,43.80,46.43,46.53$, 127.28, 128.83, 130.37, 137.43, 182.14; MS (EI) m/z 160 $\left(\mathrm{M}^{+}\right)$.
(S)-2-Aminomethyl-2-methylhexanoic acid ((S)-5e) was similarly prepared from $\left(3 S, 1^{\prime} S\right)-4 \mathbf{e}$ in 91% yield as a crystalline solid. Mp 240-242 ${ }^{\circ} \mathrm{C}$ dec.; $[\alpha]_{\mathrm{D}}+8.1^{\circ}$ (c 0.94, $\left.\mathrm{H}_{2} \mathrm{O}\right) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those of (R)-5e.

3-Acetoxy-2-methylpropanol (7a). A mixture of 2-methyl-1,3-propanediol ($\mathbf{6 a}$) ($10 \mathrm{~mL}, 0.11 \mathrm{~mol}$), trimethylorthoacetate ($15.3 \mathrm{~mL}, 0.12 \mathrm{~mol}$), and a catalytic amount $(2.28 \mathrm{~g}, 0.012 \mathrm{~mol})$ of p-toluenesulfonic acid monohydrate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred for 1 h at room temperature. The reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography $(\mathrm{EtOAc} /$ hexane $=1 / 5)$ to give the product $(14.29 \mathrm{~g}$, 96%) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 0.96$ $(\mathrm{d}, 3 \mathrm{H}), 1.98(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{br}, 1 \mathrm{H}), 3.52(\mathrm{~m}$, 2H), $4.08(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 13.89$, $21.25,35.79,64.79,66.60,172.00$.

2-Acetoxymethyl-3-methylbutanol (7b) was similarly prepared from $\mathbf{6} \mathbf{b}^{9}$ in 93% yield as colorless oil. IR (neat) 3452, 2962, $1740 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 0.95$ $(\mathrm{d}, 1 \mathrm{H}), 0.97(\mathrm{~d}, 1 \mathrm{H}), 1.58-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.85(\mathrm{~m}, 1 \mathrm{H})$, 2.07 (s, 3H), 2.81 (br, 1H), 3.57 (dd, 1H), 3.68 (dd, 1H), 4.14 $(\mathrm{dd}, 1 \mathrm{H}), 4.26(\mathrm{dd}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta$ 20.26, 20.56, 21.27, 26.75, 46.58, 61.35, 63.80, 172.04; MS (EI) $m / z 161\left(\mathrm{M}^{+}\right)$.

2-Acetoxymethyl-3-phenylpropanol (7c) was similarly prepared from $6 \mathbf{c}^{10}$ in 94% yield as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{~m}$, $2 \mathrm{H}), 3.53(\mathrm{~m}, 2 \mathrm{H}), 4.09(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.31(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 21.30,34.72,42.79,62.30,64.50$, 126.64, 128.90, 129.49, 139.87, 172.16.

2-Acetoxymethyl-2-methyl-3-phenylpropanol (7d) was similarly prepared from $\mathbf{6 d}{ }^{11}$ in 90% yield as colorless oil. IR (neat) $3470,2927,1737 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR 300 MHz
$\left(\mathrm{CDCl}_{3}\right) \delta 0.83(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{br}, 1 \mathrm{H}), 2.60(\mathrm{dd}$, $2 \mathrm{H}), 3.32$ (dd, 2 H), 3.95 (dd, 2H), 7.16-7.32 (m, 5H); ${ }^{13} \mathrm{C}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 18.93,21.35,40.33,40.55,66.57$, 68.08, 126.73, 128.48, 130.99, 137.40, 172.32; MS (EI) m / z $223\left(\mathrm{M}^{+}\right)$.

2-Acetoxymethyl-2-methylhexanol (7e) was similarly prepared from $6 \mathbf{e}^{12}$ in 88% yield as colorless oil. IR (neat) $3420,2957,1734 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 0.87-$ $0.91(\mathrm{~m}, 6 \mathrm{H}), 1.25(\mathrm{~m}, 6 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{br}, 1 \mathrm{H}), 3.32$ (dd, 2H), 3.95 (s, 2H); ${ }^{13} \mathrm{C}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 14.40$, 18.92, 21.25, 23.89, 25.63, 34.22, 39.12, 67.22, 68.65, 172.24; MS (EI) m/z $189\left(\mathrm{M}^{+}\right)$.

3-Acetoxy-2-methylpropionic acid (8a). To an icecooled acetone solution of $7 \mathbf{a}(9.00 \mathrm{~g}, 68.1 \mathrm{mmol})$ was added slowly the Jones reagent until brownish color of the solution remains over 20 min , then 2-propanol was added until the solution became clear. The precipitate was filtered and the filtrate was concentrated under reduced pressure. The residue was diluted with ethyl acetate and extracted with saturated aqueous NaHCO_{3} solution. The aqueous layer was acidified with 6 N HCl and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over MgSO_{4} and concentrated under reduced pressure to give the product $(7.07 \mathrm{~g}, 71 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 1.25(\mathrm{~d}, 3 \mathrm{H})$, $2.07(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR 300 $\mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 14.00,21.15,39.32,65.63,171.35,180.42$.

