Protein Tyrosine Phosphatase 1B Inhibitors: Heterocyclic Carboxylic Acids

Sung Yun Cho, Jin Hee Ahn, Jae Du Ha, Seung Kyu Kang, Ji Yoen Baek, Sang Sub Han, Eun Young Shin, Sung Soo Kim, Kwang Rok Kim, Hyae Gyeong Cheon, and Joong-Kwon Choi*

Medicinal Science Division, Korea Research Institute of Chemical Technology, 100 Jang-dong, Yuseong-gu, Daejeon 305-600, Korea
Received July 15, 2003

Abstract

Several series of compounds (benzoic acids, pyrazolecarboxylic acids, phenoxyacetic acids, and quinolinoxyacetic acids) were prepared and evaluated for their inhibitory activity against PTP-1B. Several compounds showed submicromolar inhibitory activity.

Key Words : Diabetes, PTP1B inhibitor, Isoxazole, Oxadiazole, Quinoline

Introduction

Protein tyrosine phosphatase 1B (PTP-1B) plays a crucial role in the modulation of insulin signaling pathway through dephosphorylation of the activated insulin receptor. ${ }^{1}$ Since Echelby and coworkers ${ }^{2}$ reported that PTP-1B knock-out mice showed improved insulin sensitivity and resistance to weight gain, PTP-1B has emerged as an attractive therapeutic target for treatment of insulin resistance related to Type 2 diabetes. ${ }^{3}$ Thus, PTP-1B inhibitors could potentially ameliorate insulin resistance and normalize plasma glucose
and insulin without inducing hypoglycemia. ${ }^{4}$
Recently, small molecule inhibitors of PTP-1B as well as peptide mimetics were reported in literatures. ${ }^{5}$ They included oxalamides (1, 2), benzoic acid (3), and phenoxyacetic acids (4-7) (Figure 1). ${ }^{4}$ One of the inhibitors, Ertiprotafib (7) went to clinical trial, but was discontinued in Phase II due to insufficient efficacy and dose-dependent side effects. In the preceding papers from this laboratory, the 1,2-naphthoquinone and catechol derivatives were reported as new classes of PTP-1B inhibitors. ${ }^{6}$

1 (Ontogen \& Novo Nordisk)

2 (NNC-52-1236)

5 (Takeda)

6 (Wyeth-Ayerst)

7 (Ertiprotafib, Wyeth-Ayerst)

Figure 1. PTP-1B Inhibitors.

Scheme 1. Synthesis of Pyrazolecarboxylic Acid Derivatives.

[^0]

Scheme 2. Synthesis of Isoxazolylphenoxyacetic Acid Derivatives.

26a. $R=$

26b. $\mathrm{R}=\mathrm{C}_{12} \mathrm{H}_{25}$
Scheme 3. Synthesis of Isoxazolylbenzoic Acid Derivatives.

Results and Discussion

As isoxazole and pyrazole carboxylic acids were discovered as hits from the high-throughput screening (HTS) of the
library of Korea Chemical Bank, it was decided to evaluate the skeleton through structural modifications.
First, pyrazole carboxylic acid derivatives 11 were prepared as shown in Scheme 1. While acids 11 was active toward

${ }^{\text {a }} \mathrm{POCl}_{3} ;{ }^{\text {b }}$ 1-alkene, $\mathrm{Pd}(\mathrm{OAc})_{2}$:
${ }^{c} \mathrm{H}_{2} ;{ }^{d} \mathrm{BrCH}_{2} \mathrm{CO}_{2} \mathrm{R}$; ${ }^{e} \mathrm{OH}^{-}$;
POCl_{3}, then $\mathrm{H}_{2} \mathrm{O} ;{ }^{9} \mathrm{BBr}_{3}$;
boronic acid, $\mathrm{Pd}(\mathrm{OAc})_{2}$;
${ }^{i} \mathrm{Tf}_{2} \mathrm{O} ;{ }^{\mathrm{j}} \mathrm{EtOCH}=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}$;
${ }^{k} \mathrm{POCl}_{3}$

49

a, e

Scheme 4. Synthesis of Quinolinyloxyacetic Acid Derivatives.

PTP-1B, esters 10 were found to be inactive. Similar trend was also observed in the result of HTS. Pyrazole derivative with octyl group 11a showed moderate activity while the tetradecyl derivative 11b showed superior activity. Further study was not pursued due to consideration of patentability.
Then the attention was moved to derivatives of isoxazoles and fused isoxazoles. First, isoxazolylphenoxy acids were prepared as shown in Scheme 2 and tested toward PTP-1B to study the effect of structural modifications to the inhibitory activity. The phenoxyacetic acid moiety was incorporated as some of the o-quinones substituted with phenoxyacetic acid showed micromolar inhibitory activity in the earlier paper, ${ }^{6 a}$ and also many phenoxyacetic acid derivatives including Ertiprotafib 7 have been reported as PTP-1B inhibitors. Various derivatives were easily obtained by 1,3-dipolar cycloaddition of nitriles, alkynes, and indoles with chlorooxime $\mathbf{1 2}$ to give oxadiazolyl derivatives 14 , isoxazolyl derivatives 16 , and dihydroisoxazolo[5,4-b] indole derivatives 18, respectively.
When tested for enzyme inhibitory activity against PTP1B, only the parent isoxazole (16a) with decyl chain showed moderate inhibitory activity. Either oxadiazolyl derivatives $\mathbf{1 4}$ or dihydroisoxazolo[5,4-b]indole derivatives $\mathbf{1 8}$ were not effective inhibitors of PTP-1B.

The second attempt in the modification of the isoxazole series was preparation of benzoisoxazole derivatives. 4-(Benzoisoxazol-3-yl)benzoic acid derivatives were prepared as shown in Scheme 3. Hydroxybenzophenone 19 was prepared by palladium-catalyzed coupling of salicylaldehyde with aryl iodide. ${ }^{7}$ Benzoisoxazolyl benzoate 20 was prepared by cyclocondensation of 2-hydroxybenzophenone 19. ${ }^{8}$ The derivatives 23, 24, 26, and 27 were prepared from 20 with introduction of various substituents at 5 -position of benzoisoxazole ring by palladium-mediated introduction of aryl and alkenyl groups. ${ }^{9}$ Aromatic derivatives, 23 and 24 did not show any significant activities, whereas alkyl derivatives 26a and 27 showed improved activity compared to parent 21. But tetradecyl derivative 26b showed submicromolar activity. Thus introduction of aromatics to the aromatic ring of 1,2-benzoisoxazoles was detrimental to the inhibitory activity, while introduction of hydrocarbon chains

