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The stress and the heat-flux auto-correlation functions in the Green-Kubo formulas for shear viscosity and
thermal conductivity have non-decaying long-time tails. This problem can be overcome by improving the
statistical accuracy by N (number of particles) times, considering the stress and the heat-flux of the system as
properties of each particle. The mean square stress and the heat-flux displacements in the Einstein formulas for
shear viscosity and thermal conductivity are non linear functions of time since the quantities in the mean square
stress and the heat-flux displacements are not continuous under periodic boundary conditions. An alternative
to these quantities is to integrate the stress and the heat-flux with respect to time, but the resulting mean square
stress and heat-flux displacements are still not linear versus time. This problem can be also overcome by
improving the statistical accuracy. The results for transport coefficients of liquid argon obtained are discussed.
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Introduction the corresponding thermodynamic flux J. The first require-
ment for this applied field is that it should be consistent with
Transport coefficients - self-diffusion coefficient, shear the periodic boundary conditions to ensure that the simulation
viscosity, and thermal conductivity - are defined in terms ofbox remains homogeneous. The second requirement is that
the response of a system to a perturbation. For example, thige transport coefficient of interest can be calculated from
diffusion coefficient relates the particle flux to a concent-the constitutive relation:
ration gradient, whereas the shear viscosity is a measure of

the shear stress induced by an applied velocity gradient. By y= lim [Iim Q)((D—[] . (3)
introducing such perturbations into the Hamiltonian, or XoO0Lt-e

directly into the equations of motion, their effect on theThe formal proof that an algorithm satisfies these two
distribution function may be calculated. By retaining therequirements is given by linear response th&ui?>

linear terms in the perturbation, comparing the equation for Eg. (3) indicates an extrapolation method - applying 10-20
the response with a macroscopic transport equation, we camlues of the external field, obtaining the thermodynamic
identify the transport coefficient. This is usually the infinite flux, and extrapolating to zero external field. This kind of
time integral of an equilibrium correlation function of the calculation is fairly expensive. Especially, the averaging of

form known as the Green-Kubo formula: the thermodynamic flux at small external fields requires very
long time simulations. Another drawback of NEMD compared
y:ﬁ: dtDA(0) CA(t), (2) with equilibrium molecular dynamics (EMD) simulation is

to provide only one fundamental transport coefficient, while
where y is the transport coefficient andl is a variable EMD produces an entire range of correlation functions and
appearing in the perturbation term in the Hamiltonian.transport coefficients from the output of a single equilibrium
Associated with any expression of this kind, there is also theun by Green-Kubo and Einstein formulas. The problem in

Einstein formula: the calculation of transport properties, using the EMD
1 d simulation is a non-decaying long-time tail of the time
y= élim a—tE[A(t) —A(O)]ZD, (2) correlation functions in Eq. (1) or a non-linear slope in the

t o o

mean square displacement of the variables in Eq. (2).

which holds at large(compared with the correlation time of  In the present paper, we examine the Green-Kubo and
A). Einstein formulas for the calculation of the transport proper-

In recent years, non-equilibrium molecular dynamicsties of liquid argon, using the EMD simulation. The primary
(NEMD) simulations have emerged as a powerful tool forgoal of this study is to seek an alternate route for the non-
the study of transport coefficients of both simple anddecaying long-time tail of the time correlation functions in
molecular fluidst® The general principle of the NEMD Eq. (1) or the non-linear slope in the mean square displace-
method" is to introduce a (possibly fictitious) external field ment of the variables in Eq. (2). In the following section, we
X into the equations of motion of the system, which derivesdescribe the technical details of MD simulation. We present
some theoretical aspects in Section Ill, our results in Section
“Corresponding author. E-mail: shlee@star.ks.ac.kr IV, and concluding remarks in Section V.
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Molecular Dynamics Simulation Details

