Articles

Synthesis of a New Diels-Alder Quinone Adduct and Its Use in Preparing Thiazolo- and Oxazoloquinolines ${ }^{\dagger}$

A. S. Hammam, M. S. K. Youssef," Sh. M. Radwan, and M. A. Abdel-Rahman
Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
Received July 8, 2003

Abstract

Syn (or anti) cinnamaldehydeoxime (1a, b) undergoes Diels-Alder addition to tetrabromo-p-benzoquinone (2) in dry xylene in $1: 1$ and $2: 1$ molar ratios to give the mono- and diadducts $\mathbf{3}$ and $\mathbf{4 a}, \mathbf{b}$ respectively. The reaction of $\mathbf{3}$ with thioamides in ethanol gave thiazoloquinoline diones 6a-d, whereas with acid amides in ethylene glycol, it gave oxazoloquinolinediones 12a-f.

Key Words : Cinnamaldehydeoxime, Bromanil, Monoadduct, Thiazoloquinolines, Oxazoloquinolines

Introduction

Many reports ascribe interesting biological activities to quinones and their derivatives, especially those containing fused heterocyclic rings. ${ }^{1-3}$ Thus, among quinones, naphthoquinones have been found to possess good fungicidal ${ }^{4,5}$ as well as antimalarial activities. ${ }^{6}$ On the other hand, quinones fused to oxazole or thiazole nuclei have been endowed with good bactericidal activity. ${ }^{7,8}$ These interesting properties have encouraged the present studies to prepare previously unreported thiazoloquinolinediones and oxazoloquinolinediones, some or all of which may be associated with interesting biological properties.
Diels-Alder reaction of syn (or anti) cinnamaldehydeoxime 1a (or 1b) with bromanil (2) in a $1: 1$ molar ratio in boiling dry xylene for 30 hours afforded the monoadduct 3 .
The chemical structure of compound $\mathbf{3}$ is based on both elemental and spectral analyses. Its mass spectrum of electron impact did not show a molecular ion peak, but showed peaks corresponding to cinnamaldehydeoxime (1) and bromanil (2), indicating that a retro Diels-Alder reaction ${ }^{9}$ has occurred to 3 . Five peaks corresponding to the molecular ion of bromanil appeared in the mass spectrum at $\mathrm{m} / \mathrm{z} 419.5$ (0.1%), 421.5 (17.29%), 423.6 (66.72%), 425.5 (100%) and 427.6 (62%). These fit with the 5 possible ratios

Scheme 1

${ }^{\dagger}$ Presented at the 18th International Congress of Heterocyclic Chemistry, July 29-August 3, 2001, Yokohama, Japan.
of isotopic ${ }^{79} \mathrm{Br}$ and ${ }^{81} \mathrm{Br}$, namely $0: 4,1: 3,2: 2,3: 1$ and 4 : 0, respectively.

Repeating the mass spectra of the monoadduct $\mathbf{3}$ under FAB conditions showed peaks corresponding to fragment ions resulting from retro Diels-Alder reaction. ${ }^{9}$

Repeating the reaction of the diene $\mathbf{1}$ with bromanil (2) in $2: 1$ molar ratio also preceded readily giving two products. One was dark brown and precipitated during reflux with a melting point above $360^{\circ} \mathrm{C}$; the other was light brown and was separated by concentrating the mother liquor and melts at $183{ }^{\circ} \mathrm{C}$. The two products showed identical elemental analysis that correspond to a diadduct resulting from a (4+2) Diels-Alder addition of 2 moles of the diene to one mole of bromanil, retaining the four bromine atoms. From the theoretical point of view, the structure of the two resulting isomeric products can be represented by $\mathbf{4 a}$ and $\mathbf{4 b}$. However, which of the two products has the higher melting point and which has the lower melting point cannot be deduced on chemical and spectral bases. Nevertheless, on the basis of observations of syn and anti isomeric compounds (e.g. syn and anti cinnamaldehydeoximes), we can unequivocally suggest that the anti-isomer (4a) is the lower-melting point compound (Scheme 2).