Table 1. Inhibitory Activity against PTP-1B

No	\% inhibition	IC_{50}	No	$\%$ inhibition	IC_{50}
11a	32.5		$\mathbf{2 7 a}$	20.0	
11b	101.8	0.44	$\mathbf{2 7 b}$	101.1	0.44
14a	na		$\mathbf{2 8}$	40.9	
$\mathbf{1 4 b}$	na		$\mathbf{3 1}$	37.3	
14c	na		$\mathbf{3 4}$	101.3	0.59
16a	73.8	3.89	$\mathbf{3 7}$	86.6	3.27
16b	na		$\mathbf{3 9}$	44.6	
18a	6.0		$\mathbf{4 2}$	na	
18b	na		$\mathbf{4 4}$	21.9	
22	13.1		$\mathbf{4 7}$	na	
$\mathbf{2 4}$	na		$\mathbf{5 0}$	101.4	0.94
$\mathbf{2 5}$	na				

\% inhibition at $20 \mu \mathrm{M}$ and $\mathrm{IC}_{50}(\mu \mathrm{M})$, na - not active

Table 2. Isozyme Selectivity $\left(\mathrm{IC}_{50}, \mu \mathrm{M}\right)$

	$\mathbf{7}$	$\mathbf{1 1 b}$	$\mathbf{1 6 a}$	$\mathbf{2 7 b}$	$\mathbf{3 4}$
PTP-1B	0.29	0.44	3.89	0.44	0.51
Yop	0.20	0.56	0.69	0.41	0.10
VHR	3.08	~ 10	$\gg 10$	$\gg 10$	5.74
PP1	1.71	5.62	8.34	4.21	2.47
CD45	0.41	1.05	>10	1.49	1.47
LAR	>10	2.67	>10	2.74	>10
cdc25A	1.50	2.60	>10	1.60	1.73
cdc25B	0.17	0.33	~ 10	0.18	0.41
cdc25C	2.76	4.20	>10	2.95	2.46
PP2A	~ 10	$\gg 10$	>10	$\gg 10$	~ 10

to the aromatics increased the inhibitory activity significantly. Similar trend was also observed in the other series.

Then quinoline derivatives were prepared because isosteres of quinoline were also discovered as hits from HTS. Alkyl groups were introduced by palladium-mediated reaction of 3-iodoquinolines, ${ }^{10}$ which was in turn prepared by chlorination of 4-hydroxy-3-iodoquinolines. The aryloxyacetic acid was introduced by alkylation of phenolic group with bromoacetates and subsequent hydrolysis.

While 3-phenyl derivative 42 and dicarboxylic acid 47 did not show activity, octyl derivatives 31,39 , and 44 ($\mathbf{4 2}$ with insertion of benzene) showed moderate activities. Octenyl derivative with 8 -acetoxy group 37 (unsaturated form of 39) showed improved activity with an IC_{50} of $3.27 \mu \mathrm{M}$. Tetracedyl derivative $\mathbf{3 4}$ and 6-octyloxyquinoline-3-carboxylic aicd $\mathbf{5 0}$ showed submicromolar activities. Thus the positive action of alkyl substitution also worked in this quinoline series.

The selectivity of the inhibitors is important to minimize the undesirable side effects of a drug. Thus the selectivity of the selected inhibitors was tested likewise against nine phosphatases using the same concentration of FDP as substrate and the result is shown in Table 2. The isozyme selectivities are generally good except against YOP and cdc25B.

Experimental Section

1-(4-Octylbenzyl)pyrazole-3-carboxylic acid (11a). A mixture of $1 H$-pyrazole-3-carboxylic acid ethyl ester $\mathbf{8}$ (1.00 $\mathrm{g}, 7.1 \mathrm{mmol})$, 4-bromobenzyl bromide ($2.14 \mathrm{~g}, 8.6 \mathrm{mmol}$), patassium hydroxide ($600 \mathrm{mg}, 10.7 \mathrm{mmol}$) in THF (40 mL) was heated for 12 h at reflux and partitioned between brine and ethyl acetate. The organic layer was dried with MgSO_{4}, filtered, and concentrated. The residue was purified by column chromatography to give 1-(4-bromobenzyl)- 1 H -pyrazole-3-carboxylic acid ethyl ester 9 ($1.7 \mathrm{~g}, 81 \%$) as white solid: ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}) 7.35(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) 7.11(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$ $6.84(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) 5.35(\mathrm{~s}, 2 \mathrm{H}) 4.42(\mathrm{q}, J=14.2,7.1$ $\mathrm{Hz}, 2 \mathrm{H}) 1.40(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; EI-MS m / z (relative intensity) $309\left(\mathrm{M}^{+}, 13\right), 169$ (100), 89 (30), 63 (24). A mixture 9 (150 $\mathrm{mg}, 0.49 \mathrm{mmol}$), DMF (7 mL), palladium acetate $(22 \mathrm{mg}$, 0.1 mmol), sodium bicarbonate ($90 \mathrm{mg}, 1.07 \mathrm{mmol}$), ($\mathrm{n}-$ $\mathrm{Bu})_{4} \mathrm{NCl}(135 \mathrm{mg}, 0.49 \mathrm{mmol})$, and 1 -octene $(108.8 \mathrm{mg}$,
$0.15 \mathrm{~mL}, 0.97 \mathrm{mmol}$) in pressure tube was heated for 15 h at $125{ }^{\circ} \mathrm{C}$, and partitioned between saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and ethyl acetate. The organic layer was dried with MgSO_{4}, and concentrated in vacuo. The residue was purified by column chromatography to give 1-(4-oct-1-enylbenzyl)- 1 H -pyrazole-3-carboxylic acid ethyl ester $\mathbf{1 0 a}(135 \mathrm{mg}, 82 \%)$ as a yellow oil: ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.30(\mathrm{~m}$, 3H) 7.18 (d, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}) 6.82(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) 6.41-$ $6.28(\mathrm{~m}, 2 \mathrm{H}) 5.36(\mathrm{~m}, 2 \mathrm{H}) 2.26-2.13(\mathrm{~m}, 2 \mathrm{H}) 1.40(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}) 1.37-1.26(\mathrm{~m}, 8 \mathrm{H}) 0.87(\mathrm{t}, J=4.4 \mathrm{~Hz}, 3 \mathrm{H})$; EI-MS m / z (relative intensity) $340\left(\mathrm{M}^{+}, 47\right), 143$ (54), 129 (100), 117 (45), 104 (44). Then the ester 10a ($135 \mathrm{mg}, 0.4 \mathrm{mmol}$) in ethyl acetate (10 mL) was hydrogenated for 3 h with 5% $\mathrm{Pd} / \mathrm{C}(60 \mathrm{mg})$ as catalyst to give 1-(4-octylbenzyl)- 1 H -pyrazole-3-carboxylic acid ethyl ester ($120 \mathrm{mg}, 88 \%$) as an yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{~d}, J=2.2$ $\mathrm{Hz}, 1 \mathrm{H}) 7.16(\mathrm{~s}, 4 \mathrm{H}) 6.82(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}) 5.36(\mathrm{~s}, 2 \mathrm{H})$ $4.42(\mathrm{q}, J=14.2,7.1 \mathrm{~Hz}, 2 \mathrm{H}) 2.57(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) 1.68-$ $1.50(\mathrm{~m}, 2 \mathrm{H}) 1.40(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) 1.37-1.19(\mathrm{~m}, 10 \mathrm{H})$ $0.87(\mathrm{t}, J=4.4 \mathrm{~Hz}, 3 \mathrm{H})$; EI-MS m / z (relative intensity) 342 $\left(\mathrm{M}^{+}, 7\right), 117$ (53), 104 (100), 43 (60). Finally the ester (120 $\mathrm{mg}, 0.35 \mathrm{mmol})$ and $\mathrm{NaOH}(84 \mathrm{mg}, 2.1 \mathrm{mmol})$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ $=1 / 1(34 \mathrm{~mL})$ was heated at $80^{\circ} \mathrm{C}$ for 15 h . After cooling to room temperature, pH was adjusted to 6 with buffer solution (pH 4.1-4.4). The resulting mixture was extracted with ethyl acetate and the organic layer was washed with brine, dried with MgSO_{4}, and concentrated in vacuo to afford 11a (80 $\mathrm{mg}, 73 \%$) as a yellow oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37$ $(\mathrm{d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 4 \mathrm{H}), 6.87(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.35(\mathrm{~s}, 2 \mathrm{H}), 2.59(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.58(\mathrm{~m}, 2 \mathrm{H}), 1.26-$ $1.18(\mathrm{~m}, 10 \mathrm{H}), 0.85(\mathrm{t}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H})$; EI-MS m / z (relative intensity) 314 ($\mathrm{M}^{+}, 10$), 117 (81), 104 (100), 43 (85).

