Synthesis of ortho-Acetamidomandelic Acid Derivatives from Isatins

Yun Mi Chung, Ji Hyeon Gong, and Jae Nyoung Kim*
Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757, Korea Received June 29, 2002

Key Words : Acetamidomandelic acids, Isatins, Baylis-Hillman reaction

Mandelic acid derivatives are important synthetic intermediates in organic synthesis for many biologically active compounds. ${ }^{1}$ Recently, asymmetric version of the FriedelCrafts type reaction with ethyl glyoxylate for the synthesis of chiral mandelic esters has been reported. ${ }^{2 a}$ Although various synthetic methods are available for the synthesis of these compounds, ${ }^{2}$ development of another facile preparation method would be beneficial until now.

During the Baylis-Hillman reaction of isatin and its derivatives ${ }^{3}$ we found that isatin derivatives with electron withdrawing substituent at the nitrogen atom, such as N-acetylisatin (1a), N-propionylisatin (1b), N-benzoylisatin (1c) and N tosylisatin (1d), are very labile toward some nucleophiles. The labile properties of N -acetyl- or N -tosylisatin toward nucleophiles such as ammonia, amines, alcohols and hydroxylamine have been reported. ${ }^{4}$ Ring opening reaction by the nucleophile at the $\mathrm{N}_{1}-\mathrm{C}_{2}$ bond of these compounds can occur easily. ${ }^{4}$ Thus, we presumed that we could prepare the mandelic acid derivatives directly in a one-pot reaction by combining the ring-opening reaction and reduction process.

Isatin derivatives 1a-d could be prepared by the general procedure without difficulty. ${ }^{5}$ As shown in Scheme 1 and in Table 1, N-acetylisatin (1a) in various alcoholic solvents in

EWG $=\mathrm{COMe}, \mathrm{COEt}, \mathrm{COPh}, \mathrm{SO}_{2}$ Tol $-p$
$\mathrm{NuH}=\mathrm{EtOH}, \mathrm{MeOH}, \mathrm{PrOH}$, allyl alcohol, menthol, TsNH_{2}, pyrrolidine
Scheme 1

Scheme 2
the presence of NaBH_{4} (1.3 equiv) gave the corresponding mandelic acid derivatives $\mathbf{2 a}$-d in good yields. We did not aware which step proceeds first, whether the ring opening reaction or the reduction process (Scheme 2). Menthol derivative 2 e was prepared via a two-step procedure. Ring opening reaction of $\mathbf{1 a}$ with (1R, $2 \mathrm{~S}, 5 \mathrm{R}$)-(-)-menthol, a solid alcohol, in acetonitrile in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ gave the ring-opened intermediate in 52% yield. This compound was reduced as before to give the desired product 2 e in 82% yield. In the reduction stage, low diastereoselectity (ca. 20\% de) was observed. For the preparation of $\mathbf{2 f}$, ring opening $\left(\mathrm{TsNH}_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{rt}, 2 \mathrm{~h}, 54 \%\right)$ was performed before reduction. The reduction of N-propionylisatin (1b) was carried out under the similar reaction conditions. For the reduction of $\mathbf{1 c}$ and $\mathbf{1 d}$, however, the yields of $\mathbf{2 h}$ and $\mathbf{2 i}$ were low when the reaction was performed in ethanol solvent. The corresponding 1,2-diol derivatives were formed as side products via further reduction of the ester group. Thus, we prepared $\mathbf{2 h}$ and $\mathbf{2 i}$ via successive two-step procedure as for the synthesis of $\mathbf{2 e}$ and $\mathbf{2 f}$. Mandelic amide derivative $\mathbf{2 j}$ was also synthesized by a two-step procedure using pyrrolidine as solvent before reduction.

The reaction procedure is simple as exemplified by the synthesis of ethyl 2-acetamidomandelate (2a): To a stirred solution of $1 \mathbf{1 a}(378 \mathrm{mg}, 2.0 \mathrm{mmol})$ in ethanol (5 mL) was added sodium borohydride $(100 \mathrm{mg}, 2.6 \mathrm{mmol})$ and stirred at room temperature during 1 h . After usual workup and column chromatographic purification (hexane/ethyl acetate, 2:1) analytically pure $\mathbf{2 a}$ was obtained as an oil, $413 \mathrm{mg}(87 \%){ }^{6}{ }^{6}$

In conclusion, we disclosed a facile synthetic method for the preparation of mandelic acid derivatives from the easily available isatin derivatives.