Similar to the monoadduct $\mathbf{3}$, the mass spectrum of the diadduct 4, did not show the molecular ion peak but showed ions corresponding to fragments resulting from retro DielsAlder reaction, at m/z 147 (cinnamaldehydeoxime) and m / z 425.6 (bromanil). However, with the repeat of the mass

Scheme 2

Scheme 3

$\left(\mathrm{a}, \mathrm{R}=\mathrm{CH}_{3} ; \mathrm{b}, \mathrm{R}=\mathrm{NH}_{2} ; \mathrm{c}, \mathrm{R}=\mathrm{NHPh}\right)$

Scheme 4
spectra of 4 under FAB conditions, a parent ion peak at m / z 619 corresponding to the molecular ion that lost an OH group and a hydrogen bromide molecule appeared (Scheme $3)$.

Following our reported procedure, ${ }^{10}$ the reaction of the monoadduct 3 with thioamides in absolute ethanol resulted in dark colored solids within 9-11 hours after the reaction commenced, with $50-75 \%$ yield. The solids were identified as dibromotetrahydroquinolino[2,3- d]thiazolediones 6a-c on basis of elemental and spectral analyses. Carrying the reaction of $\mathbf{3}$ with thioacetamide as an example for a short period (~ 1 hour) gave the product 5a, which could be separately transformed into $\mathbf{6 a}$ by refluxing in ethanol for a prolonged period (~ 10 hours). Therefore, 5a can be suggested to exist as an intermediate during formation of $\mathbf{6 a}$ (Scheme 4).
The mass spectra of compounds 6a-c were of special interest, since they fragmented in two ways. $\mathbf{6 a}\left(\mathrm{R}=\mathrm{CH}_{3}\right)$, as an example, fragmented under electron impact in two manners: in one of them it underwent retro Diels-Alder reaction as indicated by the presence of fragment ions at m / z 146.1 (1%), m/z 130.15 (28.9%), m/z 129.1 (7.7%) and m/z $103.67(1.5 \%)$, corresponding to the cinnamaldehydeoxime that had lost a hydrogen atom, an OH group, $\mathrm{H}_{2} \mathrm{O}$ molecule or $\mathrm{H}_{2} \mathrm{O}$ and a cyano group, respectively, in addition to the complementary fragment ion corresponding to the dibromobenzothiazoledione at $\mathrm{m} / \mathrm{z} 336.23$ (0.5%). In another way, $\mathbf{6 a}$ $\left(\mathrm{R}=\mathrm{CH}_{3}\right)$ fragmented by loss of $\mathrm{CH}_{3} \mathrm{CN}$ and OH groups to

Scheme 5. Fragmentation pattern of compound 6a.

Scheme 6
give three fragment ions at $\mathrm{m} / \mathrm{z} 425.24$ (100\%), $\mathrm{m} / \mathrm{z} 427.22$ (64.4%) and $\mathrm{m} / \mathrm{z} 429.23$ (16.1%), containing different ratios of isotopic bromine. These successively lost $\mathrm{HBr}, \mathrm{Br}, \mathrm{CO}$, $\mathrm{C}_{6} \mathrm{H}_{5}$ and CO to give the relatively stable fragment corresponding to pyridothiophene at $\mathrm{m} / \mathrm{z} 132.1$ (27.8\%) (Scheme 5).

Dithioxamide, having two thioamido groups, also reacted

6 ($\mathrm{R}, \mathrm{CH}_{3}$)

Scheme 7

10
m/z 427.1 (1.9\%)

11
m/z 189.66 (19.3\%)

Scheme 8
readily with the monoadduct $\mathbf{3}$ in a $1: 1$ molar ratio to give 7, and in a $1: 2$ molar ratio to give $\mathbf{8}$ (Scheme 6).
Reductive acetylation of $\mathbf{6 a}\left(\mathrm{R}=\mathrm{CH}_{3}\right)$, using zinc dustacetic anhydride-fused sodium acetate mixture, gave the triacetate derivative 9 , whose mass spectrum showed molecular ion peaks at $\mathrm{m} / \mathrm{z} 614.01$ (0.8%) and $\mathrm{m} / \mathrm{z} 616.05$ (4.3\%), corresponding to intact molecules containing different ratios of isotopic bromine; one containing $1{ }^{79} \mathrm{Br}$ and $1^{81} \mathrm{Br}$ and the other containing $2{ }^{81} \mathrm{Br}$ (Scheme 7).