1-(4-Tetradecylbenzyl)-1H-pyrazole-3-carboxylic acid 11b was prepared as 11a from 9 using 1-dodecene in place of 1-octene: ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 4 \mathrm{H}), 6.88(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~s}, 2 \mathrm{H})$, $2.59(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.25$ (m, $22 \mathrm{H}), 0.86(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; EI-MS m / z (relative intensity) 398 ($\mathrm{M}^{+}, 51$), 353 (65), 286 (59), 145 (46), 104 (100).
\{4-[5-(4-Bromophenyl)-[1,2,4]oxadiazol-3-yl]phenoxy\}acetic acid (14a). A mixture of (4-chlorocarbooxiimidoylphenoxy)acetic acid ethyl ester $\mathbf{1 2}(1.3 \mathrm{~g}, 6.0 \mathrm{mmol})$ and 4bromobenzonitrile ($3.2 \mathrm{~g}, 31 \mathrm{mmol}$) in toluene (20 mL) was stirred for 2 h at room temperature, and poured into water $(10 \mathrm{~mL})$. The resulting mixture was extracted with ethyl acetate and the organic layer was dried with MgSO_{4} and concentrated in vacuo. The residue was purified by column chromatography to give \{4-[5-(4-bromophenyl)-[1,2,4]oxa-diazol-3-yl]phenoxy\}acetic acid ethyl ester 13a (1.2 g, 51%): ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10(\mathrm{~m}, 4 \mathrm{H}), 7.71$ (m, $2 \mathrm{H}), 7.03(\mathrm{~m}, 2 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 4.31(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $1.36(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; EI-MS m / z (relative intensity) 404 ($\mathrm{M}^{+}, 100$), 402 (90), 331 (42), 185 (85). A mixture of 13a ($200 \mathrm{mg}, 0.495 \mathrm{mmol}$) and $\mathrm{LiOH}(24 \mathrm{mg}, 0.495 \mathrm{mmol})$ in THF : water : methanol ($1: 1: 1,3 \mathrm{~mL}$) was stirred for 1 h and acidified by addition of $1 N$ hydrochloric acid (2 mL). The resulting mixture was extracted with ethyl acetate and
the organic layer was dried with MgSO_{4} and concentrated in vacuo. The residue was purified by column chromatography to give 14 a ($58 \mathrm{mg}, 29 \%$): ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 13.10 (brs, 1H), 7.99 (m, 6H), 7.15 (m, 2H), 4.82 (s, 2H).
\{4-[5-(4-Methoxyphenyl)-[1,2,4]-oxadiazol-3-yl]phenoxy\}acetic acid 14b and \{4-[5-(2-oxo-2-phenylethyl)-[1,2,4]oxa-diazol-3-yl]phenoxy\}acetic acid 14c were prepared like 14a using anisonitrile and benzoylacetonitrile, respectively in place of 4-bromonitrile.

14b: ${ }^{1} \mathrm{H}$ NMR (200 MHz, DMSO- d_{6}) $\delta 13.05$ (s, 1H), 8.06 $(\mathrm{m}, 4 \mathrm{H}), 7.17(\mathrm{~m}, 4 \mathrm{H}), 4.79(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H})$; EI-MS m/z (relative intensity) $326\left(\mathrm{M}^{+}, 100\right), 193$ (38), 134 (76), 105 (27).