2-Acetoxymethyl-3-methylbutyric acid (8b) was similarly prepared from $\mathbf{7 b}$ in 73% yield as colorless oil. IR (neat) $2967,1745,1713 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 1.04$ $(\mathrm{dd}, 6 \mathrm{H}), 2.02(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~m}, 1 \mathrm{H}), 4.20-4.36$ $(\mathrm{m}, 2 \mathrm{H}), 10.87(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta$ $20.45,20.59,21.15,28.55,51.53,63.73,171.43,179.46$; MS (EI) $m / z 175\left(\mathrm{M}^{+}\right)$.

3-Acetoxy-2-benzylpropionic acid (8c) was similarly prepared from $7 \mathbf{c}$ in 74% yield as colorless oil. ${ }^{1} \mathrm{H}$ NMR 300 $\mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{~m}, 2 \mathrm{H})$, $4.21(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.31(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right)$ $\delta 21.19,34.83,46.61,63.98,127.26,129.09,129.30$, 138.02, 171.33, 179.23.

2-Acetoxymethyl-2-methyl-3-phenylpropionic acid (8d) was similarly prepared from $7 \mathbf{d}$ in 71% yield as a white solid, which was recrystallized from the mixed solvent of diethyl ether and hexane. Mp 98-100 ${ }^{\circ} \mathrm{C}$; IR (KBr) 2978, 1747, $1699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 1.22(\mathrm{~s}, 3 \mathrm{H})$, $2.10(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{dd}, 2 \mathrm{H}), 4.13$ (dd, 2H), 7.13-7.29 (m, $5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 19.93,21.12,41.60$, 47.44, 68.22, 127.34, 128.69, 130.55, 136.36, 170.93, 180.03; Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}$: C, 66.09; H, 6.83. Found: C, 66.18; H, 6.82.

2-Acetoxymethyl-2-methylhexanoic acid (8e) was similarly prepared from 7 e in 80% yield as colorless oil. IR (neat) $2958,1746,1704 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 0.90$ (t, 3H), $1.23(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~m}, 4 \mathrm{H}), 1.49-1.66(\mathrm{~m}, 2 \mathrm{H}), 2.07$ (s, 3H), 4.15 (dd, 2H); ${ }^{13} \mathrm{C}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 14.16$, 19.78, 21.09, 23.40, 26.59, 35.93, 46.37, 69.08, 171.20, 181.73; MS (EI) m/z $203\left(\mathrm{M}^{+}\right)$.

3-Hydroxy-2-methylpropionic acid (1a). Compound 8a
($4.12 \mathrm{~g}, 28.2 \mathrm{mmol}$) was dissolved in MeOH containing 2 N $\mathrm{NaOH}(28 \mathrm{~mL})$ and the solution was refluxed for 4 h . The reaction mixture was cooled to room temperature and concentrated under reduced pressure. The residue was acidified with 6 N HCl and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over MgSO_{4} and concentrated under reduced pressure to give the product $(2.70 \mathrm{~g}, 92 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 1.20(\mathrm{~d}, 3 \mathrm{H})$, $2.72(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~d}, 2 \mathrm{H}), 7.00(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR 300 $\mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 13.55,21.14,42.00,64.66,180.83$.
2-Hydroxymethyl-3-methylbutyric acid (1b) was similarly prepared from $\mathbf{8 b}$ in 96% yield as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 0.99(\mathrm{dd}, 6 \mathrm{H}), 2.02(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~m}$, 1H), 3.77-3.90 (m, 2H), 6.20 (br, 1H); ${ }^{13} \mathrm{C}$ NMR 300 MHz $\left(\mathrm{CDCl}_{3}\right) \delta 20.51,21.00,28.11,54.79,61.91,180.00$.
2-Hydroxymethyl-3-phenylpropionic acid (1c) was similarly prepared from $8 \mathbf{c}$ in 95% yield as a white solid which was recrystallized from the mixed solvent of diethyl ether and hexane. Mp 60-62 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{13}$ 58-59 ${ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 2.83-2.93(\mathrm{~m}, 2 \mathrm{H}), 3.08(\mathrm{~m}, 1 \mathrm{H}), 3.69-$ $3.82(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.33(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right)$ $\delta 34.42,49.19,62.29,127.10,129.03,129.35,138.60,180.05$.
2-Hydroxymethyl-2-methyl-3-phenylpropionic acid (1d) was similarly prepared from $8 \mathbf{d}$ in 97% yield as a white solid which was recrystallized from the mixed solvent of diethyl ether and hexane. Mp 109-110 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{14} 73.5-74.5{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 1.14(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{dd}, 2 \mathrm{H}), 3.60$ (dd, 2H), 7.18-7.30 (m, 5H); ${ }^{13} \mathrm{C}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta$ 19.60, 40.99, 48.97, 67.03, 127.21, 128.64, 130.81, 136.60, 182.75; Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}$: C, 68.02; H, 7.27. Found: C, 68.10; H, 7.30.

