Convenient Synthesis of Enantiopure β-Adrenergic Blockers: (\boldsymbol{R})-Nifenalol, (\boldsymbol{R})-Denopamine, (\boldsymbol{R})-Dichloroisoproterenol and (\boldsymbol{R})-Pronethalol ${ }^{\dagger}$

Byung Tae Cho, ${ }^{*}$ Sang Kyu Kang, and Weon Ki Yang
Department of Chemistry, Hallym University, Chunchon, Kangwondo 200-702, Korea Received March 18, 2002

Key Words : Chiral drug, (R)-Nifenalol, (R)-Denopamine, (R)-Dichloroisoproterenol, (R)-Pronethalol

Recently much attention on chiral drugs has been growing rapidly, ${ }^{1}$ since the US Food and Drug Administration (FDA) first raised the topic of stereochemical regulation in its 1987 Drug Substance Guidelines. ${ }^{2}$ It has been reported that single enantiomers of chiral drugs are often more potent or have less side effects compared to their racemates. ${ }^{3}$ Pharmaceuticals bearing a structure unit of 2-amino-1-arylethanol such as nifenalol (1), denopamine (2a), dichloroisoproterenol (3) and pronethalol (4) are of great importance as β-adrenergic agonists in the therapy of asthma, bronchitis and congestive heart failure (Figure 1). ${ }^{4}$ Among them, only (R)-isomers of $\mathbf{1}$ and $\mathbf{2}$ act as β-adrenergic blockers which are effective in the treatment of cardiovascular disease. ${ }^{5}$ Also, (R)-isomers of 3 and 4 showed more potent pharmacological activity than their racemates. ${ }^{6 a}$ Asymmetric syntheses of these chiral drugs have been reported earlier with several approaches such as classical resolution of the racemates with resolving agents, ${ }^{6}$ and regioselective aminolysis of the corresponding chiral epoxides, ${ }^{7}$ direct amination of chiral iodohydrin, ${ }^{8}$ and reductive amination ${ }^{9}$ or reduction ${ }^{10}$ of optically active α hydroxy aldehyde or amides. However, these procedures have disadvantages such as low yields due to the intrinsic 50% limitation implied in a resolution process, ${ }^{7}$ control of regioselectivity, ${ }^{7 a, 11}$ and lengthy reaction steps. ${ }^{9-10}$ Herein we wish to report a concise, convenient synthesis of the β adrenergic chiral drugs $\mathbf{1 - 4}$ by the direct treatment of the corresponding (R)-1,2-diol monotosylates 6 with amines (Scheme 1).

To obtain $(R)-6$, the reduction of α-sulfonyloxy ketones 5 was carried out with N-ethyl- N-isopropylaniline-borane

$(R)-1$

(R)-3

(R) $\mathbf{2}$
a: $R=H ; b: R=B n$

$(R)-4$

Figure 1

[^0]

Scheme 1
complex (8) in the presence of 0.1 equiv. of (R)-methyl-CBS-oxazaborolidine 7 in THF at $25^{\circ} \mathrm{C}$ according to our previous procedure. ${ }^{12}$ All the reductions were complete within 10 min to give $(R)-6$ with very high enantioselectivity in almost quantitative yields. (R)-6 obtained was directly treated with excess amines (5 equiv.) under solvent-free condition at room temperature to afford 2-amino-1-arylethanols 1-4. The optical purities and absolute configurations of 1-4 were determined by HPLC analyses using chiral columns and/or by comparing optical rotation values of the known compounds. As shown in Table 1, all the products 1-4 were obtained in high yields with optical purities approaching 100% ee.