14c: ${ }^{1} \mathrm{H}$ NMR (200 MHz, DMSO- d_{6}) $\delta 7.35(\mathrm{~m}, 8 \mathrm{H}), 5.11$ ($\mathrm{s}, 2 \mathrm{H}$), $4.79(\mathrm{~s}, 2 \mathrm{H})$; EI-MS m / z (relative intensity) $339\left(\mathrm{M}^{+}\right.$, 6), 192 (17), 132 (23), 105 (100), 83 (82).
[4-(5-Decylisoxazol-3-yl)phenoxy]acetic acid (16a). A mixture of $12(1.57 \mathrm{~g}, 7.00 \mathrm{mmol})$, 1-dodecyne (4.1 mL , $12.8 \mathrm{mmol})$ and triethylamine ($0.90 \mathrm{~mL}, 12 \mathrm{mmol}$) in ether $(30 \mathrm{~mL})$ was stirred for 5 h at room temperature, and poured into water (15 mL). The resulting mixture was extracted with 40 mL of ethyl acetate and the organic layer was dried with MgSO_{4} and concentrated in vacuo. The residue was purified by column chromatography to give [4-(5-decyl-isoxazol-3-yl)phenoxy]acetic acid ethyl ester 15a (1.7 g, 87%): ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77(\mathrm{~m}, 2 \mathrm{H}), 6.97$ (m, $2 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 4.28(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.78$ (t, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.75(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~m}, 17 \mathrm{H}), 0.87(\mathrm{t}, J=$ $6.4 \mathrm{~Hz}, 3 \mathrm{H}$); EI-MS m/z (relative intensity) 387 ($\mathrm{M}^{+}, 84$), 274 (100), 261 (74). A mixture of $\mathbf{1 5 a}(100 \mathrm{mg}, 0.26 \mathrm{mmol})$ and $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(19 \mathrm{mg}, 0.39 \mathrm{mmol})$ in THF : water : methanol ($1: 1: 1,3 \mathrm{~mL}$) was stirred for 1 h , and acidified by addition of $1 N$ hydrochloric acid (2 mL). The resulting mixture was extracted with ethyl acetate (30 mL) and the organic layer was dried with MgSO_{4} and concentrated in vacuo. The residue was purified by column chromatography to give 16a ($77 \mathrm{mg}, 79 \%$): ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.90$ (brs, $1 \mathrm{H}), 7.78(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~m}, 2 \mathrm{H}), 6.61(\mathrm{~m}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H})$, $2.74(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~m}, 14 \mathrm{H}), 0.82(\mathrm{~m}, 3 \mathrm{H})$; EIMS m/z (relative intensity) 359 ($\mathrm{M}^{+}, 67$), 246 (100).
[4-(5-Phenylisoxazol-3-yl)phenoxy]acetic acid 16b was prepared like 16a using ethynylbenzene and (1-methylprop-2-ynyloxymethyl)benzene, respectively in place of 1dodecene: ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.10$ (brs, 1 H), 7.85 (m, 4H), 7.58 (m, 4H), 7.19 (m, 2H), 4.79 (s, 2H); EIMS m / z (relative intensity) $295\left(\mathrm{M}^{+}, 31\right), 105$ (100).
\{4-[8-(4-Bromobenzyl)-8,8a-dihydro-3a H -isoxazolo[5,4-b]indol-3-yl]phenoxy\}acetic acid (18a). A mixture of 12 ($2.0 \mathrm{~g}, 7.0 \mathrm{mmol}$), 1-(4-bromobenzyl)-1H-indole ($2.0 \mathrm{~g}, 8.4$ $\mathrm{mmol})$ and triethylamine ($1.6 \mathrm{~mL}, 7.0 \mathrm{mmol}$) in ether (20 mL) was stirred for 2 h at room temperature, and poured into water (10 mL). The resulting mixture was extracted with 20 mL of ethyl acetate and the organic layer was dried with MgSO_{4} and concentrated in vacuo. The residue was purified by column chromatography to give \{4-[8-(4-bromobenzyl)-8,8a-dihydro-3a H -isoxazolo[5,4-b]indol-3-yl]phenoxy\}acetic acid ethyl ester 17a ($2.3 \mathrm{~g}, 64 \%$): ${ }^{1} \mathrm{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{~m}$,
$4 \mathrm{H}), 6.61(\mathrm{~m}, 1 \mathrm{H}), 6.39(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.65(\mathrm{~s}, 2 \mathrm{H}), 4.61(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 1.31(\mathrm{~m}, 4 \mathrm{H})$; EI-MS m / z (relative intensity) $508\left(\mathrm{M}^{+}\right.$, 3), 506 (2.9), 287 (49), 285 (50), 171 (100), 169 (100). A mixture of 17a ($160 \mathrm{mg}, 0.32 \mathrm{mmol}$) and $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(27 \mathrm{mg}$, $0.64 \mathrm{mmol})$ in THF : water : methanol ($1: 1: 1$) was stirred for 1 h , cooled by addition of ice water, and acidified by addition of $1 N$ hydrochloric acid. The resulting mixture was extracted with ethyl acetate and the organic layer was dried with MgSO_{4} and concentrated in vacuo. The residue was purified by column chromatography to give 18a (151 mg , 99%) as white solid: ${ }^{1} \mathrm{H}$ NMR (200 MHz, DMSO- d_{6}) $\delta 11.13$ $(\mathrm{s}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~m}, 12 \mathrm{H}), 5.49(\mathrm{~s}, 2 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H})$.
\{4-[8-(4-Methoxybenzyl)-8,8a-dihydro-3aH-isoxazolo[5,4-b]indol-3-yl]phenoxy\}acetic acid 18b was prepared like 18a using 1-(4-methoxybenzyl)- 1 H -indole in place of 1-(4-bromobenzyl)- $1 H$-indole: ${ }^{1} \mathrm{H}$ NMR (200 MHz, DMSO- d_{6}) δ $11.14(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~m}, 12 \mathrm{H}), 5.61(\mathrm{~s}, 2 \mathrm{H}), 4.74$ (s, 2H), 3.73 (s, 3H).
4-(5-Bromobenzo[d]isoxazol-3-yl)benzoic acid ethyl ester (20). A mixture of 5-bromo-2-hydroxybenzaldehyde ($10 \mathrm{~g}, 51 \mathrm{mmol}$), ethyl 4-iodobenzoate ($16 \mathrm{~g}, 56 \mathrm{mmol}$), $\mathrm{LiCl}(475 \mathrm{mg}, 11.2 \mathrm{mmol}), \mathrm{PdCl}_{2}(500 \mathrm{mg}, 2.8 \mathrm{mmol})$, $\mathrm{Na}_{2} \mathrm{CO}_{3}(11.9 \mathrm{~g}, 112 \mathrm{mmol})$ and DMF in a pressure tube was heated at $100{ }^{\circ} \mathrm{C}$ for 12 h to afford ethyl 4-(5-bromo-2hydroxybenzoyl)benzoate $19(6.0 \mathrm{~g}, 32 \%)$ as a yellow oil. A mixture of the above ester, $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}$, and NaOAc in ethanol was heated for a day and partitioned between ethyl acetate and water. The organic layer was washed with water, dried with MgSO_{4}, and concentrated in vacuo. The residue was purified by column chromatography to afford the oxime ($4.4 \mathrm{~g}, 67 \%$). The oxime was heated in acetic anhydride for 30 min until dissolved and extracted with ethyl acetate. The organic layer was dried with MgSO_{4}, and concentrated in vacuo to give oxime acetate ($5.3 \mathrm{~g}, 92 \%$). The oxime acetate and $\mathrm{Na}_{2} \mathrm{CO}_{3}(2.7 \mathrm{~g}, 26 \mathrm{mmol})$ in tri(ethyleneglycol) dimethyl ether was heated for 30 min at $230{ }^{\circ} \mathrm{C}$ and the solvent was removed by vacumn distillation. The residue was partitioned between ethyl acetate and water. The organic layer was dried with MgSO_{4}, and concentrated in vacuo and the residue was purified by column chromatography to afford $20(2.7 \mathrm{~g}$, 65%): ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.24$ (s, $J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.02(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.42(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H})$.

