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Ridge regression is compared with multiple linear regression (MLR) for determination of Research Octane
Number (RON) when the baseline and signal-to-noise ratio are varied. MLR analysis of near-infrared (NIR)
spectroscopic data usually encounters a collinearity problem, which adversely affects long-term prediction per-
formance. The collinearity problem can be eliminated or greatly improved by using ridge regression, which is
a biased estimation method. To evaluate the robustness of each calibration, the calibration models developed
by both calibration methods were used to predict RONs of gasoline spectra in which the baseline and signal-
to-noise ratio were varied. The prediction results of a ridge calibration model showed more stable prediction
performance as compared to that of MLR, especially when the spectral baselines were varied. . In conclusion,
ridge regression is shown to be a viable method for calibration of RON with the NIR data when only a few
wavelengths are available such as hand-carry device using a few diodes.
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Introduction

Multiple linear regression (MLR)1-5 is one of the most
popular calibration methods in near-infrared (NIR) spectro-
scopy.6-7 In comparison to other calibration methods, MLR
is simple, easy to understand, and possible to clearly ratio-
nalize the relationship between the NIR spectral features and
the calibration results. Especially, when miniaturization of
instrumentation is necessary, such as a hand-held device,
MLR can be successfully utilized in conjunction with such
simple instrumentation as using a few diodes for a light
source, as well as without a monochromator. In this case,
conventional factor based analyses such as PCR (Principal
Component Regression) and PLS (Partial Least Squares)
regression can not be utilized since only 3 to 4 discrete
wavelengths (variables) are available. Therefore, factor-
based calibration methods can not be applicable to diode-
based hand-held instrumentation even though their calibra-
tion performance is usually better than MLR in most NIR
application fields. There are several methods of selecting
wavelengths (variables) such as forward selection, backward
elimination, and stepwise regression by examining the statis-
tical parameters.8,9

In general, variables (absorbances at wavelengths) in a
NIR spectrum are highly correlated each other (which is
referred to as a multicollinearity). In the presence of multi-
collinearity, estimates of least square methods including
MLR are unstable and tend to lead to poor prediction. It is
known that biased estimation methods give considerably
better prediction than ordinary least squares (OLS) when

spectral data are noisy or the predictors are highly collinear.
In this study, ridge regression10 (a biased estimation method)
has been evaluated and the prediction performance was
compared with that of OLS-based MLR. To compare ridge
regression and MLR, the determination of research octane
number (RON) of gasoline 11,12 has been studied. Calibration
models were initially developed using both methods, then
each model was used to predict artificially modified spectra
in which the baseline and signal-to-noise ratio were inten-
tionally varied. The variations of baseline or signal-to-noise
ratio are practically occurred in many actual fields. The
results showed that the calibration model developed by ridge
regression predicted RONs of gasoline samples with greater
stability compared to that from MLR, especially when the
baselines of spectra were changed.

Ridge Regression

Consider the MLR calibration model (with an intercept)
having a single response variable Y and p explanatory vari-
ables X1,..., Xp with n samples. The estimator vector of
regression coefficients by the OLS is given by

(1)

where X is n×( p+1) matrix consisting of the sample data of
variables X1,..., Xp. If Xi’s are highly correlated, the determi-
nant  of is near 0 and so  becomes near-singular.
Therefore, in the presence of multicollinearity, the OLS esti-
mates could become very unstable due to the large variance
of the estimates, which leads to poor prediction. 

Ridge regression is one of several methods to overcome the
multicollinearity problem by modifying the OLS to allow a

β̂OLS X′X( ) 1– X′Y=

X′X X′X
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small bias via a constant k in the parameter estimates:

(2)

where I is the identity matrix. When an estimator has only a
small bias and is more precise than an unbiased estimator, it
will be closer to the true parameter’s value. If the variance of
the ridge estimator  could be tremendously reduced, the
mean squared error tends to be smaller than the OLS. In this
situation the point estimate  becomes more stable, and the
confidence interval of   is narrower.

 In ridge regression, Xi’s are recommended to be trans-
formed by the correlation form, which makes the diagonal
element of X'X equal 1 and the off-diagonal element repre-
sents the correlation coefficient of the two variables. Since
the values of all elements are of the same order of magni-
tude, this would control round-off errors in inverting  to
obtain the ridge estimator .

Experimental Section

Instrument and Apparatus. NIR spectra were collected
with a NIRSystems on-line model 5000 spectrometer (Foss
NIRSystems Inc., Silver Spring, MD) equipped with a
quartz halogen lamp, PbS detector, and a fiber optic interac-
tance probe. The resolution of collected spectra was 10 nm
with 2 nm data point intervals. The fiber optic probe con-
sisted of concentric rings of illuminating fibers, receiving
fibers, and a reflecting mirror. The size of fiber optic probe
was 2.54 cm (outer diameter) and 15.2 cm (length). The dis-
tance between the optical fibers and the reflecting mirror
was 1 cm, resulting with an actual pathlength of 2 cm.

