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We report on the theoretical positron affinities of closed-shell atomic anions. The second-order many-body
perturbation theory is applied taking the positron-electron interaction as a perturbation. The corrections for the
complete basis set effects to the second order affinity are calculated based on the variational and nonvariational
energy functionals of explicitly correlated geminals. It is shown that the explicitly correlated methods
accelerate the convergence of the expansion significantly giving the account of the cusp behavior outside the
orbital space.
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Introduction

Since the existence of positronium (Ps), the simplest pair
complex of an electron and a positron, was predicted and
discovered,1,2 various theoretical and experimental studies of
positronium complexes have been reported.3 The self-
consistent field (SCF) method has been employed frequently
in theoretical treatments.4 The method is, however, not
qualified to give accurate results in many cases due to the
absence of the positron-electron correlation effects in the
approximation. Diffusion Monte Carlo (DMC) techniques
have been rewarded by results in agreement with experi-
ments5,6 though they are laborious computationally and less
suitable for routine calculations. Another way to deal with
the positron-electron correlation is to extend methods in
molecular orbital theory, as PsOH was calculated at the
second-order many-body perturbation theory (MBPT2)
level.7 The orbital expansion requires a large basis set to
obtain a saturated result for the cusp behavior between a
positron and an electron. (The cusp condition is analogous to
the electron correlation8 but opposite in sign, i.e. the slope is
−1/2.) For electronic cusps, various alternatives with explic-
itly correlated functions have been proposed to improve the
convergence of a correlated method.9-13 It is anticipated that
such expansions are also effective for describing the binary
wave functions of electrons and positrons.

In this paper, we apply SCF and MBPT2 to the positron
affinities (PAs) of closed shell anions. MBPT2 corrections
are calculated using frozen Gaussian-type geminals for the
complete basis effects. It is demonstrated that the results
with geminals are improved significantly in convergence
compared to the MBPT2 results of orbitals. In what follows,
we derive necessary formulae for SCF, MBPT2, and
explicitly correlated methods. Results and discussions are
presented in Section 3 and conclusions are given in
Section 4.

Theory

Throughout this paper, we use the notations, i, j, ..., a, b,

..., and p, q ... for occupied, virtual and general spin-orbitals,
respectively. Positronic orbitals are distinguished by over-
bars, as . We assume that the systems we are interested in
involve only one positron. The SCF method represents the
wave function as a product of an electronic determinant and
a positron orbital. The SCF energy is given by

(1)

where  and  are electron-electron and electron-
positron repulsion integrals, hp and he are one-body Hamilto-
nian matrices for the positron and electrons (differing just in
the signs of the interactions with nuclei), and  denotes the
positronic occupied orbital. Minimizing the energy expression
with respect to the orbitals, we obtain the SCF equations,

(2)

(3)

which are coupled to each other through the positron-
electron interactions in the Fock operators,

(4)

   (5)

The coupled equations are solved iteratively during the SCF
cycle.

The positron-electron correlations are dealt with at MBPT2
with the partitioning,

(6)

where the operators, V and W, are positron-electron and
electron-electron interactions,  and  are the corre-
sponding charging parameters, and H0 is the SCF model
Hamiltonian, i.e. the sum of the Fock operators. At the
MBPT2 level, W is considered to be much less important
than V for PAs because of the cancellation between the states
with and without the positron. Thus we use the MBPT2
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expression,

(7)

taking V as a perturbation.
To improve the result with a basis set truncation error in

the MBPT2 calculation, we represent the first order wave
operator as a sum of a geminal operator and its complement
in the usual particle-hole excitation form,

(8)

The vacuum amplitude is set zero,

(9)

in FN with F which is a sum of spherically symmetric
geminals dependent on the positron-electron distance,

(10)

for the number of electrons, N. Assuming that the SCF
orbitals are exact in the complete basis limit and the
commutator between the exchange and the geminal operators
are negligible,10,11 the Rayleigh-Schrödinger condition for
the first order wave operator outside the Hilbert space
spanned by the orbitals becomes in the form,

(11)

where  and Q1 are one-electron projectors in the virtual
spaces of the complete and given basis sets, respectively, and

 and  are those for positrons. The operator, , is an
anti-hermite single commutator between the kinetic energy
and geminal operators,13