4-(5-Bromobenzo[d]isoxazol-3-yl)benzoic acid (21). A mixture of 20 ($34.6 \mathrm{mg}, 0.1 \mathrm{mmol}$) and several drops of dilute sodium hydroxide solution in $\mathrm{MeOH}(5 \mathrm{~mL}$) was stirred for 2 h at room temperature and acidified by addition of dilute hydrochloric acid. After extraction with ethyl acetate, the organic layer was washed with water, dried with MgSO_{4}, and concentrated in vacuo to give 29 mg (91%) of 21 as white crystals: ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$-DMSO- d_{6}) $8.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.12(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{dd}, J=8.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H})$, $7.62(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$.
4-[5-(4-Hydroxyphenyl)benzo[d]isoxazol-3-yl]benzoic acid (24). A mixture of $\mathbf{2 0}(700 \mathrm{mg}, 2.02 \mathrm{mmol}), \mathrm{Bu}_{4} \mathrm{NCl}$
($561 \mathrm{mg}, 2.02 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(1.3 \mathrm{~g}, 4.04 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}$ ($22.0 \mathrm{mg}, 0.101 \mathrm{mmol}$), and p-methoxyphenylboronic acid ($52 \mathrm{mg}, 0.43 \mathrm{mmol}$) in 1,4-dioxane in a pressure tube filled with nitrogen was heated for 5 h at $120^{\circ} \mathrm{C}$ followed by extraction with ethyl acetate. The organic layer was washed with brine and water, dried with MgSO_{4}, and concentrated in vacuo. The residue was purified by column chromatography to give 210 mg (28%) of 4-[5-(4-methoxyphenyl)benzo[d]-isoxazol-3-yl]benzoic acid ethyl ester 22 as an yellow oil: ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.25$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 8.07 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.99-7.72(\mathrm{~m}, 3 \mathrm{H}), 7.54(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.01(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}$, $3 \mathrm{H}), 1.43(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; EI-MS m / z (relative intensity) 373 ($\mathrm{M}^{+}, 100$), 330 (39), 302 (17), 224 (9), 127 (22), 76 (14). To a solution of 22 ($100 \mathrm{mg}, 0.24 \mathrm{mmol}$) in methylene chloride was added BBr_{3} at $0{ }^{\circ} \mathrm{C}$ and stirred for 3 h at room temperature, and the reaction was quenched by addition of methanol at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was washed with water and the aqueous layer was extracted with methylene chloride. The combined organic layer was dried with MgSO_{4} and concentrated in vacuo. The residue was recrystallized to give 4-[5-(4-hydroxyphenyl)-benzo[d]isoxazol-3-yl]benzoic acid ethyl ester ($85 \mathrm{mg}, 98 \%$): ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.16(\mathrm{~d}, J=2 \mathrm{~Hz}, 2 \mathrm{H}), 8.02(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.98(\mathrm{~s}$, $1 \mathrm{H}), 7.94(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.63(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.36(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H})$. The ester and $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(9.9 \mathrm{mg}, 0.23 \mathrm{mmol})$ in THF/ $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}(1: 1: 1)$ was stirred for 1 h at room temperature followed by addition of ice and ethyl acetate. The resulting mixture was neutralized with 10% hydrochloric acid. The organic layer was washed with water. The combined aqueous layer was extracted with ethyl acetate. The combined organic layer was washed with brine and water, and dried with MgSO_{4}, and concentrated in vacuo. The residue was recrystallized to give $\mathbf{2 4}(70 \mathrm{mg}, 91 \%)$: ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.25-8.18(\mathrm{~m}, 5 \mathrm{H}), 7.92(\mathrm{~d}, J=3.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.62(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$; EIMS m / z (relative intensity) $331\left(\mathrm{M}^{+}, 100\right), 210(35), 182$ (34), 127 (27), 102 (56), 76 (86), 65 (24), 45 (47).

4-[5-(4-Methoxyphenyl)benzo[d]isoxazol-3-yl]benzoic acid (23). A mixture of ester $22(70 \mathrm{mg}, 0.19 \mathrm{mmol})$ and $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(16 \mathrm{mg}, 0.38 \mathrm{mmol})$ in THF/ $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}(1: 1$: 1) was stirred for 1 h followed by addition of ice and ethyl acetate. The resulting mixture was neutralized with 10% HCl and extracted with ethyl acetate. The organic layer was washed with brine and water, and dried with MgSO_{4}, and concentrated in vacuo. The residue was purified by recrystallization to give 40 mg (61%) of $\mathbf{2 3}$ as white crystal: ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.19(\mathrm{~s}, 1 \mathrm{H}), 8.26-8.01(\mathrm{~m}, 5 \mathrm{H}), 7.97-$ $7.89(\mathrm{~m}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H})$; EI-MS m / z (relative intensity) $345\left(\mathrm{M}^{+}\right.$, 26), 302 (15), 224 (12), 196 (11), 153 (21), 127 (44), 76 (35), 65 (100), 51 (40).

4-\{5-[3-(3,4-Dihydroxyphenyl)propenyl]benzo[d]isoxazol-3-yl\}benzoic acid (27). A 1,4-dioxane solution of 20 (300 $\mathrm{mg}, 0.87 \mathrm{mmol}$), LiCl ($36 \mathrm{mg}, 0.87 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (546
$\mathrm{mg}, 1.68 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(9.9 \mathrm{mg}, 0.044 \mathrm{mmol})$, and 3-(3,4-methylenedioxyphenyl)propene ($156 \mathrm{mg}, 1.29 \mathrm{mmol}$) in a pressure bottle filled with nitrogen was heated for 5 h at $120^{\circ} \mathrm{C}$. The resulting mixture was partitioned between brine and ethyl acetate and the combined organic layer was washed with brine and water, dried with MgSO_{4}, and concentrated in vacuo. The residue was purified by column chromatography to give 4-[5-(3-benzo[1,3]dioxol-5-yl-propenyl)benzo[d]-isoxazol-3-yl]benzoic acid ethyl ester $\mathbf{2 5 a}(270 \mathrm{mg}, 76 \%)$ as an oil: ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.23(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 8.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.79-7.25(\mathrm{~m}, 3 \mathrm{H}), 6.89-6.59$ $(\mathrm{m}, 3 \mathrm{H}), 5.93(\mathrm{~s}, 2 \mathrm{H}), 4.41(\mathrm{q}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 3H); EI-MS m/z (relative intensity) 427 (${ }^{+}$, 100), 398 (11), 354 (30), 191 (31), 165 (83), 103 (91), 76 (75), 65 (72). To a solution of the ester ($100 \mathrm{mg}, 0.24 \mathrm{mmol}$) in methylene chloride was added BBr_{3} at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 1 d , quenched by addition of methanol at $0^{\circ} \mathrm{C}$ and stirring for 15 min , and partitioned between water and methylene chloride. The organic layer was dried with MgSO_{4} and concentrated in vacuo. The residue was purified by crystallization to give the corresponding acid, $27(70 \mathrm{mg}$, 75%): ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.62(\mathrm{~d}, J=16.8 \mathrm{~Hz}$, $2 \mathrm{H}), 8.15(\mathrm{~m}, 2 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~m}, 1 \mathrm{H}), 7.61(\mathrm{~m}, 1 \mathrm{H})$, 6.63-6.57 (m, 3H), $2.7(\mathrm{~m}, 2 \mathrm{H}), 2.4(\mathrm{~m}, 2 \mathrm{H}), 1.9(\mathrm{~m}, 2 \mathrm{H})$; EI-MS m/z (relative intensity) 390 ($\mathrm{M}^{+}, 34$), 371 (100), 343 (46), 266 (73), 252 (53), 165 (36), 123 (67), 65 (56).