2-Hydroxymethyl-2-methylhexanoic acid (1e) was similarly prepared from $8 \mathbf{e}$ in 93% yield as a colorless oil. IR (neat) 3394, 2958, $1701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 0.90$ (t, 3H), $1.21(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.62(\mathrm{~m}, 2 \mathrm{H}), 3.52$ $(\mathrm{d}, 1 \mathrm{H}), 3.75(\mathrm{~d}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $300 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 14.28$, 19.73, 23.57, 26.65, 35.85, 48.02, 68.36, 183.36; MS (EI) $\mathrm{m} / \mathrm{z} 161\left(\mathrm{M}^{+}\right)$.

Acknowledgment. This work was supported by Korea Science and Engineering Foundation.

References

1. See, for example: (a) Spatola, A. F. In Chemistry and Biochemistry of Amino Acids, Peptides and Proteins; Weinstein, B., Ed.; Marcell Dekker: New York, 1983; Vol. 7, p 331. (b) Drey, C. N. C. In Chemistry and Biochemistry of Amino Acids; Barret, G. C., Ed.; Chapman and Hall: London, 1992.
2. (a) Taxane Anticancer Agents: Basic Science and Current Status; Georg, G. I.; Chen, T. T.; Ojima, I.; Vyas, D. M., Eds.; American Chemical Society: Washington, D. C., 1995. (b) Nicolau, K. C.; Sorensen, E. J. Classics in Total Synthesis; VCH: Weinheim, 1996; pp 655-672 and references cited therein.
3. Pettit, G. R.; Kamano, Y.; Kizu, H.; Dufresne, C.; Herald, C. L.; Bontems, R. J.; Schmidt, J. M.; Boettner, F. E.; Nieman, R. A. Heterocyles 1989, 28, 553.
4. Crews, P.; Manes, L. V.; Boehler, M. Tetrahedron Lett. 1986, 27, 2797.
5. (a) Seebach, D.; Matthews, J. L. Chem. Commum. 1997, 2015. (b) Gellman, S. H. Acc. Chem. Res. 1998, 31, 173.
6. For recent reviews on the synthesis of β-amino acids: (a) Juaristi, E.; Quintana, D.; Escalante, J. Alderichimica Acta 1994, 27, 3. (b) Cole, D. C. Tetrahedron 1994, 50, 9517. (c) Cardillo, G.; Tomasini, C. Chem. Soc. Rev. 1995, 117. (d) Enantioselective Synthesis of β-Amino Acids; Juaristi, E., Ed.; VCH Publishers: New York, 1997. (e) Juaristi, E.; López-Ruiz, H. Curr. Med. Chem. 1999, 6, 983. (f) Abele, S.; Seebach, D. Eur. J. Org. Chem. 2000, 1. (g) Kawakami, T.; Ohtake, H.; Arakawa, H.; Okachi, T.; Imada, Y.; Murahashi, S.-I. Bull. Chem. Soc. Jpn. 2000, 73, 2423. (h) Liu, M.; Sibi, M. Tetrahedron 2002, 58, 7991.
7. Jin, Y.; Kim, D. H. Synlett 1998, 1189.
8. Cimarelli, C.; Palmieri, G. J. Org. Chem. 1996, 61, 5557.
9. Ludwig, B. J.; Powell, L. S.; Berger, F. M. J. Med. Chem. 1969, 12, 462.
10. Lee, J.; Kim, J.; Kim, S. Y.; Chun, M. W.; Cho, H.; Hwang, S. W.; Oh, U.; Park, Y. H.; Marquez, V. C.; Beheshti, M.; Szabo, T.; Blumberg, P. M. Bioorg. Med. Chem. 2001, 9, 19.
11. Guijarro, D.; Yus, M. Tetrahedron 1995, 51, 11445.
12. Stickfort, L.; Poersch, G.; Hess, M.; Kosfeld, R. J. Polym. Sci., Polym. Chem. Ed. 1996, 34, 1325.
13. Kim, D. H.; Park, J.; Chung, S. J.; Park, J. D.; Park, N.-K.; Han, J. H. Bioorg. Med. Chem. 2002, 10, 2553.
14. Lee, M.; Kim, D. H. Bioorg. Med. Chem. 2002, 10, 913.