The usual Lennard-Jones (LJ) 12-6 potential for the
interaction between atoms was used with LJ parameter:
0=0.34 nm ands/k=120 K, wherek is the Boltzmann
constant. The inter-atomic potential was truncated at 0.8
nm, which is the cut-off distance used in many other
simulations. Long-range corrections were applied to the
energy, pressure, etc. due to the potential trunctidhe
preliminary canonical ensemble (NVT fixed) MD simulation
of 1728 argon atoms was started in the cubic box of lengt
L = 4.3696 nm, of which the density is equal to 1.374 g/cm
at 94.4 K and 1 atm. First, the equations of motion were
solved using the leap-frog algorithhwith a time step of
10 second, but later it was switched to a velocity Verlet
algorithn?® for NVT EMD simulation and a fifth-order
predictor-corrector Gear integratféfor NpT EMD simulation.
Both systems were fully equilibrated and the equilibrium
properties were averaged over five blocks of 100,000 tim«:i:i%Li'(;earl- o'wqoi;]méi”z‘(*g) ?Jtsr?nss tﬁgtgirceosgetlgg(s)grs(sdé% J;'”g“%ﬁss 0(7)
sFepS._The brief summary of th_ermodynam|c averages Ia(id (8),gand thai1 in Eq. (1%) using Eq. (9), obtained Ve?llethVT
given in Table 1. The configurations of argon atoms werézpip simulations.
stored every time step for further analysis.

t(ps)

stress tensors without potential truncation is fully disc#&sed

Theoretical Backgrounds and it is recommended to use the former form in a

simulation that employs periodic boundary conditions. The

Self-diffusion coefficient The Green-Kubo formula for stress autocorrelation (SAC) functions, the integrand of Eq.
self-diffusion coefficienDs in three dimensions is given by  (6), obtained from Eqgs. (7) and (8) do not decay to zero in
1 the long time as shown in Figure 1 and the resulting shear

D, = :3,.[: dty;(0) Oy (1), 4 viscosity is not well-defined.
Though the stress is a property of the system, it can be
while the Einstein formula for self-diffusion coefficientis  considered as a property of each parficleriting Piap as

1. d 1
D= Zlim = ri(t)-r,(0) 5. 5) Piap(t) = SIMYa(t) Tis(t) + 1ig(t) D] (9)
These averages are computed for each dfitharticles in ~ With this expressiom in Eq. (6) may be rewritten as
the simulation, the results were added together, and divided Vv
by N, to improve_statistical accuracy. n= T I: dt Z [P (1) [P (DL (10)
Shear viscosity The Green-Kubo formula for shear !
viscosityn is given by Then the statistical accuracy is improved, being N (number
v of particles) as large as that of using Eq. (7) or (8). Figure 1
n=— Im dt[P,p(0) [P4(1)0, (6) shows a perfect decay of the SAC, the integrand of Eq. (10).
kTJo T . : ) .
This kind of treatment in calculating shear viscosity has
where already appeared in solute molecular dynamics in a mesoscale

1 solvent?® Since there is no interaction between solvent
Pap(t) = \—/[ 2 My, (1) p(t) + 2 3 14(t) O B(t)} particles in the mesoscale solvent, the second term of Eq. (9)
i Nk vanishes and; is treated as cell-jump velociy.

@) The Einstein formula for shear viscosity is
orPag®) = 3 T M0 igl) + T o) )] (@ n=3lim 0Q,0-0,01°0 ()
where

andaf = xy, Xz, yx, yz, zx, andzy The equality of these two 1
Qap(t) = v z Mia(t) oip(t) - (12)
Table 1. Liquid argon systems at T =94.4 K :

In the previous section time differentiating efin Eq. (5)

Methods fcn? atm -Etotal (kJ/mol X - ) . )

P (glem) p (atm) ( ) givesv in Eq. (4) and the same relationship standQ¥grin
Verlet NVT EMD 1.374 38 4.641 Eq. (12) andPqgin Eq. (8) - time differentiating @qs gives
Gear NpT EMD 1.361 1.0 4,592

Pag. SinceQqp is not continuous under periodic boundary
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Figure 2. Mean square stress displacement (MSSD) of liquid argorrigure 3. Normalized heat-flux auto-correlation (HFAC) functions
in Eq. (11) usingQag defined by Eq. (12), those in Eq. (11) using of liquid argon in Eq. (16) using the hea flux defined by Egs. (17)
Qqp defined by Eq. (13) througPes of Egs. (7) and (8), and thatin  4nq (18), and that in Eq. (21) using Eq. (20), obtained Verlet NVT
EQ. (15) using Eq. (14), obtained Verlet NVT EMD simulations. gpmp simulations.