Another indication of the occurrence of a retro Diels-Alder reaction of the triacetate under electron impact was obtained by observing the fragment ions at $\mathrm{m} / \mathrm{z} 427.1(1.9 \%)$ and m / z 189.66 (19.3\%), which correspond to structures 10 and 11, respectively (Scheme 8).
The appearance of the molecular ion peak of $\mathbf{9}$ is an indication of the relative stability of the triacetate derivative as compared with the parent compound $\mathbf{6 a}$, which is possibly

($\mathrm{a}, \mathrm{R}=\mathrm{H} ; \mathrm{b}, \mathrm{R}=\mathrm{CH}_{3} ; \mathrm{c}, \mathrm{R}=\mathrm{Ph} ; \mathrm{d}, \mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph} ; \mathrm{e}, \mathrm{R}=\mathrm{NH}_{2}$)
due to the partial aromatization of the quinonoid ring.
Oxazoloquinolinediones 12a-e were prepared by interaction of $\mathbf{3}$ with acid amides in boiling ethylene glycol in the presence of bicarbonate. Following this established method of ours, ${ }^{11}$ dark brown crystalline products 12a-e resulted in good yields after 8-10 hours reflux.

The structure of compounds 12a-e was determined by elemental and spectral analyses. Elemental analysis showed the absence of halogen, the IR spectra showed bands at 1650 $\mathrm{cm}^{-1}, 1600 \mathrm{~cm}^{-1}$ and $1550 \mathrm{~cm}^{-1}$ characteristic of an oxazole system, in addition to bands at $1670 \mathrm{~cm}^{-1}, 1100 \mathrm{~cm}^{-1}$ and $755-675 \mathrm{~cm}^{-1}$ characteristic of $v \mathrm{C}=\mathrm{O}$ conjugated with $\mathrm{C}=\mathrm{C}$, $v \mathrm{~N}-\mathrm{O}$ in aromatic ring and $v 5 \mathrm{adj} \mathrm{Ar}-\mathrm{H}$, respectively. Also, the mass spectrum of compound $\mathbf{1 2 d}\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}\right)$, as an example, showed a peak at $\mathrm{m} / \mathrm{z} 385$ corresponding to $\mathrm{M}+2$.

The mechanism of formation of compounds 12a-c is suggested to proceed according to Scheme 9 in which the amide undergoes a nucleophilic attack at position 2 of the adduct $\mathbf{3}$ to give an intermediate 11a-e, which undergoes dehydrobromination most likely under the influence of the basic effect of the bicarbonate and the high energy of the reaction medium to give a final mesoionic product 12a-e (Scheme 9).
An experimental proof to the involvement of 11a-e as intermediate during formation of the oxazoloquinolinedione 12a-e was approached from the separation of 11d as a minor product on dilution (with water) of the mother liquor of the reaction, together with its formation in quantitative yield on repeating the reaction between phenylacetamide and the adduct $\mathbf{3}$ for 30 minutes only, in the absence of bicarbonate. Moreover, heating 11d in ethylene glycol for ~ 7 hours in the presence of $\mathrm{HCO}_{3}{ }^{-}$transformed it into the oxazoloquinolinedione $\mathbf{1 2 d}$ in good yield. The structure of the intermediate 11d, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}$ is based on elemental, IR and mass spectral analyses. The latter did not show a molecular ion peak at $\mathrm{m} / \mathrm{z} 624.7$ but showed a peak corresponding to M CO at m/z 596.7 (14.0\%). The mass spectrum revealed also that the compound undergoes retro Diels-Alder reaction

Scheme 9

Scheme 11

Table 1. Antibacterial screening of some selected thiazoloquinolinediones (diameter of inhibition zones)

Bacterial species	Staph. aureus	Staph. albus	Salmonella	Klebsiella
	Diameter of zone of inhibition (in mm)			
Garamycin	17	6	14	6
$\mathbf{3}$	12	0	13	7
$\mathbf{6 a}$	10	0	16	7
$\mathbf{6 b}$	9	0	10	8
$\mathbf{6 c}$	10	0	10	7
$\mathbf{7}$	8	8	6	7

under electron impact as indicated by the appearance of the two complementary fragments at $\mathrm{m} / \mathrm{z} 147.1$ (8.7\%) and m/z 477.2 (13.7\%), corresponding to the cinnamaldehydeoxime and 2-benzylamino-3,5,6-tribromo- p-benzoquinone (Scheme 10).