4-[5-(3-Benzo 1,3$]$ dioxol-5-ylpropenyl)benzo[d]isoxazol-3-yl]benzoic acid (26a). A solution of 4-\{5-[3-(3,4-dihydroxyphenyl)-propenyl]-benzo[d]isoxazol-3-yl\}-benzoic acid ethyl ester ($270 \mathrm{mg}, 0.66 \mathrm{mmol}$) in ethanol was hydrogenated for 2 h with $\mathrm{Pd} / \mathrm{C}(137 \mathrm{mg})$ as catalyst and the product was purified by column chromatography to afford 4-[5-(3-benzo[1,3]dioxol-5-ylpropyl)benzo[d] isoxazol-3-yl]benzoic acid ethyl ester ($124 \mathrm{mg}, 45 \%$): ${ }^{1} \mathrm{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.23(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.03(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.66-7.45 (m, 3H), 6.75-6.64 (m, 3H), 5.92 (s, 2H), 4.42 (q, $J=7 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 1.97 (m, 2H), 1.44 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$); EI-MS m/z (relative intensity) $429\left(\mathrm{M}^{+}, 42\right), 307$ (30), 280 (42), 135 (100), 91 (41), 77 (60), 65 (45). The ester ($70 \mathrm{mg}, 0.17 \mathrm{mmol}$) and $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$ $(14 \mathrm{mg}, 0.17 \mathrm{mmol})$ in $\mathrm{THF} / \mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}(1: 1: 1)$ was stirred for 1 h at room temperature. To the resulting mixture was added ice and ethyl acetate, and 10% hydrochloric acid until acidic. The aqueous layer was extracted with ethyl acetate and the organic layer was washed with brine and water, dried with MgSO_{4}, and concentrated in vacuo, and recrystallized to afford acid 26a ($47 \mathrm{mg}, 69 \%$): ${ }^{1} \mathrm{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{~s}, 4 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.58(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.76(\mathrm{~m}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 2 \mathrm{H}), 2.78(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{t}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.49(\mathrm{~m}, 2 \mathrm{H})$; EI-MS m / z (relative intensity) $401\left(\mathrm{M}^{+}, 15\right), 252$ (27), 135 (75), 77 (78), 65 (100), 51 (66).
4-(5-Tetradecylbenzo[d]isoxazol-3-yl)benzoic acid (26b). A DMF (5 mL) solution of $20(110 \mathrm{mg}, 0.317 \mathrm{mmol}), 1-$ tetradecene ($148 \mathrm{mg}, 0.76 \mathrm{mmol}$), $\mathrm{NaHCO}_{3}(65 \mathrm{mg}, 0.76$ $\mathrm{mmol}),(n-\mathrm{Bu})_{4} \mathrm{NCl}(90 \mathrm{mg}, 0.317 \mathrm{mmol})$, and $\mathrm{Pd}(\mathrm{OAc})_{2}$
($3.6 \mathrm{mg}, 5 \mathrm{~mol} \%$) in a pressure bottle filled with nitrogen was heated for 12 h . The resulting mixture was partitioned between saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and ethyl acetate and extracted with ethyl acetate. The combined organic layer was dried with MgSO_{4}, and concentrated in vacuo. The residue in ethanol (20 mL) was hydrogenated for 2 h with $5 \%-\mathrm{Pd} / \mathrm{C}(10 \mathrm{~mol} \%)$ as catalyst under 1 atm of hydrogen. The filtrate was concentrated in vacuo and the residue was purified by column chromatography to give 4-(5-tetradecylbenzo[d]isoxazol-3-yl)benzoic acid ethyl ester ($80 \mathrm{mg}, 55 \%$) as semi-solid: ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.25(\mathrm{~m}, 2 \mathrm{H})$, $8.04(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.41(\mathrm{~m}, 3 \mathrm{H}), 2.90-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.75-$ $1.50(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.20(\mathrm{~m}, 22 \mathrm{H}), 0.87(\mathrm{t}, 3 \mathrm{H})$. A mixture of the ester and several drops of dilute NaOH solution in methanol was stirred for 2 h at room temperature. The resulting mixture was acidified with dilute hydrochloric acid and extracted with ethyl acetate. The organic layer was dried with MgSO_{4}, and concentrated in vacuo to afford 26b as white crystals: ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.34(\mathrm{~m}, 2 \mathrm{H})$, $8.11(\mathrm{~m}, 2 \mathrm{H}), 7.78-7.43(\mathrm{~m}, 3 \mathrm{H}), 2.90-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.75-$ $1.50(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.20(\mathrm{~m}, 22 \mathrm{H}), 0.87(\mathrm{t}, 3 \mathrm{H})$.
(8-Methyl-3-octylquinolin-6-yloxy)acetic acid (31). A mixture of 6-benzyloxy-4-hydroxy-3-iodo-8-methylquinoline $29(1.21 \mathrm{~g}, 3.09 \mathrm{mmol})$ and $\mathrm{POCl}_{3}(50 \mathrm{~mL})$ in a $100-\mathrm{mL}$ flask was heated for 1 h at $110{ }^{\circ} \mathrm{C}$. The excess POCl_{3} was removed in vacuo and the residual POCl_{3} was decomposed by addition of ice. The mixture was neutralized with saturated sodium bicarbonate solution and extracted with ethyl acetate. The organic layer was washed with water, dried with MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by column chromatography to give 6-benzyloxy-4-chloro-3-iodo-8-methylquinoline 30 (614 mg , 48%) as white solid: mp $120-122{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.94(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.50(\mathrm{~m}, 7 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 2.72$ (s, 3H); EI-MS m/z (relative intensity) $411(\mathrm{M}+2,21), 409$ (55), 290 (3), 163 (12), 128 (14), 101 (7), 92 (22), 91 (100), 65 (25). A mixture of $\mathbf{3 0}$ ($295 \mathrm{mg}, 0.72 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($8.1 \mathrm{mg}, 5 \mathrm{~mol} \%$), NaHCO_{3} ($145 \mathrm{mg}, 1.73 \mathrm{mmol}$), ($n-$ $\mathrm{Bu})_{4} \mathrm{NCl}(200 \mathrm{mg}, 0.72 \mathrm{mmol})$, DMF (10 mL) and 1-octene $(0.226 \mathrm{~mL}, 1.44 \mathrm{mmol})$ in a pressure tube was heated for 15 h at $120^{\circ} \mathrm{C}$. After cooling, the mixture was extracted with ethyl acetate and the organic layer was washed with $\mathrm{NH}_{4} \mathrm{Cl}$ twice, and water, dried with MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by silica gel column chromatography to give 6-benzyloxy-4-chloro-8-methyl-3-(oct-1-enyl)quinoline 274 mg (96%) as yellow solid: EI-MS m / z (relative intensity) 395 (M+2, 2), 393 (4), 92 (8), 91 (100), 65 (5), 41 (4). A mixture of octenylquinoline (274 mg , $0.696 \mathrm{mmol})$ and $10 \% \mathrm{Pd}-\mathrm{C}(148 \mathrm{mg}, 0.139 \mathrm{mmol})$ in ethanol was stirred for 17 h under hydrogen, filtered through Celite, and concentrated in vacuo to give 8-methyl-3-octylquinolin-6-ol ($170 \mathrm{mg}, 90 \%$) as yellow solid: EI-MS m / z (relative intensity) $271\left(\mathrm{M}^{+}, 95\right), 186$ (100), 172 (23), 41 (9). A mixture of the quinolinol ($162 \mathrm{mg}, 0.59 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(245 \mathrm{mg}, 1.77 \mathrm{mmol})$, and methyl bromoacetate $(0.202 \mathrm{~mL}$, 1.77 mmol) in acetone (50 mL) was heated for 14 h under reflux, filtered and concentrated in vacuo. The residue was