In summary, we have established a concise and convenient synthesis of enantiopure β-adrenergic chiral drugs, such as nifenalol (1), denopamine (2a), dichloroisoproterenol (3) and pronethalol (4) with (R)-configurations by direct treatment of the corresponding 1,2-diol monotosylates 6 with amines under solvent-free conditions. The present method is of great advantages over the known methods for providing

Table 1. Preparation of (R)-Nifenalol (1), (R)-Denopamine (2a), (R)-Dichloroisoproterenol (3) and (R)-Pronethalol (4)

Compd	Yield $(\%)$	$\operatorname{Mp}\left({ }^{\circ} \mathrm{C}\right)$	$[\alpha]_{\mathrm{D}}^{20}(c$, solvent $)$	$\%$ ee
$(R) \mathbf{- 1}$	93	$112-114$	$-11.4(1.03, \mathrm{EtOH})$	$>99^{a}$
$(R) \mathbf{- 1} \cdot \mathrm{HCl}$	93	$200-202$	$-40.2\left(0.94, \mathrm{H}_{2} \mathrm{O}\right)$	$>99^{b}$
$(R) \mathbf{- 2 a}$	92	$162-164$	$-28.5(0.98, \mathrm{MeOH})$	$>99^{b}$
$(R) \mathbf{- 3}$	94	$99-101$	$-24.3(1.05, \mathrm{EtOH})$	$>99^{c}$
$(R)-\mathbf{4}$	96	$107-109$	$-22.8(1.0, \mathrm{EtOH})$	$>99^{a}$

${ }^{a}$ Determined by HPLC analysis using a Chiralcel OB column.
${ }^{b}$ Compared by optical rotation value of the known compound. ${ }^{c}$ Determined by HPLC analysis using a Whelk-O1 column.
the efficiency of reaction, short reaction time, mild reaction conditions and high yields of the products with very high optical purity.

Experimental Section

General. All operations with air-sensitive materials were carried out under a nitrogen atmosphere with oven-dried glassware. Liquid materials were transferred with a doubleended needle. The reactions were monitored by TLC using silica gel plates and the products were purified by flash column chromatography on silica gel (Merck; 230-400 mesh). NMR spectra were recorded at 200 or 400 MHz for ${ }^{1} \mathrm{H}$ and 50 or 100 MHz for ${ }^{13} \mathrm{C}$ using $\mathrm{Me}_{4} \mathrm{Si}$ as the internal standard in CDCl_{3} unless otherwise noted. Optical rotations were measured with a high resolution digital polarimeter. Melting points were uncorrected.
Preparation of (R)-2-(p-Toluenesulfonyloxy)-1-arylethanols 6.

General procedure: According to the known procedure, ${ }^{12}$ asymmetric reduction of 5 using (R)-methyl-CBS-oxazaborolidine $\mathbf{7}$ as catalyst was carried out to give $\mathbf{6}$ in $94-99 \%$ yields. IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of $\mathbf{6 a}$ and $\mathbf{6 c}$-d were identical with those of the corresponding (S)-isomers.
(\boldsymbol{R})-(-)-1-(p-Nitrophenyl)-2-(p-toluenesulfonyloxy)ethanol (R)-6a: Yield 94\%; mp 167-168 ${ }^{\circ} \mathrm{C}$ (acetone) (lit. ${ }^{12}$ 168-169 $\left.{ }^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}^{20}-24.06$ (c 0.97, acetone).
(R)-(-)-1-(p-Benzyloxyphenyl)-2-(\boldsymbol{p}-toluenesulfonyloxy)ethanol (R)-6b: Yield 98\%; mp 76-77 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}-41.9$ (c $\left.1.08, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3344,1613,1514,1453$, 1386, 1348, 1240, 1173, 1096, 1017, 814; ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}) \delta 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{brs}, 1 \mathrm{H}), 4.02$ (dd, $1 \mathrm{H}, J=8.58$, 10.38 Hz), 4.10 (dd, 1H, $J=3.42,10.41 \mathrm{~Hz}), 4.91$ (dd, $1 \mathrm{H}, J$ $=3.31,8.53 \mathrm{~Hz}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 6.93(\mathrm{~d}, 2 \mathrm{H}, J=8.76 \mathrm{~Hz})$, 7.20-7.43 (m, 9H), $7.77(\mathrm{~d}, 2 \mathrm{H}, J=8.32 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}) \delta 21.7,70.0,71.5,74.3,115.0,127.4,127.5,127.9$, 128.0, 128.6, 129.9, 130.6, 132.7, 136.7, 145.1, 159.0. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~S}$: C, 66.31 ; H, 5.56; S, 8.05; Found: C, 66.43; H, 5.67; S, 8.12.
(R)-(-)-1-(3,4-Dichlorophenyl)-2-(\boldsymbol{p}-toluenesulfonyloxy)ethanol (R)-6c: Yield 92%; mp 88-89 ${ }^{\circ} \mathrm{C}$ (chloroform) (lit. ${ }^{12}$ $87-88^{\circ} \mathrm{C}$); $[\alpha]_{\mathrm{D}}^{20}-39.22\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
(R)-(-)-1-(2-Naphthyl)-2-(p-toluenesulfonyloxy)ethanol (R)-6d: Yield 99%; mp 114-116 ${ }^{\circ} \mathrm{C}$ (chloroform) (lit. ${ }^{12}$ 113$115^{\circ} \mathrm{C}$); $[\alpha]_{\mathrm{D}}^{20}-52.3\left(c 1.1, \mathrm{CHCl}_{3}\right)$.