Acknowledgment. This work was supported by the grant (R05-2000-000-00074-0) from the Basic Research Program of the Korea Science \& Engineering Foundation.

References and Notes

1. (a) Khalaj, A.; Shadnia, H.; Sharifzadeh, M. Pharm. Pharmacol. Commun. 1998, 4, 373. (b) Miersch, O.; Kramell, R.; Parthier, B.; Wasternack, C. Phytochemistry 1999, 50, 353. (c) El-Nimr, A. E.; Salama, H. A.; Khalil, R. M.; Kassem, M. A. Pharmazie 1983, 38, 728. (d) Nishihata, T.; Takahagi, H.; Yamamoto, M.; Tomida, H.; Rytting, J. H.; Higuchi, T. J. Pharm. Sci. 1984, 73, 109. (e) Yoshioka, M.; Yoshida, A.; Ichihashi, Y.; Saito, H. Chem. Pharm. Bull. 1985, 33, 2145. (f) Hoover, J. R. E.; Dunn, G. L.; Jakas, D. R.; Lam, L. L.; Taggart, J. J.; Guarini, J. R.; Phillips, L. J. Med. Chem. 1974, 17, 34.

Table 1. Synthesis of mandelic acid derivatives 2

Substrates	Conditions	Products (\%)	Substrates	Conditions	Products (\%)
	EtOH NaBH_{4} (1.3 equiv) $\mathrm{rt}, 1 \mathrm{~h}$		1a	1. TsNH_{2} (3.0 equiv) $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.2 equiv) $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{rt}, 2 \mathrm{~h}$ 54\% 2. NaBH_{4} (1.3 equiv) THF, rt, 4 h 82\%	
1a	MeOH NaBH_{4} (1.3 equiv) rt, 1 h			EtOH NaBH_{4} (1.3 equiv) rt, 1 h	
1a	${ }^{\mathrm{PrOH}}$ NaBH_{4} (1.3 equiv) rt, 1 h			1. EtOH $\mathrm{rt}, 9 \mathrm{~h}$ 91\% 2. NaBH_{4} (2.0 equiv) THF, rt 10 h, 83\%	 2h (76)
1a	allyl alcohol NaBH_{4} (1.3 equiv) rt, 1 h	 2d (85)	 1d	1. EtOH $\mathrm{rt}, 40 \mathrm{~h}$ 77% 2. NaBH_{4} (1.3 equiv) $\mathrm{EtOH}, \mathrm{rt}$ 1 h, 91%	
1a	1. menthol (1.0 equiv) $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.2 equiv) $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{rt}, 6 \mathrm{~h}$ 52\% 2. NaBH_{4} (1.3 equiv) THF, rt, 9 h 82\%		1a	1. pyrrolidine rt, 1 h 91\% 2. NaBH_{4} (1.3 equiv) THF, rt, 1 h 89\%	