The reaction of succinamide, with the monoadduct $\mathbf{3}$ could be made to give the products $\mathbf{1 3}$ and $\mathbf{1 4}$, depending on the molar ratios of the reactants used (Scheme 11).
Antimicrobial Screening. Some of the prepared compounds possessing fair solubility in ethylene glycol were selected, and their in vitro antimicrobial activities against four strains of bacteria were determined using the filter paper disc method. ${ }^{12,13}$ These strains included Staphylococcus aureus and Staphylococcus albus as gram-positive bacteria and Salmonella and Klebsiella as gram-negative. The results obtained are included in Table 1.
These data show that with exception of Staphylococcus albus, which was lightly resistant to the majority of tested compounds, all other bacteria strains were sensitive. The sensitivity however, varied with change of both type of nucleus or substituent.
From the limited data of biological screening that we obtained, working out a correlation between structure and activity is rather difficult.
However, we have concluded that the results obtained are satisfactory and encourage further synthetic studies in this field.

Experimental Section

All melting points are uncorrected and determined on a

Gallenkamp apparatus with a digital thermometer type MFB-595-010M. The IR spectra were measured on an IR470 Spectrophotometer [SHIMADZU], using the KBr Wafer technique. The mass spectra were run on a JEOLJMS $_{600}$ apparatus at Assiut University. Preparation of bromanil 2 (m.p. 298-300 ${ }^{\circ} \mathrm{C}$), syn cinnamaldehydeoxime (m.p. $138^{\circ} \mathrm{C}$) and anti cinnamaldehydeoxime (m.p. $64^{\circ} \mathrm{C}$) was carried out by known procedure.

Preparation of Diels-Alder monoadduct 3. Bromanil 2 $(4.24 \mathrm{~g}, 0.01 \mathrm{~mol})$ was dissolved in dry p-xylene $(20 \mathrm{~mL})$ and the solution treated with $1.47 \mathrm{~g}(0.01 \mathrm{~mol})$ of the highmelting point cinnamaldehydeoxime dissolved also in dry p xylene (20 mL). The reaction mixture was refluxed on a sand bath (at $130-145^{\circ} \mathrm{C}$) for about 20 hours, until the color of the reaction mixture changed from reddish orange to dark reddish brown, then it was cooled and filtered from any tetrabromohydroquinone formed. Concentration of the filtrate followed by cooling and the addition of few mls of petroleum ether ($40-60{ }^{\circ} \mathrm{C}$) precipitated a dark brown crystalline product that was collected and recrystallized from EtOH as deep brown fine crystals of $5 \alpha, 6,7,8 \alpha$-tetrabromo$1,4,5 \alpha, 8 \alpha$-tetrahydro-1-hydroxy-4-phenyl-5,8-quinolinedione (3), m.p. $217{ }^{\circ} \mathrm{C}$ (yield 40\%). Anal. Calc. for $\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{Br}_{4} \mathrm{NO}_{3}$: C, 31.56; H, 1.58; N, 2.45; Br, 55.9. Found. C, 31.4; H, 1.34; N, 2.41; Br, 55.67.

The previous reaction was repeated under the same conditions, using low melting-point cinnamaldehydeoxime instead of the high-melting one. The product obtained was identical in all respects with that obtained from high melting-point cinnamaldehydeoxime, m.p. and mixed m.p. $247^{\circ} \mathrm{C}$.

Acetylation of the monoadduct $\mathbf{3}$, using acetic anhydridefused sodium acetate, gave a yellow-brown acetate crystallized from ethanol. m.p. $134^{\circ} \mathrm{C}$. Anal. Calc. for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{Br}_{4} \mathrm{NO}_{4}$: N, 2.28; Br, 52.14. Found: N, 2.43; Br, 51.83.

Preparation of diadducts $\mathbf{4 a}, \mathbf{b}$.