Preparation of 1-4.

General Procedure: 6 (2 mmol) was treated with isopropylamine (or 3,4-dimethoxyphenylethylamine) (10 mmol) at room temperature for 5 h . To the reaction mixture was added $1 \mathrm{~N} \mathrm{NaOH}(15 \mathrm{~mL})$ and extracted with ether $(3 \times 15$ mL). The combined ether extracts were dried over anhydrous MgSO_{4} and concentrated under reduced pressure. The residue was further purified by recrystallization from ethyl acetate or by flash column chromatography on silica gel using methanol/ethyl acetate (4:1) to give products 1-4.
(\boldsymbol{R})-Nifenalol (\boldsymbol{R})-1: Yield 93\%; mp 112-114 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{7 \mathrm{~b}}$ $\left.118-121^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}^{20}-11.4(c 1.03, \mathrm{EtOH}) ; \operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$:

3097, 2987, 2856, 1604, 1520, 1347, 1096; ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}) \delta 1.08(\mathrm{~d}, 3 \mathrm{H}, J=6.04 \mathrm{~Hz}), 1.10(\mathrm{~d}, 3 \mathrm{H}, J=6.17 \mathrm{~Hz})$, 2.58 (dd, 1H, J = 8.74, 12.34 Hz), $2.84(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{dd}$, $1 \mathrm{H}, J=3.77,12.26 \mathrm{~Hz}), 4.73(\mathrm{dd}, 1 \mathrm{H}, J=3.63,8.91 \mathrm{~Hz})$, $7.55(\mathrm{~d}, 2 \mathrm{H}, J=8.71 \mathrm{~Hz}), 8.21(\mathrm{~d}, 2 \mathrm{H}, J=8.82 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR (100 MHz) δ 23.0, 23.3, 48.7, 54.2, 71.0, 123.6, 126.5, 147.3, 150.3. HPLC analysis using a Chiralcel OB showed it to be $>99 \%$ ee [hexane-EtOH-Et ${ }_{2} \mathrm{NH} 99.8: 0.2$: 0.1 , flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, t_{R}(S) 155.82 \mathrm{~min}$ and $t_{R}(R)$ $189.05 \mathrm{~min}]$. ($\boldsymbol{R}) \mathbf{- 1} \cdot \mathbf{H C l}$ was obtained in a quantitative yield by bubbling HCl gas into the solution of $\mathbf{1}$ in ether: $\mathrm{mp} 200-$ $202{ }^{\circ} \mathrm{C}$ (lit. ${ }^{7 \mathrm{~b}} 208-211^{\circ} \mathrm{C}$, lit. ${ }^{6 \mathrm{~b}} 217-218^{\circ} \mathrm{C}$); $[\alpha]_{\mathrm{D}}^{20}-40.2(c$ $\left.0.94, \mathrm{H}_{2} \mathrm{O}\right)\left\{\right.$ lit. $^{7 \mathrm{~b}}\left[-\alpha \varphi_{\mathrm{B}}^{20}\right\}\left(\quad c 1.07, \mathrm{H}_{2} \mathrm{O}\right), R$; lit. ${ }^{6 \mathrm{~b}}[\alpha]_{\mathrm{D}}^{20}$ -41 (c 2.0, $\left.\mathrm{H}_{2} \mathrm{O}\right)$ \}.
