Synthesis of β, γ-Disubstituted α-Methylene- γ-butyrolactams Starting from the Baylis-Hillman Adducts

Ka Young Lee, Young Ju Lee, ${ }^{\dagger}$ and Jae Nyoung Kim*
Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757, Korea
*E-mail: kimjn@chonnam.ac.kr
${ }^{\dagger}$ Korea Basic Science Institute, Gwangju Branch, Gwangju 500-757, Korea

Received September 2, 2006
Key Words : α-Methylene- γ-butyrolactams, Baylis-Hillman adducts, $\mathrm{Fe} / \mathrm{AcOH}$
α-Methylene- γ-butyrolactam derivatives are biologically important compounds. ${ }^{1-3}$ They exhibit less cytotoxic activity than the corresponding α-methylene- γ-butyrolactone compounds in some cases. ${ }^{1,2}$ However, the synthesis of these compounds was studied less extensively. In addition, many of the synthetic procedures showed the formation of undesired endocyclic unsaturated lactam during the synthesis of exo-methylene compounds. ${ }^{4}$ Recently, Yus and co-workers reported the indium-promoted synthesis of α-methylene- γ butyrolactams from the reaction of 2-(bromomethyl)acrylic acid and aldimine. ${ }^{2 a}$ In their paper they obtained γ-sub-stituted- α-methylene- γ-butyrolactam derivatives in $18-49 \%$ yields as their N-substituted forms. ${ }^{2 \mathrm{a}}$

We and other groups reported a number of papers on the synthesis of a variety of heterocyclic compounds starting from the Baylis-Hillman adducts. ${ }^{5}$ Basavaiah and co-workers published the synthesis of α-arylidene- γ-butyrolactam derivatives recently. ${ }^{3 a}$ However, they did not examined the synthesis of α-methylene- γ-butyrolactam derivatives. ${ }^{3 a} \mathrm{We}$ presumed that we could synthesize α-methylene- γ-butyrolactams from the Baylis-Hillman adducts by following the Scheme 1.

Thus, we prepared starting material 3a according to the method involving the DABCO salt concept, which was developed by us (Scheme 1). ${ }^{6}$ The reaction of the BaylisHillman adduct 1a and HBr gave the cinnamyl bromide 2a in good yield. ${ }^{7}$ The reaction of $\mathbf{2 a}$ and DABCO in aqueous

THF gave the corresponding DABCO salt, which reacted with nitroethane to afford 3a. The compound 3a was obtained as a diastereomeric syn/anti mixture, which could be separated by column chromatography. ${ }^{6}$ However, it was impossible to assign their stereochemistry at the earliest stage. With the fast moving component (later it was found as 3a-anti, vide infra) we obtained $\mathbf{4 a}$-anti in 78% yield under the reductive cyclization conditions of $\mathrm{Fe} / \mathrm{AcOH} .^{3 \mathrm{a}, 8}$ Similarly, we obtained $\mathbf{4 a}$-syn in 77% yield under the same conditions from the slow moving 3a-syn component.

The structures of $\mathbf{4 a}$-syn and $\mathbf{4 a}$-anti could be assigned by NOE experiments. As shown in Figure 1, when we irradi-

4a-syn

4a-anti

Figure 1

Scheme 1
ated the proton at γ-position we observed $2.1 \% \mathrm{NOE}$ for the β-proton of 4a-syn, whereas no increment for $\mathbf{4 a}$-anti. From the results we assigned the fast moving component of $\mathbf{3 a}$ as anti form and the slow moving component as syn form (see also entries 1 and 2 in Table 1).
With these successful results we examined the generality of the reactions with other entries as summarized in Table 1. We obtained similar results when we changed nitroethane into nitropropane (entries 3 and 4) or nitrohexane (entries 5 and 6). However, the separation of $\mathbf{3 c}$-anti and $\mathbf{3 c}$-syn was
impossible and we used the mixture for the synthesis of $\mathbf{4 c}$. Fortunately, we could isolate $\mathbf{4 c}$-syn in pure state in 62% yield. The corresponding $\mathbf{4 c}$-anti must be formed in the reaction mixture, but we did not obtain $\mathbf{4 c}$-anti in sufficient amount in analytically pure state. As shown in entry 7, use of $\mathbf{3 d}$ afforded γ-mono-substituted lactam derivative $\mathbf{4 d}$ in 81% yield.