Reaction of bromanil (2) with the high melting-point cinnamaldehyeoxime (1a) in 2 : 1 molar ratios: A mixture of bromanil $2(4.24 \mathrm{~g}, 0.01 \mathrm{~mol})$ and high melting-point cinnamaldehyeoxime $1 \mathbf{1 a}(2.24 \mathrm{~g}, 0.02 \mathrm{~mol})$ in dry p-xylene $(50 \mathrm{~mL})$ was refluxed on a sand bath (at $120-140{ }^{\circ} \mathrm{C}$) for about 30 hours, with the color of the reaction mixture changing from red to dark reddish brown and a dark crystalline product separated out, which was collected by

Table 2. Reaction products from monoadduct 3 and thioamides

Compd.	Thioamide or amide used	Colour (time, h)	Solvent	m.p. ${ }^{\circ} \mathrm{C}$ (\% yield)	Formula	Calculated / Found				
						\%C	\%H	\%N	\%Br	\%S
3a	Thioacetamide	reddish-brown	ethanol	191	$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$	42.21	2.49	5.78	33.0	6.6
		(9)		(78)		42.10	2.45	5.70	33.2	6.4
3b	Thiourea	dusty-brown	acetone	202	$\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{Br}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$	39.61	2.28	8.66	32.94	6.59
		(10)		(63)		39.5	2.22	8.80	33.00	6.95
3 c	Phenylthiourea	light-brown	methanol	226	$\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{Br}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$	47.08	2.69	7.48	28.47	5.71
		(11)		(35)		46.99	2.70	7.20	28.31	5.78
7	Dithioxamide$\text { * }(1: 1)$	brownish-red	ethanolbenzene	169	$\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{Br}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}_{2}$	38.58	2.09	7.94	30.20	
		(10)		(58)		38.36	2.13	7.76	30.47	
8	Dithioxamide$\text { * }(1: 2)$	dark-brown	ethanolbenzene	290	$\mathrm{C}_{32} \mathrm{H}_{18} \mathrm{Br}_{4} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}$	40.97	1.93	5.97	34.06	6.82
		(11)		(50)		40.66	2.06	5.79	34.40	6.88

* Ratio of monoadduct to acid amide.
filtration. The product was insoluble in all available organic solvents (benzene, ethanol, chloroform and acetic acid) and was only partially soluble in dimethyl sulphoxide. This product was purified by exhaustive boiling with benzene leaving a residual dark brown solid, which was dried and analyzed as $4 \mathbf{4 a}$, m.p. $>360{ }^{\circ} \mathrm{C}$. Anal. Calc. for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{Br}_{4} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 40.09 ; H, 2.57; N, 3.98; Br, 44.51. Found: C, 40.1; H, 2.7; N, 4.07; Br, 44.88.

The dark colored mother liquor of the reaction was concentrated and cooled; a light brown product precipitated, which was collected and recrystallized from benzenepetroleum ether ($40-60^{\circ} \mathrm{C}$) as reddish brown micro crystals 4b, m.p. $183{ }^{\circ} \mathrm{C}$ (yield 34\%). Anal. Calc. for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{Br}_{4} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 40.09; H, 2.57; N, 3.98; Br, 44.51. Found: C, 39.88; H, 2.7; N, 3.92; Br, 44.87.

Reaction of monoadduct 3 with thioamides.

General procedure: The monoadduct $3(0.57 \mathrm{~g}, 0.001$ $\mathrm{mol})$ was dissolved in $(30 \mathrm{~mL})$ of absolute EtOH and treated with 0.001 mol of the appropriate thioamide dissolved in the minimum amount of ethanol ($\sim 10 \mathrm{~mL}$). The mixture was gently refluxed on a water bath or a sand bath for varying periods ($\sim 9-12$ hours), depending on the thioamide used, with the light red colored solution turning to dark red or brown. The reaction was followed using TLC spot tests on small purchased thin layer plates prepared from silica gel, using methanol/petroleum ether $\left(40-60^{\circ} \mathrm{C}\right)$ in $1: 3$ ratio as eluant. The reaction mixture was then concentrated to about one third of its volume and cooled, with light to dark brown crystalline solids precipitating, which were collected by filtration and recrystallized from the appropriate solvents to give 6a-c. The products obtained and their characteristics are included in Table 2.