Sample Preparation. Fifty-eight different unleaded gas-
oline samples were prepared by randomly blending 9 differ-
ent gasoline feed stocks. Each feed stock has different
chemical and physical properties. All gasoline feed stocks
were obtained from SK Corporation at Ulsan, Korea. The
gasoline samples ranged in research octane number (RON)
from 90.5 to 98.4 (average: 94.8, standard deviation: 2.0).
Samples were stored in a refrigerator at 4oC to prevent
evaporation of the hydrocarbons. RONs of samples were
determined with a conventional knock engine.13

A total of 58 spectra were divided into 43 spectra for the
calibration and 15 spectra for the validation data set. Spectra
in the validation data set were randomly chosen.

Results and Discussion

Spectral Features. Gasoline, as generally known, is a
highly complex mixture of various carbon chain length hydro-
carbons and oxygenates such as methy t-butyl ether (MTBE).
Therefore, the resulting NIR spectrum of gasoline is the
summation and highly overlapped spectral features of each
component in gasoline. All the NIR spectra of gasoline sam-
ples in the calibration set are shown in Figure 1. As shown in
Figure 1, the spectral features of gasoline are dominated by
overtone and combination bands of CH, CH2, and CH3 of
various hydrocarbons. The most useful spectral information

is located in the 1100 to 1650 nm and 1800 to 2100 nm spec-
tral ranges. The absorption bands from 1100 to 1270 nm and
1800 to 2100 nm correspond to second overtone and combi-
nation bands, respectively. The 1650-1800 and 2100-2500
nm ranges contain no useful spectral information due to the
strong absorption of the NIR radiation from the relatively
long optical pathlength. Therefore, the spectral ranges of
1100-1650 and 1800-2100 nm were solely used for calibra-
tion in this study.

MLR Calibration . For wavelength selection, stepwise re-
gression was used. Stepwise regression is the most com-
monly used method of selecting a variable set, which is con-
duct as a step-by-step procedure by either adding or deleting
one variable a time.9 The number of wavelengths (variables)
in the calibration model started with two and increased until

the Standard Error of Calibration (SEC = )

was similar to or slightly below 0.3, which  is the ASTM
reproducibility of the reference knock engine.13 Table 1 shows
the calibration results as increasing the number of variables
(wavelengths) in the calibration model. With increasing
number of variables, which corresponds to adding more spec-
tral information, the resulting SEC is continuously decreased.
Finally, the four-wavelength MLR calibration model was
selected because it met the ASTM reproducibility.

The variation inflation factors (VIF) of this model were
obtained to examine the degree of multicollinearity. The VIF
for the i-th regression coefficient, VIFi, is computed as fol-
lows:

(3)

β̂R X′X kI+( ) 1– X′Y=
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Figure 1. NIR (near-infrared) spectra of gasoline samples in the
calibration set.

Table 1. MLR calibration results as increasing the number of
variables in the calibration model

Unit: Research Octane Number (RON)

Number of wavelengths
Selected wavelengths

(nm)
SEC

2 1190, 1812 0.37
3 1190, 1812, 2068 0.33
4 1190, 1812, 2068, 1824 0.29
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where  is the coefficient of determination (R-square)
from the regression of Xi on the other independent variables.
If  is near 1.0, then VIFi becomes large. The Eq. (4)
shows that the variance of the i-th regression coefficient is
inflated proportional to VIFI:

 (4)

where  is the j-th centered sample value of the i-th inde-
pendent variable and  is the variance of error terms in the
MLR model. As a rule of thumb, if VIF exceeds 30 (or 10 in
other areas than chemometrics), it is an indication that the
associated coefficients are poorly estimated because of multi-
collinearity. 

The resulting estimate, standard error, t-value, and VIF of
the four-wavelength MLR model are shown in Table 2. The
estimates in Table 2 are the results of the correlation
transformed data, which is  and

· to be compared with the ridge regres-
sion estimates in same magnitude. The VIF values at 1812
and 1824 nm are especially high. The results show that the
calibration model with four variables apparently has multi-
collinearity problem that will adversely affect the prediction
performance.

Ridge Calibration Model. One of the most important
parameters in ridge regression is the bias constant (k). The
bias constant in ridge regression is used to reduce the vari-
ance of estimates of regression coefficients that are due to
multicollinearity. Several methods have been proposed for
determining the optimal value of k.14,15 A common strategy
is to determine the smallest k that makes stable coefficients
in the ridge trace with the lowest values of VIF. The ridge
trace is the plot of VIFs versus k values. If k is too large, the
resulting analytical performance will be degraded by apply-
ing a large bias, even though the collinearity problem can be
solved. On the contrary, when the bias is too small, still the
collinearity problem may exist in a calibration model. The
set of variable in RR is selected by the stepwise method in
MLR.