(R)-(-)-(\boldsymbol{p}-Benzyloxyphenyl)-2-(3,4-dimethoxyphenylethylamino)ethanol (\boldsymbol{R})-2b: Yield 92%; mp 108-110 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}-17.5(c 1.09, \mathrm{MeOH})$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3286,3042$, 2935, 2762, 1612, 1516, 1262, 1023; ${ }^{1} \mathrm{H}$ NMR (400 MHz) δ 2.18 (brs, 2 H), 2.68-2.80 (m, 3H), 2.84-2.98 (m, 3H), 3.86 $(\mathrm{s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.63(\mathrm{dd}, 1 \mathrm{H}, J=3.50,9.07 \mathrm{~Hz}), 5.05$ $(\mathrm{s}, 2 \mathrm{H}), 6.72-6.80(\mathrm{~m}, 3 \mathrm{H}), 6.94(\mathrm{~d}, 2 \mathrm{H}, J=8.68 \mathrm{~Hz}), 7.27-$ 7.43 (m, 7H); ${ }^{13} \mathrm{C}$ NMR (100 MHz) $\delta 36.0,50.8,55.8,55.9$, $57.0,70.0,71.3,111.3,111.9,114.8,120.6,127.1,127.5$, 128.0, 128.6, 132.3, 134.8, 137.0, 147.5, 148.9, 158.3. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{NO}_{4}$: C, 73.68; H, 7.17; N, 3.44. Found: C, 73.53; H, 7.27; N, 3.25.
(R)-(-)-Denopamine ($\boldsymbol{R})-\mathbf{2 a}$: This was obtained in a quantitative yield by catalytic hydrogenolysis of (\boldsymbol{R}) - $\mathbf{2 b}$ on $20 \mathrm{wt} . \% \mathrm{Pd}(\mathrm{OH})_{2}-\mathrm{C}$ at $60 \mathrm{psi}: \mathrm{mp} 162-164{ }^{\circ} \mathrm{C}$ (lit. ${ }^{8} 163-164$ $\left.{ }^{\circ} \mathrm{C}\right)$; lit. ${ }^{9} 165-165.5^{\circ} \mathrm{C}$; lit. ${ }^{10} 164-165{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}-28.5(c 0.98$, $\mathrm{MeOH})\left\{\right.$ lit. ${ }^{8}[\alpha]_{\mathrm{D}}^{24}-27.5(c 0.95, \mathrm{MeOH}), R$; lit. ${ }^{9}[\alpha]_{\mathrm{D}}$ -28.8 (c 1.3, MeOH), R; lit. ${ }^{10}\left[-2 \oint_{\mathrm{B}} 3\right.$ ($\left.\quad c 1.1, \mathrm{MeOH}\right)$, $R\}$; IR (KBr, cm^{-1}): 3275, 3066, 2932, 1616, 1515, 1452, $1278,1234,1158,1028 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$) δ 2.18 (brs, 2 H), 2.78-2.85 (m, 6H), 3.30-3.31 (m, 3H), 3.79 (s, 3H), $3.80(\mathrm{~s}, 3 \mathrm{H}), 4.64(\mathrm{dd}, 1 \mathrm{H}, J=4.82,8.32 \mathrm{~Hz}), 6.72-$ 6.73 (m, 3H), $6.79(\mathrm{~d}, 1 \mathrm{H}, J=1.85 \mathrm{~Hz}), 6.84(\mathrm{~d}, 1 \mathrm{H}, J=8.10$ $\mathrm{Hz}), 7.11-7.14(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{MeOH}-d_{4}\right) \delta$ $36.1,51.7,56.4,56.6,57.7,73.1,113.3,113.7,116.2,122.0$, 128.3, 133.7, 135.0, 149.1, 150.6, 158.2.