Using one mole of dithiooxamide with one mole of $\mathbf{3}$ gave $4 \alpha, 8 \alpha$-dibromo- 8 -hydroxy- $4 \alpha, 5,8,8 \alpha$-tetrahydro-4,9-dioxy-5-phenylthioquinolino[2,3-d]thiazole-2-carboxamide (7) (Table 2).
Using one mole of dithiooxamide with two moles of 3 gave $2,2^{\prime}$-bis ($4 \alpha, 8 \alpha$-dibromo-8-hydroxy- $4 \alpha, 5,9,8 \alpha$-tetrahydro-5-phenylquinolino[2,3- d]thiazole-4,9-dione) (8) (Table 2).
Preparation of N-(3,4 $\alpha, 8 \alpha$-tribromo-5-hydroxy- $4 \alpha, 5$, 8,8 α-tetrahydro-1,4-dioxo-8-phenyl-2-quinolinylthioacet-
amide (5a). A mixture of $3(0.57 \mathrm{~g}, 0.001 \mathrm{~mol})$ and thioacetamide $(0.075 \mathrm{~g}, 0.001 \mathrm{~mol})$ dissolved in $(20 \mathrm{~mL})$ absolute EtOH was refluxed for about one hour, with the reactants going into solution, giving a light brown solution. The latter on dilution with water precipitated off a light greenish brown solid that was recrystallized from ethanol as a yellowish brown micro crystals of $\mathbf{5 a}$, m.p. $208{ }^{\circ} \mathrm{C}$ (yield 78%). Anal. Calc. for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{Br}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$: C, 36.13; H, 2.31; N, 4.95; Br, 42.42. Found: C, 36.2; H, 2.4; N, 4.9; Br, 42.7; S, 5.8.

Transformation of N - $(3,4 \alpha, 8 \alpha$-tribromo- 5 -hydroxy$4 \alpha, 5,8,8 \alpha$-tetrahydro-1,4-dioxo-8-phenyl-2-quinolinyl)thioacetamide (5a) into the cyclized form (6a). Compound 5a $(0.5 \mathrm{~g})$ in absolute ethanol (30 mL) was refluxed for about 10 hours, and the color changed from light brown to dark reddish brown. Concentration and cooling of the reaction mixture precipitated a deep brown crystalline product that was collected and recrystallized from ethanol as reddish brown crystals of $\mathbf{6 a}$, m.p. $192{ }^{\circ} \mathrm{C}$ (yield 75%). Anal. Calc. for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$: C, 42.21; H, 2.49; N, 5.78; Br, 33.0; S, 6.6. Found: C, 42.17; H, 2.56; N, 5.83; Br, 33.2; S, 6.52.

Reductive acetylation of $4 \alpha, 8 \alpha$-dibromo-8-hydroxy$4 \alpha, 5,8,8 \alpha$-tetrahydro-2-methyl-5-phenylquinolino $[2,3-d]$ -thiazole-4,9-dione (9). Compound $6 \mathbf{a}(0.5 \mathrm{~g})$ was dissolved in acetic anhydride (15 mL), giving a deep brownish red solution. To this solution was added 2-3 g of zinc dust (or granules), 3 g of fused sodium acetate and $\sim 3 \mathrm{~mL}$ of glacial acetic acid. The mixture was refluxed for ~ 2 hours. Its color faded gradually to pale yellow. The reaction mixture was then filtered while hot. The filtrate was cooled and diluted with ice cold water and stirred. A yellow to light brown solid separated out, which was filtered, washed with excess water, air dried and recrystallized from EtOH to give 9, m.p. 103 ${ }^{\circ} \mathrm{C}$. Anal. Calc. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$: C, 45.12; H, 3.29; N, 4.57. Found: C, 45.62; H, 3.47; N, 4.2.

Reaction of the monoadduct 3 with acid amides.