In summary, we disclosed the efficient synthetic method for β, γ-disubstituted- α-methylene- γ-butyrolactams in moderate yields starting from the Baylis-Hillman adducts.

Table 1. Synthesis of α-methylene- γ-butyrolactams
Entry

[^0]
Experimental Section

Typical procedure for the synthesis of 3a and 4a: A solution of 2a ($508 \mathrm{mg}, 2.0 \mathrm{mmol}$) and DABCO (448 mg , 4.0 mmol) in aq THF (5 mL) was stirred 20 min at room temperature. To the reaction mixture nitroethane $(225 \mathrm{mg}$, 3.0 mmol) was added and the reaction mixture was stirred at room temperature for 2 days. After the usual aqueous extractive workup with ether and flash column chromatographic purification process (hexanes/ether, $8: 1$) we obtained 3aanti ($165 \mathrm{mg}, 33 \%, \mathrm{R}_{\mathrm{f}}=0.27$) and 3a-syn ($245 \mathrm{mg}, 49 \%, \mathrm{R}_{\mathrm{f}}$ $=0.22$). The next reductive cyclization of 3a-anti to 4a-anti is typical. A mixture of 3a-anti ($125 \mathrm{mg}, 0.5 \mathrm{mmol}$) and Fe $(280 \mathrm{mg}, 5.0 \mathrm{mmol})$ in acetic acid (2 mL) was heated to $90-$ $100{ }^{\circ} \mathrm{C}$ for 12 h . After the usual aqueous extractive workup with ether and flash column chromatographic purification process with ether we obtained $\mathbf{4 a}$-anti $\left(73 \mathrm{mg}, 78 \%, \mathrm{R}_{\mathrm{f}}=\right.$ 0.30). Spectroscopic data of synthesized compounds 3a-d and 4a-d are as follows.
Compound 3a-anti: 33\%; colorless oil; IR (film) 1722, $1551,1265,1153 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.40$ $(\mathrm{d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 4.46(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$, 5.21-5.27 (m, 1H), $5.91(\mathrm{~s}, 1 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.34(\mathrm{~m}$, $5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 19.01,51.03,52.04$, 85.01, 124.72, 127.83, 128.63, 128.87, 136.57, 139.37, 165.84.

Compound 3a-syn: 49\%; colorless oil; IR (film) 1718, $1551,1248,1150 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.60$ $(\mathrm{d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 4.39(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.45-5.51(\mathrm{~m}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 7.21-7.29(\mathrm{~m}$, $5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 18.84,52.18,52.22$, 85.53, 127.48, 127.71, 127.90, 128.66, 137.36, 139.09, 166.14.

Compound 3b-anti: 15\%; colorless oil; IR (film) 1722, $1551,1250,1153 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.89$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.55-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.82(\mathrm{~m}, 1 \mathrm{H})$, $3.67(\mathrm{~s}, 3 \mathrm{H}), 4.48(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-5.10(\mathrm{~m}, 1 \mathrm{H})$, $5.94(\mathrm{~s}, 1 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.34(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 10.12,26.08,50.17,52.08,91.62$, 124.93, 127.83, 128.65, 128.91, 136.85, 139.35, 165.90.

Compound 3b-syn: 65\%; colorless oil; IR (film) 1720, $1552,1252,1151 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.98$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.89-1.95(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 4.40(\mathrm{~d}$, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.30-5.33(\mathrm{~m}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{~s}$, $1 \mathrm{H}), 7.19-7.30(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 10.12, 25.95, 51.24, 52.06, 92.11, 127.27, 127.59, 127.89, 128.54, 137.35, 139.11, 166.05.

Compound 3c-anti: 14\%; colorless oil; IR (film) 2951, $1718,1551,1252,1150 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ 0.81 (t, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}$), 1.15-1.34 (m, 6H), 1.77-1.97 (m, $2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 4.45(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-5.19(\mathrm{~m}$, $1 \mathrm{H}), 5.93(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 7.18-7.35(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 13.79,22.21,25.31,30.79,32.60,50.54$, 52.11, $90.25,125.07,127.84,128.67,128.94,136.93,139.37$, 165.92.