(R)-(-)-Dichloroisoproterenol (R)-3: Yield 94\%; mp 99$101{ }^{\circ} \mathrm{C}$ (lit. ${ }^{6 c} 101{ }^{\circ} \mathrm{C}$); $[\alpha]_{\mathrm{D}}^{20}-24.3(c 1.05, \mathrm{EtOH})\left\{\right.$ lit. ${ }^{6 c}$ $[\alpha]_{\mathrm{D}}^{21}-24.1(c 0.97, \mathrm{EtOH}) ; \mathrm{lit}^{7 \mathrm{a}}{ }^{[2}-24_{\mathrm{d}}(\quad c \quad 1.2, \mathrm{EtOH})$, $R\}$; IR (KBr, cm ${ }^{-1}$): 3291, 3061, 2918, 2749, 1463, 1074; ${ }^{1} \mathrm{H}$ NMR (400 MHz) $\delta 1.07(\mathrm{~d}, 3 \mathrm{H}, J=6.25 \mathrm{~Hz}), 1.08(\mathrm{~d}, 3 \mathrm{H}, J$ $=6.25 \mathrm{~Hz}), 2.48$ (brs, 2H), 2.57 (dd, $1 \mathrm{H}, J=8.87,12.23 \mathrm{~Hz}$), $2.82(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{dd}, 1 \mathrm{H}, J=3.71,12.21 \mathrm{~Hz}), 4.59(\mathrm{dd}$, $1 \mathrm{H}, J=3.67,8.86 \mathrm{~Hz}), 7.19(\mathrm{~m}, 1 \mathrm{H}), 7.40(\mathrm{~d}, 1 \mathrm{H}, J=8.33$ $\mathrm{Hz}), 7.48(\mathrm{~d}, 1 \mathrm{H}, J=1.93 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}) \delta 23.0$, 23.3, 48.7, 54.3, 70.7, 125.1, 127.8, 130.3, 131.2, 132.5, 143.2. HPLC analysis using a Chiralcel OB showed it to be $>99 \%$ ee [hexane-EtOH-Et ${ }_{2} \mathrm{NH} 99.5: 0.5: 0.1$, flow rate $=$ $0.3 \mathrm{~mL} / \mathrm{min}, t_{R}(S) 66.35 \mathrm{~min}$ and $\left.t_{R}(R) 72.26 \mathrm{~min}\right]$.
(R)-(-)-Pronethalol (R)-4: Yield 96\%; mp 107-109 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{6 c} 108-109{ }^{\circ} \mathrm{C}$); $[\alpha]_{\mathrm{D}}^{20}-22.8$ (c 1.0, EtOH) $\left\{\right.$ lit. ${ }^{6 \mathrm{c}}{ }^{[}[\alpha]_{\mathrm{D}}$ -29.0 (c 1.3, EtOH); lit. ${ }^{7 \mathrm{a}}\left[-24_{\mathrm{D}}(\quad c 1.0, \mathrm{EtOH}), R\right\}$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3136,2966,2833,1451,1382,1081 ;{ }^{1} \mathrm{H}$ NMR
(400 MHz) $\delta 1.09(\mathrm{~d}, 3 \mathrm{H}, J=6.18 \mathrm{~Hz}), 1.10(\mathrm{~d}, 3 \mathrm{H}, J=6.29$ Hz), 2.40 (brs, 2H), 2.76 (dd, 1H, $J=8.66,12.08 \mathrm{~Hz}$), 2.87 $(\mathrm{m}, 1 \mathrm{H}), 3.04(\mathrm{dd}, 1 \mathrm{H}, J=3.67,12.11 \mathrm{~Hz}), 4.85(\mathrm{dd}, 1 \mathrm{H}, J=$ $3.66,8.70 \mathrm{~Hz}), 7.45-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.82-7.85(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz) δ 23.0, 23.2, 48.6, 54.4, 72.0, 124.0, 124.5, 125.7, 126.1, 127.7, 127.9, 128.1, 133.0, 133.3, 140.1. HPLC analysis using a Whelk-O1 showed it to be $>99 \%$ ee [hexane-EtOH-Et $\mathrm{E}_{2} \mathrm{NH} 99: 1: 0.1$, flow rate $=0.9$ $\mathrm{mL} / \mathrm{min}, t_{R}(S) 36.88 \mathrm{~min}$ and $\left.t_{R}(R) 42.66 \mathrm{~min}\right]$.