Figure 2 shows the relationship between k and VIF as
increasing k in the four-variable model. The VIFs in the
selected wavelengths are high when k is near to 0, but they
decrease as the value of k increases. Most noticeably, VIFs
are very high at 1812 and 1824 nm, and they drop steeply as
the bias constant increases. The bias constant of 0.005 was

selected by examining the ridge trace. At this point, the esti-
mated coefficients are stable and their VIFs become smaller.
With a small bias of 0.005, the standard errors of wave-
lengths of 1812 and 1824 nm are reduced to almost half as
compared to those in MLR and moderate VIF values are
achieved. The results of ridge regression using a bias con-
stant of 0.005 are summarized in Table 3. In comparison to
MLR results, VIF values are greatly decreased and a more
statistically stable model is achieved, although R2 is slightly
decreased.

Generation of Artificial Spectra. To compare the per-
formance of MLR and RR for pertubed spectral data, the
baseline and signal-to-noise ratio of the gasoline spectra in
the validation set were artificially changed to simulate spec-
tral variations as typically observed in an actual field envi-
ronment. The baseline and the signal-to-noise ratio of a
spectrum change due to instrumental drift, source intensity
variation, or degradation of optical components. To generate
spectra with more baseline variation, the average baseline of
the spectra in the validation set were initially obtained. For
this purpose, three wavelengths at 1100, 1300, and 1564 nm
were used to calculate the straight baseline of each spectrum
using least squares. As shown in Figure 1, absorbances at
these three wavelengths are almost zero. After obtaining the
straight baseline of each spectrum, an average and standard
deviation of both slope and intercept were calculated. The
calculated results are summarized in Table 4. As shown in
this table, the intercept and the slope are changing by 2.5 to
3.0 %, relatively. To generate the spectra with more baseline
variation, 15 random numbers of slope and intercept in the
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j
∑
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Table 2. The statistical results of four-wavelength MLR calibration
model

Wavelength
(nm)

Estimate Standard Error
t-value

(p-value)
VIF

1190 0.2229 0.0632 3.530 (0.0011) 7.20
1812 −2.2302 0.2345 −9.510 (0.0000) 99.34
1824 0.7408 0.2150 3.446 (0.0014) 83.50
2068 0.4478 0.1001 4.474 (0.0001) 18.09

Degree of Freedom: 39

Figure 2. The relationship between k (bias constant) and VIF of
each variable as increasing k.

Table 3. The statistical results of four-wavelength ridge calibration
model using a bias  constant of 0.005

Wavelength
(nm)

Estimate Standard Error
t-value

(p-value)
VIF

1190 0.3296 0.0600 5.493 (0.0000) 5.08
1812 −1.4648 0.1389 −10.546 (0.0000) 27.12
1824 0.0684 0.1311 0.522 (0.6046) 24.26
2068 0.2628 0.0934 2.814 (0.0076) 12.32

Degree of Freedom: 39
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level of 2 and 3 times higher than those of the original vali-
dation set were calculated. Finally, the modified slope and
intercept points were re-applied to generate the synthetic
spectra. These spectra will be referred to as 2-times baseline-
amplified and 3-times baseline-amplified spectra, respec-
tively. Figure 3 shows the resulting spectra with increased
baseline variations. Compared to the original spectra, the
larger baseline variations are clearly and visually observed.

To generate spectra with higher noise, it is required to

know the signal-to-noise ratio of the original spectra. To cal-
culate the signal-to-noise ratio, twenty NIR spectra of the
same gasoline sample were continuously collected over a 10
hour period at 30 minute intervals over the same day. A
background single beam spectrum of air was collected for
each measurement immediately before the collection of the
sample single beam spectra. Then, the subtracted spectrum
was produced by subtracting each spectrum from the follow-
ing spectrum continuously. This was conducted to examine
only noise information by removing analytical information.
A total of 19 subtracted spectra were produced and the cor-
responding spectra are shown in Figure 4. To evaluate noise
level, RMS (root mean square) noise was calculated using
the standard deviation of data points based on the straight
baseline. To calculate RMS noise, 1800-2100 nm range was
used because the noise level in this range was higher and
baselines were straight, compared to 1100-1650 nm range.
The calculated results are summarized in Table 5. Compared
to the average absorption, the RMS noise level is very low.