The units are in (g/(mol-ps-nrh))
2
a0 : O
conditions®® the calculated mean square stress displacement &(t) = om + 5 > @r; (D], (29)
(MSSD), using Eqg. (12) is not a linear function of time as i j#i
shown Figure 2. An attractive alternative fQus is to  anda =x, y, andz @[r;(t)] is the potential energy between

integratePqp with respect to time: particlesi andj at timet. The heat-flux auto-correlation
(HFAC) functions, the integrand of Eq. (16), obtained from
Qap(t) = Qqp(0) = Jlodr Pap(T) - (13) Egs. (17) and (18) do not decay to zero as shown in Figure 3

and the resulting thermal conductivity is also not well-
There are twdPqg in Egs. (7) and (8) for Eq. (13) but both defined.
calculated MSSD of),s are also non linear functions of  Again the heat flux is considered as a property of each

time as shown Figure 2. particlei, writing Joic 8S
To improve the statistical accuracy, we defipesz as a 1
property of each particiefrom Eq. (9): Joia(t) = \—/[si(t) O, (1) +1i5(1) Ovi(t) (111 (20)
Qiap(t) = Qigp(0) = J:)dr Piap(T) 14 With this expression) in Eq. (16) may be rewritten as

and the shear viscosity is defined as

V

A=—= [ dt2 Dy;,(0) Do, ()1 (21)
. 0 - Qia Qia
n=5lim £5 00,40 - QupOT  (15) | e o o

- ! Here again the statistical accuracy is improved, béing
The calculated MSSD @iqp gives a perfect linear function (number of particle) as large as that of using Eq. (17) or (18).
of time as shown Figure 2. Figure 3 shows a perfect decay of the HFAC, the integrand
Thermal conductivity. The discussion here is exactly the of Eq. (21).

same as the previous section. First, the Green-Kubo formula The Einstein formula for thermal conductivity is

for thermal conductivity is given by

1v . d 2
A=z—Ilim =g, (t) —&,(0)]°0, (22)
Vv am 3
)= k—T—ZJg“ At Dg(0) Doa(B)L (16) o 2Tt
where
1
Jool) = [T &0 () + 3 T rya(t) vy () Ty (0] () =5 2 1D LB, (@3)
| H an or sometimes
or
1
Joalt) = [ 3 &0 Tl + ¥ 1100 (O T,(0]], £all) =y 2 1) a0 - 0. 9

(18) Here again time differentiating & in Eq. (23) giveSgq in
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8000 Table 2. Comparison of self-diffusion coefficient®4 10° cn¥/
/ sec), shear viscositieg,(millipoise), and thermal conductivitie, (
/ 10 cal/K-cm-sec) of liquid argon at 94.4 K obtained from the
S Green-Kubo [Eqg. (4), (10), and (21)] and Einstein formulas [Eq.
6000 | (28)-->(22) / (5), (15), and (27)], with the experimental measures and NEMD
(24)-—>(22) / results?
E17;-—>§25§——>522; ;
——— (18)—>(25)——>(22 /
(26 —a(27) I, Transport Verlet NVT  Gear NpT .
o /’//, properties EMD EMD Experimental NEMD
T 4000 a 1
g ///’ Ds (Eq.4) 248+0.07 256x0.04 283 4.02
/" Ds (Eq.5) 247+0.07 254+0.05 2043
P4 n(Eq.10) 3.08+0.19 3.14+0.22 1297 2.13
2000 el A n(Eq.15) 3.15+0.23 3.01+0.19
s et A(Eq.2l) 3.05+022 354+0.18 274 231
A(Eq.27) 3.07+024 337+0.21
@0btained from Lagrange interpolation of experimental re€idtso4.4