Acknowledgment. We are grateful to the Hallym Academy of Sciences at Hallym University (2002-02), Korea, for financial support.

References

1. (a) Crossley, R. Chirality and the Biological Activity of Drugs; CRC Press: New York, NY, 1995. (b) Stinson, S. C. Chem. Eng. News 1992, 70(39), 46; 1993, 71(39), 38; 1995, 73(41), 44; 1997, 75(42), 38; 1999, 77(41), 101; 2000, 78(19), 59; 2001, 79(40), 79.
2. Office of Drug Evaluation and Research Guideline for Submitting Supporting Documentation in Drug Applications for the Manufac-
ture of Drug Substances; FDA: Washington, D. C. Feb. 1987.
3. (a) Waldeck, B. Chirality 1993, 5, 350. (b) Ruffolo, R. R. Jr., Tetrahedron 1991, 47, 9953.
4. Kleemann, A.; Engel, J.; Kutscher, B.; Reichert, D. Pharmaceutical Substances: Syntheses, Patents, Applications, $3^{\text {rd }}$ ed; Verlag: New York, 1999.
5. (a) Murmann, W.; Rumore, G.; Gamba, A. Bull. Chim. Farm. 1967, 106, 609. (b) Ikeo, T.; Nagao, T.; Suzuki, T.; Yabana, H.; Nakajima, H. Jpn. J. Pharmacol. 1985, 39, 191.
6. (a) Ikezaki, M.; Umino, N.; Gaino, M.; Aoe, K.; Iwakuma, T.; Oh-ishi, T. Yakukaku Zasshi 1986, 106, 80. (b) Almirante, L.; Murmann, W. J. Med. Chem. 1966, 9, 650. (c) Howe R.; Rao, B. S. J. Med. Chem. 1968, 11, 1118.
7. (a) Solladié-Cavallo, A.; Diep-Vohuule, A. J. Org. Chem. 1995, 60, 3494. (b) Pedragosa-Moreau, S.; Morisseau, C.; Baratti, J.; Zylber, J.; Archelas, A.; Furstoss, R. Tetrahedron 1997, 53, 9707.
8. Corey, E. J.; Link, J. O. J. Org. Chem. 1991, 56, 442.
9. Brown, R. F. C.; Donohue, A. C.; Jackson, W. R.; McCarthy, T. D. Tetrahedron 1994, 50, 13739.
10. Gu, J.-X.; Li, Z.-Y.; Lin, G.-Q. Tetrahedron 1993, 49, 5805.
11. (a) Howe, R.; Crowther, A. F.; Stephenson, J. S.; Rao, B. S.; Smith, L. H. J. Med. Chem. 1968, 11, 1000. (b) Solladié-Cavallo, A.; Bencheqroun, M. J. Org. Chem. 1992, 57, 5831.
12. Cho, B. T.; Yang, W. K.; Choi, O. K. J. Chem. Soc. Perkin Trans. I 2001, 1204.

[^0]: ${ }^{\dagger}$ This paper is dedicated to the late Professor Sang Chul Shim for his distinguished achievements in chemistry.