Description of general procedure: A mixture of the monoadduct $3(0.57 \mathrm{~g}, 0.001 \mathrm{~mol})$ and the appropriate acid amide (0.001 mol) was dissolved in about (30 mL) ethylene glycol, and the solution was refluxed gently for about 2 hours. The dark colored solution was then treated with 2-3

Table 3. Reaction products from monoadduct 3 and amides

Compd.	Thioamide or amide used	Colour (time, h)	Solvent	$\text { m.p. }{ }^{\circ} \mathrm{C}$(\% yield)	Formula	Calculated / Found			
						\%C	\%H	\%N	\%Br
12a,	Formamide	dark-brown	insoluble	> 360	$\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4}$	65.75	2.75	9.58	0.00
$\mathrm{R}=\mathrm{H}$		(8)		(80)		65.30	2.95	9.46	0.00
12b,	Acetamide	dark-brown	insoluble	> 360	$\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4}$	66.66	3.29	9.14	0.00
$\mathrm{R}=\mathrm{CH}_{3}$		(10)		(51)		66.33	3.46	9.26	0.00
12c,	Benzamide	light-brown	insoluble	> 360	$\mathrm{C}_{22} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$	71.63	3.28	7.60	0.00
$\mathrm{R}=\mathrm{Ph}$		(9)		(55)		71.57	3.50	7.29	0.00
12d,	Phenyl	brown	insoluble		$\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$	72.24	3.69	7.32	
$\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}$	acetamide	(8)		(53)		71.97	3.39	7.11	0.00
12e,	Urea	yellowishbrown	insoluble	> 360	$\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{4}$	62.54	5.95	13.67	0.00
$\mathrm{R}=\mathrm{NH}_{2}$		(9)		(40)		62.40	3.05	13.90	0.00
13	Succinamide	yellowishbrown	insoluble	> 360	$\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{5}$	62.81	3.60	11.56	0.00
	* (1:1)	(8)		(51)		63.00	3.79	11.32	0.00
14	Succinamide	brownishviolet	insoluble	> 360	$\mathrm{C}_{34} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{8}$	66.80	2.97	9.17	0.00
	* (2:1)	(10)		(52)		66.43	2.83	9.11	0.00

*Ratio of monoadduct to acid amide.
mL of 10% aqueous solution of sodium bicarbonate and reflux continued for a further 6-8 hours during which dark fine crystalline solids of the corresponding oxazoloquinolinedione precipitated. These were filtered from the hot reaction mixture, washed with water and finally with ethanol (yield $40-80 \%$). All compounds prepared were characterized by sparing solubility in most organic solvents, hence they were purified by exhaustive extraction of the impurities with suitable organic solvents, leaving analytically pure crystalline solids. Dilution of the mother liquors of the original reaction precipitated light colored products that were filtered off, recrystallized from the appropriate solvent, and identified as N -substituted amide derivatives of tetrahydroquinolinedione.
The results obtained from the various acid amides used are listed in Table 3.
Using one mole of succinamide with one mole of $\mathbf{3}$ gave 8 -oxy-5-phenylquinolino[2,3- d] oxazole-4,9-dione-2-carbosuccinamide (13) (Table 3).
Using one mole of succinamide with two moles of $\mathbf{3}$ gave 1,2-bis[8-oxy-5-phenylquinolino[2,3- d] oxazole-4,9-dione]ethane (14) (Table 3).
Preparation of N - $(3,4 \alpha, 8 \alpha$-tribromo- 5 -hydroxy- $4 \alpha, 5,8$, 8α-tetrahydro-1,4-dioxo-8-phenyl-2-quinolinyl) acetamide (11b): A mixture of $3(0.57 \mathrm{~g}, 0.001 \mathrm{~mol})$ and acetamide $(0.059 \mathrm{~g}, 0.0011 \mathrm{~mol})$ dissolved in ethylene glycol (30 mL) was refluxed gently for about 30 minutes, with the reactants going into solution, giving a reddish brown liquor. The latter on dilution with water precipitated a light brown solid that was recrystallized from EtOH as brown micro crystals of 11b, m.p. $320{ }^{\circ} \mathrm{C}$ (dec) (yield 83\%). Anal. Calc. for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{Br}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$: N, 5.10; Br, 43.66. Found: N, 5.45; Br, 43.4.
Preparation of N - $(3,4 \alpha, 8 \alpha$-tribromo- 5 -hydroxy- $4 \alpha, 5,8$, 8α-tetrahydro-1,4-dioxo-8-phenyl-2-quinolinyl)phenyl acetamide (11d): A mixture of $\mathbf{3}(0.57 \mathrm{~g}, 0.001 \mathrm{~mol})$ and phenyl acetamide ($0.135 \mathrm{~g}, 0.0011 \mathrm{~mol}$), dissolved in about (30 mL) ethylene glycol was refluxed gently for about 30
minutes, and the reactants went into solution, giving a deep reddish brown liquor. Dilution of the reaction mixture with water precipitated a reddish brown solid that was recrystallized from EtOH as light brown micro crystals of 11d, m.p. $125{ }^{\circ} \mathrm{C}$ (yield 76\%). Anal. Calc. for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{Br}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 44.19; H, 2.74; N, 4.48; Br, 38.34. Found: C, 44.03; H, 2.4; N, 4.23; Br, 37.91 .