Compound 3c-syn: 55\%; colorless oil; IR (film) 2953, 1722, 1551, 1252, $1153 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $0.88(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.23-1.34(\mathrm{~m}, 6 \mathrm{H}), 1.77-1.97(\mathrm{~m}$, $2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 4.37(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{td}, J=$
11.1 and $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 7.18-7.35$ $(\mathrm{m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 13.86,22.30,25.45$, 30.92, 32.66, 51.68, 52.26, 90.89, 127.20, 127.79, 128.06, 128.71, 137.35, 139.42, 166.20.

Compound 3d: 79\%; colorless oil; IR (film) 2951, 1722, $1551,1308,1163 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.56$ (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$), $2.76(\mathrm{dd}, J=14.1$ and $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.90$ (dd, $J=14.1$ and $9.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.79 (s, 3 H), 4.80-4.92 (m, 1H), $5.67(\mathrm{~s}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ $\delta 19.24,37.93,52.18,82.36,129.38,134.63,166.42$.

Compound 4a-anti: 78%; white solid, mp 112-113 ${ }^{\circ} \mathrm{C}$; IR (film) $3219,2964,1701,1659,1427 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 1.33(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 3.55-3.60(\mathrm{~m}, 1 \mathrm{H})$, $3.67-3.76(\mathrm{~m}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=3.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.20-7.39 (m, 5H), 7.62 (br s, 1 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 21.00,54.32,56.43,117.41,127.29$, 128.39, 128.80, 140.60, 145.12, 170.00; LCMS m/z. 187 $\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}: \mathrm{C}, 76.98 ; \mathrm{H}, 7.00 ; \mathrm{N}, 7.48$. Found: C, 76.89; H, 7.21; N, 7.35.

Compound 4a-syn: 77%; white solid, mp 129-130 ${ }^{\circ} \mathrm{C}$; IR (film) 3188, 2926, 1693, 1653, $1435 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 0.82(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 4.01-4.11(\mathrm{~m}, 1 \mathrm{H})$, $4.31-4.36(\mathrm{~m}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=2.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.17-7.37 (m, 5H), 7.56 (br s, 1 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 19.50,49.12,51.72,118.56,127.23$, 128.40, 129.46, 138.51, 143.21, 170.61; LCMS m/z 187 $\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}: \mathrm{C}, 76.98 ; \mathrm{H}, 7.00 ; \mathrm{N}, 7.48$. Found: C, 76.77; H, 7.13; N, 7.42.

Compound 4b-anti: 67%; white solid, mp 122-123 ${ }^{\circ} \mathrm{C}$; IR (film) $3198,2922,1697,1659 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 0.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.54-1.79(\mathrm{~m}, 2 \mathrm{H}), 3.52-$ $3.59(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.70(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.12(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.19-7.38(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 10.04,28.79,51.82,61.85$, 118.07, 127.24, 128.23, 128.86, 141.67, 144.72, 169.57; LCMS $m / z 201\left(\mathrm{M}^{+}\right)$.

Compound 4b-syn: 76\%; white solid, mp 120-121 ${ }^{\circ} \mathrm{C}$; IR (film) 3182, 2972, 1695, 1659, $1456 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $300 \mathrm{MHz}) \delta 0.82(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.96-1.16(\mathrm{~m}, 2 \mathrm{H})$, $3.74-3.82(\mathrm{~m}, 1 \mathrm{H}), 4.31-4.36(\mathrm{~m}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.20(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.36(\mathrm{~m}, 5 \mathrm{H}), 8.32(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 10.67,26.64,49.01$, 58.06, 117.87, 127.12, 128.28, 129.46, 138.62, 143.65, 171.00; LCMS m/z $201\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}: \mathrm{C}$, $77.58 ; \mathrm{H}, 7.51$; N, 6.96. Found: C, 77.73; H, 7.70; N, 6.84.