40 50

t(ps)
Figure 4. Mean square heat-flux displacements (MSHFD) of liquid resulf? overestimates the experimental restits.

argon in Eq. (22) using, defined by Egs. (23) and (24), those in
Eq.(22) usinge, defined by Eq. (25) throughy. of Egs. (17) and
(18), and that in Eq. (26) using Eq. (27), obtained Verlet NVT
EMD simulations. Here MSHFD is multiplied by V and the units

: K. PAt 90 K and 1.374 g/cfn

Figure 5 shows the shear viscosities of liquid argon, time-

integrated from the stress auto-correlation functions(SAC),
Figure 1, as a function of time, and only the last result gives

are in (g/(molp3R)*nn+.

a constant value in the long time, which is listed in Table 2.

The mean square stress displacements(MSSD) of liquid
Eq. (18). Sincey is not continuous under periodic boundary argon are shown in Figure 2. The only linear curve among
conditions?® the calculated mean square heat-flux displacethem is the last one and the obtained shear viscosity is listed
ments (MSHFD) using Egs. (23) and (24) are non lineain Table 2. The obtained shear viscosities from the Green-

functions of time as shown Figure 4. An attractive alternativeKubo formulas, usingiqs in Egs. (9) and (10) and the Einstein

for &, is to integrateloq with respect to time:

formulas, usindQiqs in Egs. (14) and (15) in velocity Verlet

algorithn?® NVT and fifth-order predictor-corrector Gear

£4(t) = £4(0) = [,dT Jgq(1). (25)

integratiod’” NpT EMD simulations are generally in good
agreement but overestimate the experimental r&sdibw-

There are twdgq Egs. (17) and (18), for Eq. (25) and both ever, NEMD resuff gives a better agreement with the

calculated MSHFD's are also non linear functions of time agxperimental resuftthan EMD resullts.

shown Figure 4.
Again, to improve the statistical accuracy, we dellge
as a property of each parti¢clrom Eq. (20):

Eia(t) = £4(0) = [, dT Igia(1), (26)
and the thermal conductivity is defined as
1V . d
A=5sim 52 dea-6q010 @D

The calculated MSHFD gives a perfect linear function of
time as shown Figure 4.

Results and Discussion

The calculated velocity auto-correlation (VAC) function,
the integrand of Eq. (4), decays to zero quickly(not shown
and the resulting self-diffusion coefficient is well-defined.
Also, the calculated mean square displacement (MSD) i
perfectly linear (not shown) and one-sixth of the slope give:
the self-diffusion coefficient. The self-diffusion coefficients

The results for the thermal conductivity of liquid argon

have a very similar situation to those for the shear viscosity.

Viscosities

o

t(ps)

40

50

obtained from VAC (Eq. (4)) ar_1d MSD (EQ-_ (5)) are Iisf[ed iN Figure 5. The shear viscosities (arbitrary units) of liquid argon,
Table 2 and the agreement with the experimental résisits time-integrated from the stress auto-correlation functions (SAC),
quite good. But non-equilibrium molecular dynamics (NEMD) Figure 1, as a function of time.
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considering the stress and the heat-flux of the system as
properties of each patrticle, this problem can be overcome by
improving the statistical accuracy by N (number of particles)
times. The obtained results for shear viscosities and thermal
conductivities of liquid argon from the Green-Kubo and
Einstein formulas using velocity Verlet algorithm NVT
EMD and fifth-order predictor-corrector Gear integration
NpT EMD simulations give a reasonable agreement with the
experimental results and NEMD results. The applications of
this method for molecular liquids, such asOH CH,, and

Thermal conductivities

t{ps)

Figure 6. The thermal conductivities (arbitrary units) of liquid 1
argon, time-integrated from the heat-flux auto-correlation functions

(HFAC), Figure 3, as a function of time. 5

C4H1o are presently under study.
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