partitioned between water and ether and the organic layer was dried with MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by silica gel column chromatography to give (8-methyl-3-octylquinolin-6-yl-oxy) acetic acid methyl ester ($157 \mathrm{mg}, 77 \%$) as tan-colored oil: ${ }^{1} \mathrm{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.66(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H})$, $6.81(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{~s}$, 3 H), 2.76 (t, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 0.85-1.70 (m, 15H); EI-MS m/z (relative intensity) 343 ($\mathrm{M}^{+}, 100$), 258 (38), 245 (26), 244 (20), 156 (9), 143 (9), 43 (5). A mixture of the ester (142 mg , 0.413 mmol) and 5 mL of 2 N NaOH in methanol (10 mL) was stirred for 2 h and concentrated. The resulting mixture was diluted with water and acidified with dilute hydrochloric acid and extracted with ethyl acetate. The organic layer was dried with MgSO_{4}, filtered, and concentrated in vacuo to give 31 ($100 \mathrm{mg}, 74 \%$) of white solid: $\mathrm{mp} 130-131^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$-DMSO- d_{6}) $\delta 8.71(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.88$ $(\mathrm{s}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{brs}, 1 \mathrm{H})$, 4.72 (s, 2H), 2.78 (s, 3H), 2.77 (t, J=7.1 Hz, 2H), 1.70-0.85 (m, 15H); EI-MS m/z (relative intensity) 329 ($\mathrm{M}^{+}, 100$), 244 (66), 231 (40), 230 (34), 156 (30), 143 (42), 43 (68), 41 (71).
(8-Methyl-3-tetradecylquinolin-6-yloxy)acetic acid (34). A mixture of 4-chloro-3-iodo-8-methylquinolin-6-ol 32 (210 $\mathrm{mg}, 0.657 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(7.4 \mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{NaHCO}_{3}$ $(132 \mathrm{mg}, 1.58 \mathrm{mmol}),(n-\mathrm{Bu})_{4} \mathrm{NCl}(183 \mathrm{mg}, 0.657 \mathrm{mmol})$, DMF (10 mL) and 1-tetradecene $(0.333 \mathrm{~mL}, 1.31 \mathrm{mmol})$ in a pressure tube was heated for 15 h at $120^{\circ} \mathrm{C}$. After cooling, the mixture was extracted with ethyl acetate and the organic layer was washed with $\mathrm{NH}_{4} \mathrm{Cl}$ twice, and water, dried with MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by silica gel column chromatography to give 4-chloro-8-methyl-3-(tetradec-1-enyl)quinolin-6-ol 33 (159 $\mathrm{mg}, 62 \%)$ as yellow solid. A mixture of $33(159 \mathrm{mg}, 0.410$ mmol) and $10 \% \mathrm{Pd}-\mathrm{C}(87 \mathrm{mg}, 0.082 \mathrm{mmol})$ in ethanol was stirred for 17 h under hydrogen, filtered through Celite, and concentrated in vacuo to give 8-methyl-3-tetradecyl-quino-lin-6-ol ($136 \mathrm{mg}, 93 \%$) as yellow solid: EI-MS m / z (relative intensity) 356 ($\mathrm{M}^{+}, 71$), 200 (61), 187 (47), 186 (100), 173 (38), 43 (22), 41 (19). A mixture of the quinolinol (135 mg , $0.37 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}$ ($153 \mathrm{mg}, 1.11 \mathrm{mmol}$), and methyl bromoacetate ($0.127 \mathrm{~mL}, 1.30 \mathrm{mmol}$) in acetone (50 mL) was heated for 14 h under reflux, filtered and concentrated in vacuo. The residue was partitioned between water and ether and the organic layer was dried with MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by silica gel column chromatography to give (8-methyl-3-tetradecyl-quinolin-6-yloxy)acetic acid methyl ester 117 mg (74%) as white solid: ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.66(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.74(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 0.85-1.70(\mathrm{~m}, 27 \mathrm{H})$; EI-MS m / z (relative intensity) 427 ($\mathrm{M}^{+}, 41$), 272 (24), 258 (89), 245 (100), 143 (17), 43 (25). A mixture of the ester $(107 \mathrm{mg}, 0.25 \mathrm{mmol})$ and 5 mL of $2 N$ NaOH in methanol (10 mL) was stirred for 2 h and concentrated. The resulting mixture was diluted with water and acidified with dilute hydrochloric acid and extracted with ethyl acetate. The organic layer was dried with MgSO_{4},
filtered, and concentrated in vacuo to give 73 mg (71%) of white solid: $\mathrm{mp} 110-111{ }^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}-\right.$ DMSO- d_{6}) $\delta 8.71(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~s}$, $1 \mathrm{H}), 6.90(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.00$ (brs, 1H), 4.72 (s, 2H), 2.83 (s, 3H), 2.82 (t, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-0.85(\mathrm{~m}, 27 \mathrm{H})$; EI-MS m / z (relative intensity) $413\left(\mathrm{M}^{+}, 12\right), 258(14), 244$ (59), 231 (45), 230 (21), 156 (17), 143 (24), 57 (27), 43 (100), 41 (67).