Compound 4c-syn: 62%; white solid, mp 118-119 ${ }^{\circ} \mathrm{C}$; IR (film) 3203, 2930, 1701, 1655, $1456 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $300 \mathrm{MHz}) \delta 0.79(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.85-1.27(\mathrm{~m}, 8 \mathrm{H})$, $3.79-3.87(\mathrm{~m}, 1 \mathrm{H}), 4.30-4.35(\mathrm{~m}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.20(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.36(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 13.85,22.36,25.91,31.48,33.43,49.21$, 56.32, 118.17, 127.23, 128.37, 129.51, 138.59, 143.40, 170.59; LCMS m/z $243\left(\mathrm{M}^{+}\right)$.

Compound 4d: 81%; white solid, mp 74-75 ${ }^{\circ} \mathrm{C}$; IR (film) 3240, 2966, 1697, 1659, $1440 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300$ $\mathrm{MHz}) \delta 1.26(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.32-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.95-$ $3.05(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.86(\mathrm{~m}, 1 \mathrm{H}), 5.33(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$,
$5.96(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}) \delta 22.91,34.78,46.99,115.61,139.97,170.75$.

Acknowledgments. This study was financially supported by Chonnam National University (2005). Spectroscopic data was obtained from the Korea Basic Science Institute, Gwangju branch.