Transformation of 11b into $\mathbf{1 2 b}$. Compound $\mathbf{1 1 b}$ (0.5 g) was dissolved in about 30 mL of ethylene glycol and the solution treated with 3 mL of 10% aqueous sodium bicarbonate. The reaction mixture was refluxed for about 8 hours, and a dark brown solid precipitated completely. The product was collected and washed with water then with hot ethanol and air dried. The compound was identified as 2 -methyl-8-oxy-5-phenylquinolino[2,3-d] oxazole-4,9-dione, m.p. $>360^{\circ} \mathrm{C}$ (yield 64%).

Antimicrobial Screening. Bacterial species were firstly grown for 24 hours on nutrient broth of the following composition: peptone (10 g), beef extract (3 g), $\mathrm{NaCl}(5 \mathrm{~g})$ and 1 liter distilled water. Then 1 mL of the broth culture was placed in a sterile plate; next, 10 mL of nutrient agar medium was poured just before solidification and mixed thoroughly with bacterial inoculum. After solidification of the media in plates, filter paper discs (Whatman No. 3) of 5 mm diameter, which were previously immersed in a solution of the tested chemical compounds, were placed on the surface of the agar medium. Plates were incubated at $37{ }^{\circ} \mathrm{C}$ for 24 hours and the clear zones around the discs were measured.

Solvent of samples : ethylene glycol
Concentration : $100 \mu \mathrm{~g} /$ disc
Standard antibiotic (disc) : garamycin
Incubation time : 24 hours
Agar medium : nutrient agar
Bacterial strains used : Staphylococcus aureus, Staphylococcus albus, Salmonella and Klebsiella

References

1. Dudley, K. H.; Miller, H. W. J. Med. Chem. 1970, 13, 535.
2. Ling, A. J.; Padini, R. S.; Capsi, L. A.; Lillis, B. L.; Chaunsky, C. W.; Sartorelli, A. S. J. Med. Chem. 1973, 16, 1268.
3. Boggust, W. A.; Cocker, W.; Schwarz, J. C. P.; Stuart, E. R. J. Chem. Soc. 1950, 680.
4. Ladd, E. C.; Harvery, M. P. (to Dominan Rubber Co. Ltd.), Can. 1964, 502, 284.
5. Pickering, M. V.; Das, P.; Streeter, D. G.; Wthowski, J. T. J. Med. Chem. 1997, 20, 818.
6. Marton, R. A. Endeavour 1944, 24, 81.
7. Ames, B. N.; Hozeeker, B. L. J. Biol. Chem. 1965, 220, 113.
8. Cudlin, J.; Blumaverova, M.; Steinerova, N.; Matega, J.; Zalabk, V. Folia Microbiol. 1976, 21, 54.
9. Etinger, A. Mandelbaum: Organic Mass Spectrometry 1922, 27, 761.
10. Hammam, A. S.; Bayoumy, B. E. Collec. Czech. Chem. Commun. 1985, 50, 71.
11. Hammam, A. S.; Osman, A. M. J. Prakt. Chem. 1977, 319, 254.
12. Bauer, A. W.; Kriby, W. W. M.; Sherris, J. C.; Turch, M. Am. J. Clin. Pathol. 1966, 45, 493.
13. Kalyoncuoglu, N.; Rollas, S.; Sur-Altiner, D.; Yegenoglu, Y.; Aug, O. Pharmazie 1992, 57, 769.