${ }^{a}$ Diastereomeric mixture (20% de based on ${ }^{1} \mathrm{H}$ NMR).
2. (a) Gathergood, N.; Zhuang, W.; Jorgensen, K. A. J. Am. Chem. Soc. 2000, 122, 12517. (b) Byun, I. S.; Kim, Y. H. Synth. Commun. 1995, 25, 1963. (c) Xiang, Y. B.; Snow, K.; Belley, M. J. Org. Chem. 1993, 58, 993. (d) Soai, K.; Ishizaki, M. J. Org. Chem. 1986, 51, 3290. (e) Soai, K.; Hasegawa, H. J. Chem. Soc., Perkin Trans. 1 1985, 769. (f) Soai, K.; Ishizaki, M. J. Chem. Soc., Chem. Commun. 1984, 1016. (g) Soai, K.; Komiya, K.; Shigematsu, Y.; Hasegawa, H.; Ookawa, A. J. Chem. Soc., Chem. Commun. 1982, 1282. (h) Kiegiel, J.; Papis, A.; Jurczak, J. Tetrahedron: Asymmetry 1999, 10, 535. (i) Kiegiel, K.; Jurczak, J. Tetrahedron Lett. 1999, 40, 1009. (j) Solodin, I.; Goldberg, Y.; Zelcans, G.; Lukevics, E. J. Chem. Soc., Chem. Commun. 1990, 1321. (k) Soai, K.; Isoda, T.; Hasegawa, H.; Ishizaki, M. Chem. Lett. 1986, 1897. (1) Russell, A. E.; Miller, S. P.; Morken, J. P. J. Org. Chem. 2000, 65, 8381. (m) Dayan, S.; Bareket, Y.; Rozen, S. Tetrahedron 1999, 55, 3657.
3. Baylis-Hillman Reaction of Isatin Derivatives: Isatins as a New Entry for the Baylis-Hillman Reaction, manuscript in preparation.
4. (a) Angell, E. C.; Black, D. St C.; Kumar, N. Magn. Reson. Chem. 1992, 30, 1. (b) Meyer, F. J. Chem. Ber. 1966, 99, 3060. (c) Popp, F. D.; Piccirilli, R. M. J. Heterocyclic Chem. 1971, 8, 473. (d) de Mayo, P.; Ryan, J. J. Can. J. Chem. 1967, 45, 2117. (e) Bergman, J.; Carlsson, R.; Lindstrom, J.-O. Tetrahedron Lett. 1976, 3611. (f) Franke, A. Liebigs Ann. Chem. 1982, 794.
5. Isatin derivatives 1a-d were prepared from isatin as follows: N acetylisatin (1a) with acetic anhydride $\left(80-90{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 79 \%\right) ; \mathrm{N}$ propionylisatin (1b) with propionyl chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, pyridine, rt , $2 \mathrm{~h}, 94 \%$); N-benzoylisatin (1c) with benzoic anhydride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{rt}, 3 \mathrm{~h}, 80 \%$); N-tosylisatin (1d) with p-toluenesulfonyl
chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{rt}, 3 \mathrm{~h}, 50 \%\right)$.
6. Selected spectroscopic data. 2a: oil; IR (KBr) 3455, 1735, 1671 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.15(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H})$, 4.07-4.20 (m, 2H), $4.97(\mathrm{br} \mathrm{s}, \mathrm{OH}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 7.07-7.32$ $(\mathrm{m}, 3 \mathrm{H}), 7.86(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.74(\mathrm{~s}, \mathrm{NH}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 13.90,24.18,62.09,72.68,123.77,124.72,128.33$, $129.09,129.21,136.17,169.26,172.66$; Mass $(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}$ (rel. intensity) 43 (20), 93 (18), 122 (100), 149 (14), 163 (15), 237 (M^{+}, 14). 2b: white solid, mp $144-146{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.16$ (s, $3 \mathrm{H}), 3.58(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 5.23(\mathrm{~d}, J=2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.12-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.93(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 24.39,53.29,72.80,124.17,124.90,127.66$, 129.33, 129.68, 136.29, 168.84, 173.47. 2c: oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 1.09(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H})$, $4.36(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.03$ (heptet, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.91(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.56(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 21.30,21.51,24.27,70.32,72.68$, 123.70, 124.55, 128.08, 128.92, 129.19, 136.15, 168.82, 172.35. 2d: oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.09(\mathrm{~s}, 3 \mathrm{H}), 4.57-4.61(\mathrm{~m}, 2 \mathrm{H}), 4.65$ (br s, 1H), 5.12-5.19 (m, 2H), $5.23(\mathrm{~s}, 1 \mathrm{H}), 5.70-5.85(\mathrm{~m}, 1 \mathrm{H})$, $7.08-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.90(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.63(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 24.22,66.30,72.74,118.96,123.66,124.65$, $127.91,129.12,129.30,130.92,136.19,169.14,172.24$. 2h: oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.14-$ $4.24(\mathrm{~m}, 2 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 7.12-7.98(\mathrm{~m}, 8 \mathrm{H}), 8.25(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 9.36(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 13.98,62.70,73.09$, $123.48,124.62,127.17,127.38,128.77,129.12,129.62,131.90$, 134.50, 136.67, 165.46, 172.86.