Table 4. Calculated average and standard deviation of slope and
intercept of baselines of spectra in the validation data set. Relative
Standard Deviation (RSD) is the ratio in percentage of standard
deviation to average

Average Standard Deviation
RSD
(%)

Slope −0.18450 0.00461 2.50
Intercept 0.0001260 0.0000037 2.96

Figure 3. Original NIR spectra (a), 2-times baseline-amplified spectra (b), 3-times baseline-amplified spectra (c), 2-times noise-amplified
spectra (d), 3-times noise-amplified spectra (e), and 10-times noise-amplified spectra (f).
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To generate more noisy spectra, 15 random numbers in the
level of 2, 3, and 10 times higher than the calculated RMS
noise were chosen. Finally, randomly generated noise factors
were applied to generate the synthetic spectra. These spectra
will be referred to as 2-times noise-amplified, 3-times noise-
amplified, and 10-times noise-amplified, respectively. Fig-
ure 3 shows the resulting spectra with the noise amplifica-
tion. As discussed earlier, the noise level in the original
spectra is very low and no significant visual differences are
observed even with 10-times noise-amplified spectra.

Prediction with Artificially Altered Spectra . To eval-
uate the calibration robustness using ridge regression, artifi-
cially altered spectra were predicted. The original and
artificially altered spectra were used to predict RONs using
both OLS-based MLR and ridge calibration models, and the
resulting SEPs (Standard Error of Prediction, SEP=

) are compared. The results are summa-

rized in Table 6. The prediction of original spectra using the
MLR calibration model shows slightly better results com-
pared to that of the ridge model, which is due to an inten-

ŷi yi–( ) np⁄
i 1=

np

∑

Figure 4. Subtracted spectra produced by subtracting each spectrum
from following spectrum out of twenty spectra of the same gasoline
sample.

Table 5. The results of RMS noise and average intensity using
1800-2100 nm range   Unit: Absorbance Unit (A.U.)

RMS noise Average Intensity

0.0016 0.8764

Figure 5. The prediction residual plots using MLR (filled circles) and ridge (open circles) calibration models for original NIR spectra (a), 2-
times baseline-amplified spectra (b), 3-times baseline-amplified spectra (c), 2-times noise- amplified spectra (d), 3-times noise-amplified
spectra (e), and 10-times noise-amplified spectra (f). 
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tional bias is associated in the ridge calibration model.
However, when the baseline-varied spectra were predicted,
the ridge calibration model exhibits much more stable pre-
diction performance. As baseline variation is increased 2 and
3 times, SEPs from MLR calibration models are signifi-
cantly increased, while SEPs from ridge regression are rela-
tively stable even with baseline variations. This result clearly
shows that, by decreasing multicollinearity by ridge regres-
sion, the prediction result can be more robust and less sensi-
tive to instrumental variation. When both models are used to
predict with RONs of the noise-amplified spectra, no signifi-
cant changes in prediction results are observed as increasing
noise in the spectra. As discussed, the noise level in these
NIR spectra is very low, therefore, it does not directly influ-
ence the prediction performance of each calibration model
even with 10-times noise-amplified spectra.

Figure 5 shows the prediction residual plots corresponding
to the results in Table 6. Filled and open circles correspond
to MLR and ridge regression results, respectively. As
expected, no significant differences are observed between
the original and the noise-amplified spectra. However, in the
prediction residual plot for 3-times baseline-amplified spec-
tra, the residuals from the MLR model are much more scat-
tered, while those from ridge regression are less scattered
(which shows more stable prediction performance).

Conclusion

This comparative study clearly presents that the calibra-
tion model built from ridge regression is more stable and
robust, especially in the situation of spectral variation. The

spectral variations due to instrumental changes are com-
monly observed in a field environment. Ridge regression
provides more robust estimates than MLR estimates for per-
tubations such as baseline change and noise in the data. The
ridge estimators are stable in the sense that they are not
affected by slight variation and tend to give more accurate
predicted value. Using factor based calibration methods,
such as PLS (Partial Least Squares) and PCR (Principal
Component Regression), the collinearity problem can be
eliminated. However, these methods are effective and useful
when many variables (full or fairly wide range of spectrum)
are available. In developing a small hand-held analytical
device using a few diodes, only a few variables (wave-
lengths) are available, which ridge regression will be the bet-
ter choice compared to MLR for long-term stable analytical
performance by removing or decreasing the collinearity
problem.
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Table 6. The prediction results of original and altered spectra using
MLR and ridge calibration models

Unit: Research Octane Number (RON)

Spectra Used
SEP

(MLR)
SEP

(Ridge Regression)

Original 0.26 0.27
2-times baseline-amplified 0.43 0.26
3-times baseline-amplified 0.53 0.33
2-times noise-amplified 0.26 0.28
3-times noise-amplified 0.26 0.28
10-times noise-amplified 0.25 0.27