(12)

The above condition is fulfilled asymptotically for a geminal,
, since the convergence of

the expansion with orbital products is slow around .
Then we obtain the nonvariational energy functional from
the Rayleigh-Schrödinger expansion,

(13)

(14)

It is important to compare the expression with the Hylleraas
functional,

(15)

(16)

All three energy corrections become identical,  =
 = , when the geminal is exact outside the

orbital space satisfying Eqn. (11). Hence the ratio,

(17)

which is unity in the above condition, is a measure to
indicate the appropriateness of geminals. Replacing the
geminal operator by , we obtain the energy expression,

(18)

which is stationary with respect to χ. One can think of the
connection between  and  as the virial theorem
for the cusp condition since they are corrections for the
kinetic and potential energy operators, respectively.  is
directly obtained from the order-by-order expansion of the
Schrödinger equation for the transcorrelated Hamiltonian. In
such a way, the first order cusp condition is renormalized to
infinite order in the transcorrelated method.

Introducing the one-electron projectors for occupied
orbitals,  and , the components in
the functional are divided as

 (19)

(20)

and similar expressions for . The component, 
[1], can be rewritten in the commutator form leading to the
operator, , which also appears in the transcorrelated
method,13

(21)

(22)

The term with single projectors reduces to 3-electron integrals
and is approximated using the resolution of identity (RI) of
Kutzelnigg and Klopper11 as,

(23)

Since the integrals in RI involve three occupied orbitals, the
maximum angular momenta required for saturated com-
pleteness insertions are  and 
for the highest occupied ones of the electrons, LOCC, and the
positron, , in an atomic calculation. This fact prohibits
the application of RI to a system with heavy atomic elements
as involving d-occupied orbitals. Most recently, a novel
decomposition scheme has been developed using density
fitting,14 which reduces the required maximum angular
momentum to 2LOCC from 3LOCC in the original RI for a pure
electron problem. The scheme is not employed in this work
as we focus on the positron affinity of light atomic anions.

Results and Discussions

We calculate X− and PsX (X = H and F) at SCF and
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MBPT2. The orbital centers of positronic and electronic
basis sets are fixed at the nuclear position. PAs are calculated
taking the energy differences between X− and PsX. We
transform the template geminal for electron-electron corre-
lations12 with the parameter, cz,

(24)

and change the signs of the coefficients for the treatment of
electron-positron correlations. Throughout this work, we use
cz = 0.45, which leads to a long-ranged geminal compared to
those for electron correlations. For electronic wavefunctions,
we use the (7s4p3d2f) and (13s7p4d3f2g) primitives in the
aug-cc-pVQZ basis sets15 for H and F as Cartesian Gaussian-
type functions. For positronic wavefunctions, systematic
basis sets have not been developed. The SCF orbital of the
positron is s-type and spreads because of the large
distribution of the electrons in X−. Thus we use slightly large
(10s5p4d3f2g) primitives in the aug-cc-pV5Z set augmented
by an additional diffuse s-primitive with the exponent, 0.005,
both for PsH and PsF. We also inspect the convergence of the
positron-electron correlation by increasing the maximum
angular momentum.

The probability densities of a positron and an electron in
the SCF wave function of PsH are shown in Figure 1. The
positronic orbital is more diffuse than those of electrons; the
electrons are strongly bound around the nucleus and the
positron is weakly captured by the electrostatic field. We
tabulate the convergence of the total energy of PsH in Table
1. The asymptotic limit of the second order energy with the
present partitioning is ca. -38.5 mEh. The slightly positive
increments of  and  from (7s4p3d/10s5p4d) to
(7s4p3d2f/10s5p4d3f) are due to the neglect of the