References and Notes

1. For the biological activities of α-methylene- γ-butyrolactam derivatives, see: (a) Janecki, T.; Blaszczyk, E.; Studzian, K.; Janecka, A.; Krajewska, U.; Rozalski, M. J. Med. Chem. 2005, 48, 3516. (b) Qiao, L.; Wang, S.; George, C.; Lewin, N. E.; Blumberg, P. M.; Kozikowski, A. P. J. Am. Chem. Soc. 1998, 120, 6629. (c) Murata, K.; Kaneko, S.; Kitazume, T. Bioorg. Med. Chem. Lett. 1993, 3, 2685. (d) Belaud, C.; Roussakis, C.; Letourneux, Y.; El Alami, N.; Villieras, J. Synth. Commun. 1985, 15, 1233.
2. For the synthesis of α-methylene- γ-butyrolactam derivatives, see: (a) Choudhury, P. K.; Foubelo, F.; Yus, M. J. Org. Chem. 1999, 64, 3376, and further references cited therein. (b) Nyzam, V.; Belaud, C.; Zammattio, F.; Villieras, J. Tetrahedron: Asymmetry 1996, 7, 1835. (c) Lee, E.; Kang, T. S. Bull. Korean Chem. Soc. 1993, 14, 431. (d) Dembele, Y. A.; Belaud, C.; Villieras, J. Tetrahedron: Asymmetry 1992, 3, 511. (e) Blaszczyk, E.; Krawczyk, H.; Janecki, T. Synlett 2004, 2685. (f) Chataigner, I.; Zammattio, F.; Lebreton, J.; Villieras, J. Synlett 1998, 275. (g) El Alami, N.; Belaud, C.; Villieras, J. Tetrahedron Lett. 1987, 28, 59. (h) Patra, R.; Maiti, S. B.; Chatterjee, A. Tetrahedron Lett. 1991, 32, 1363. (i) El Alami, N.; Belaud, C.; Villieras, J. Synth. Commun. 1988, 18, 2073. (j) Tanaka, K.; Yoda, H.; Kaji, A. Synthesis 1985, 84.
3. For the synthesis of α-arylidene- γ-butyrolactam derivatives, see: (a) Basavaiah, D.; Rao, J. S. Tetrahedron Lett. 2004, 45, 1621. (b) Beji, F.; Lebreton, J.; Villieras, J.; Amri, H. Tetrahedron 2001, 57, 9959.
4. For the isomerization of exo-methylene moiety during the prepa-
ration of α-methylene- γ-butyrolactams, see: (a) Tarnchompoo, B.; Thebtaranonth, C.; Thebtaranonth, Y. Tetrahedron Lett. 1987, 28, 6675. (b) Henin, F.; Muzart, J.; Pete, J.-P. Tetrahedron Lett. 1986, 27, 6339. (c) Mori, M.; Washioka, Y.; Urayama, T.; Yoshiura, K.; Chiba, K.; Ban, Y. J. Org. Chem. 1983, 48, 4058.
5. For our recent publications on Baylis-Hillman chemistry, see: (a) Lee, M. J.; Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Tetrahedron Lett. 2006, 47, 1355. (b) Lee, M. J.; Park, D. Y.; Lee, K. Y.; Kim, J. N. Tetrahedron Lett. 2006, 47, 1833. (c) Park, D. Y.; Lee, M. J.; Kim, T. H.; Kim, J. N. Tetrahedron Lett. 2005, 46, 8799. (d) Gowrisankar, S.; Lee, K. Y.; Kim, J. N. Tetrahedron Lett. 2005, 46, 4859. (e) Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Tetrahedron Lett. 2005, 46, 5387. (f) Lee, C. G.; Lee, K. Y.; Lee, S.; Kim, J. N. Tetrahedron 2005, 61, 1493. (g) Lee, M. J.; Lee, K. Y.; Park, D. Y.; Kim, J. N. Tetrahedron 2006, 62, 3128. (h) Kim, S. C.; Gowrisankar, S.; Kim, J. N. Tetrahedron Lett. 2006, 47, 3463. (i) Gowrisankar, S.; Lee, K. Y.; Kim, J. N. Tetrahedron 2006, 62, 4052. (j) Gowrisankar, S.; Lee, C. G.; Kim, J. N. Tetrahedron Lett. 2004, 45, 6949. (k) Kim, J. N.; Lee, K. Y. Curr. Org. Chem. 2002, 6, 627. (l) Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1481, and further references cited therein.
6. For the synthesis of starting materials, see: Kim, J. M.; Im, Y. J.; Kim, T. H.; Kim, J. N. Bull. Korean Chem. Soc. 2002, 23, 657. Assignment of the structures of $\mathbf{3 a}$-syn and $\mathbf{3 a}$-anti was impossible due to similar coupling constant between the two protons at the 3 - and 4 -position of $\mathbf{3 a}$. Thus, the structures of $\mathbf{3 a}$ syn and 3a-anti were assigned based on the assignment of the product 4a-syn and 4a-anti (see text).
7. For the synthesis of Baylis-Hillman bromides, see: (a) Lee, M. J.; Kim, S. C.; Kim, J. N. Bull. Korean Chem. Soc. 2006, 27, 140. (b) Lee, K. Y.; Kim, S. C.; Kim, J. N. Bull. Korean Chem. Soc. 2006, 27, 319. (c) Lee, K. Y.; Kim, S. C.; Kim, J. N. Tetrahedron Lett. 2006, 47, 977. (d) Lee, K. Y.; Seo, J.; Kim, J. N. Tetrahedron Lett. 2006, 47, 3913. (e) Basavaiah, D.; Hyma, R. S.; Padmaja, K.; Krishnamacharyulu, M. Tetrahedron 1999, 55, 6971.
8. (a) Lee, M. J.; Lee, K. Y.; Park, D. Y.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1281. (b) Lee, H. S.; Kim, S. J.; Kim, J. N. Bull. Korean Chem. Soc. 2006, 27, in print.

[^0]: $\overline{{ }^{a}}$ Conditions: (i). 2a (1.0 mmol), aq THF, DABCO (2.0 equiv), rt, 20 min , (ii). nitroalkane (1.5 equiv), rt, 2 days. ${ }^{b}$ Conditions: 3 (1.0 equiv), Fe (10 equiv), $\mathrm{AcOH}, 90-100^{\circ} \mathrm{C}, 12 \mathrm{~h}$. ${ }^{c}$ The two compounds $\mathbf{3 c}$-anti and $\mathbf{3 c}$-syn were isolated (69%) as a mixture and the ratio was $1: 4$ (anti/syn) based on ${ }^{1} \mathrm{H}$ NMR. We used the mixture for the next reaction. ${ }^{d}$ We isolated $\mathbf{4 c}$-syn only in 62% yield in pure state. ${ }^{e}$ Conditions: $\mathbf{2 b}$ (1.0 equiv), DMF, nitroethane (1.5 equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.0 equiv), rt, 2 h .