commutator between the exchange and geminal operators.
The calculation with the (7s/10s) set reproduces just 17%
(-6.4 mEh) of the limit in the MBPT2 without corrections.
The error is substantially reduced by the introduction of the
explicitly correlated geminal to recover ca. 87% (-33.5 mEh)
of the correlation energy in . The results of PAs are
summarized in Table 2 and Figure 2. Schrader and
coworkers succeeded in the formation of PsH applying the
positron beam with different momenta to the methane
molecule.5 Experimentally, the binding energy between Ps
and the hydrogen atom is estimated to be 1.1 ± 0.2 eV. Using
the energy of Ps, 6.8 eV, and the electron affinity of
Hydrogen, 0.8 eV, the experimental positron affinity is
derived to be 7.1 ± 0.2 eV. The present estimate of the PA in
the MBPT2 limit is 5.92 eV which deviates from the
experiment by 1.2 eV. From the small error bar in the
experimental PA, the main source of the deviation is
considered to be the absence of the third and higher order
contributions in the present theoretical treatment. The
affinities of the second order energies with the geminal
corrections almost saturates at the calculation with the
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Table 1. Energy components of PsH and H− (in mEh)

Basis (Electron/Positron) ESCF (PsH) E(2) χ ESCF (H−)

1 (7s/10s) -666.54 -6.38 -14.39 -27.86 -33.54 1.84 -487.81
2 (7s4p/10s5p) -666.54 -31.48 -35.91 -38.18 -38.47 1.26 -487.81
3 (7s4p3d/10s5p4d) -666.76 -35.76 -38.29 -38.57 -38.58 1.06 -487.83
4 (7s4p3d2f/10s5p4d3f) -666.76 -36.88 -38.50 -38.50 -38.50 1.00 -487.83

EN
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Figure 1. Probability densities of a positron and an electron in the
SCF wave function of PsH.

Table 2. PAa of H− (in eV)

Basis (Electron/Positron) SCF MBPT2 VC OPT EXPb

1 (7s/10s) 4.86 5.04 5.62 5.78 7.10
2 (7s4p/10s5p) 4.86 5.72 5.90 5.91
3 (7s4p3d/10s5p4d) 4.87 5.84 5.92 5.92
4 (7s4p3d2f/10s5p4d3f) 4.87 5.87 5.92 5.92

aVC, and OPT mean the PAs calculated from , and , respectively.
bReference 5.

EV
2( ) Eχ
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Figure 2. Theoretical and experimental PAs of H− in eV.
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(7s4p3d/10s5p4d) set to converge much faster than the
conventional MBPT2.

We show the energy components of PsF and F− in Table 3.
In the result with the (13s7p/10s5p) set, the conventional
MBPT2 reproduces only 23% of the asymptotic limit of the
second order energy, ca. -29 mEh. The results with the
variational corrections are almost saturated with the basis
sets involving d-shells.  with the (13s7p/10s5p) set is
lower than the limit by 0.3 mEh mainly due to the
unsaturated RI with the basis set. The saturated RI requires
d- and p-functions in the electronic and positronic basis,
respectively. We show the theoretical and experimental PAs
in Table 4 and Figure 3. The experimental value is derived
from the binding energy of PsF, 2.9 ± 0.5 eV, reported by
Tao and Green16 by adding the electron affinity of the
Fluorine atom, 3.4 eV. The result from the diffusion Monte
Carlo simulation (DMC) is 6.2 eV.6 The best result in the
present calculation, 5.8 eV, is slightly smaller than the PAs of
the experiment and DMC by 0.5 and 0.4 eV, respectively.

To summarize, 79% and 92% of the experimental PA of
PsF are reproduced at SCF and MBPT2, respectively. This
is in contrast with the ratios, 68% and 83%, for PsH. The

difficulty in the treatment of PsH is partly implied by the
restricted HF energy of H−, -488 mEh, which is higher
than the hydrogen energy, -500 mEh. The reference
function for the MBPT2 is thus an artifact due to the spin
restriction, and the state of H− does not become bound until
the electron correlation is treated appropriately.11a It is thus
concluded that the inclusion of higher order perturbations
involving electron-electron interaction is crucial for an
accurate PA of PsH.

Conclusion

We applied the SCF and MBPT2 methods to the calcu-
lations of positronic compounds. It has been demonstrated
that the positron-electron correlation is essential for
quantitative PAs in the results of MBPT2. It was also shown
that the variational and nonvariational MBPT2 correction of
the explicitly correlated geminal accelerates the convergence
of the expansion. Such an application will enable us to
calculate PAs of large molecules, to which the access with an
enormous basis set is difficult.
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