\{4-Chloro-3-(octen-1-yl)quinolin-8-yloxy\}acetic acid (37). A mixture of 4-chloro-3-iodo-8-methoxyquinoline 35 (1.00 g, 3.12 mmol), 1-octene ($1.40 \mathrm{~mL}, 8.92 \mathrm{mmol}$), NaHCO_{3} ($620 \mathrm{mg}, 6.20 \mathrm{mmol}$), $\mathrm{Bu}_{4} \mathrm{NCl}(860 \mathrm{mg}, 3.12 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(40 \mathrm{mg}, 5 \mathrm{~mol} \%)$, and $\mathrm{DMF}(15 \mathrm{~mL})$ was heated overnight at $100^{\circ} \mathrm{C}$ followed by dilution with ethyl acetate. The organic layer was washed with brine and water, dried with MgSO_{4}, and concentrated in vacuo. The residue was purified by column chromatography to give 650 mg (68.6%) of 4-chloro-3-(oct-1-enyl)-8-methoxyquinoline $\mathbf{3 6}$ as an yellow solid: ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.00(\mathrm{~s}, 1 \mathrm{H}), 7.81$ (dd, $J=8.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.53(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{dq}, J=15.9$, $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{q}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{q}, J$ $=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.48(\mathrm{~m}, 2 \mathrm{H}), 1.10-1.42(\mathrm{~m}, 6 \mathrm{H}), 0.90(\mathrm{t}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}$). The quinolinol ($210 \mathrm{mg}, 73 \%$) was obtained by BBr_{3} and crystallization in ethyl acetate. A mixture of the quinolinol $(0.14 \mathrm{~g}, 0.49 \mathrm{mmol})$, methyl bromoacetate (60 uL , $0.63 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.14 \mathrm{~g}, 0.98 \mathrm{mmol})$ in acetone (7 mL) was heated for 3 h under reflux, filtered and concentrated in vacuo. The residue was partitioned between ethyl acetate and brine, and the organic layer was dried with MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by silica gel column chromatography to give $\{4$-chloro-3-(octen-1-yl)quinolin-8-yloxy $\}$ acetic acid methyl ester 0.15 g (85%): ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.91$ (t, $J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 1.2-1.61(\mathrm{~m}, 8 \mathrm{H}), 2.36(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, $4.97(\mathrm{~s}, 2 \mathrm{H}), 6.49(\mathrm{dt}, J=16.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.85$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 9.03(\mathrm{~s} 1 \mathrm{H})$. A mixture of ester $(0.10 \mathrm{~g}$, $0.28 \mathrm{mmol})$ and $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(17 \mathrm{mg}, 0.42 \mathrm{mmol})$ in THF/ $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}(1: 1: 1,6 \mathrm{~mL}$) was stirred for 1 h and concentrated. The aqueous layer was washed with ether, adjusted to pH 3 with 1 N HCl . The precipitate was filtered and dried to give 37 ($87 \mathrm{mg}, 90 \%$): ${ }^{1} \mathrm{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.08(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H})$, 6.56 (dt, $J=15.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{bs}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 2 \mathrm{H}), 2.34$ ($\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $1.20-1.61(\mathrm{~m}, 8 \mathrm{H}), 0.91(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
(3-Octylquinolin-8-yloxy)acetic acid (39). The octenylquinoline $36(430 \mathrm{mg}, 1.4 \mathrm{mmol})$ in methanol $(15 \mathrm{~mL})$ was hydrogenated overnight with $10 \%-\mathrm{Pd} / \mathrm{C}(0.2 \mathrm{~g})$ as catalyst. The residue was filtered through Celite, concentrated in vacuo and the residue was purified by column chromatography to give 3-octyl-8-methoxyquinoline 38 ($320 \mathrm{mg}, 84 \%$): ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.85(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.38$ $(\mathrm{m}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{~m}, 2 \mathrm{H}), 1.10-1.42(\mathrm{~m}, 10 \mathrm{H}), 0.87(\mathrm{t}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H})$. To a solution of methoxyquinoline $\mathbf{3 8}(300 \mathrm{mg}$, 1.1 mmol) in 7 mL of methylene chloride was added 1 N
$\mathrm{BBr}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(2.2 \mathrm{~mL}, 2.2 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred overnight at room temperature, quenched by addition of small amount of water, and partitioned between water and ethyl acetate. The organic layer was washed with saturated sodium bicarbonate solution and water, dried with MgSO_{4}, and concentrated in vacuo. 3-Octylquinolin-8-ol ($210 \mathrm{mg}, 73 \%$) was obtained by crystallization in ethyl acetate and washing with ether. A mixture of the quinolinol ($100 \mathrm{mg}, 0.39 \mathrm{mmol}$), methyl bromoacetate $(0.045 \mathrm{~mL}, 0.47 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(110 \mathrm{mg}, 0.78 \mathrm{mmol})$ and in acetone (5 mL) was heated for 3 h under reflux, filtered and concentrated in vacuo. The residue was partitioned between ethyl acetate and brine, and the organic layer was dried with MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by silica gel column chromatography to give (3-octylquinolin-8-yloxy)acetic acid methyl ester 100 mg (77\%): ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.85(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.87$ $(\mathrm{m}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{t}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.96$ $(\mathrm{s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.65(\mathrm{~m}, 2 \mathrm{H}$, $1.20-1.45(\mathrm{~m}, 10 \mathrm{H})), 0.87(\mathrm{t}, J=2.1 \mathrm{~Hz}, 3 \mathrm{H})$. A mixture of ester ($80 \mathrm{mg}, 0.24 \mathrm{mmol}$) and $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(15 \mathrm{mg}, 0.36$ mmol) in THF/ $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}(1: 1: 1,6 \mathrm{~mL})$ was stirred for 1 h and concentrated. The aqueous layer was washed with ether, adjusted to pH 3 with 1 N HCl . The precipitate was filtered and dried to give 39 ($71 \mathrm{mg}, 95 \%$): ${ }^{1} \mathrm{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.85(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~m}, 2 \mathrm{H}), 7.25$ $(\mathrm{m}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 2.84(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.67(\mathrm{~m}, 2 \mathrm{H})$, $1.10-1.45(\mathrm{~m}, 10 \mathrm{H}), 0.95(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
(4-Chloro-3-phenylquinolin-8-yloxy)acetic acid (42). A mixture of 35 ($500 \mathrm{mg}, 1.57 \mathrm{mmol}$), phenylboronic aicd ($288 \mathrm{mg}, 2.36 \mathrm{mmol}$), $\mathrm{LiCl}\left(67 \mathrm{mg}, 1.57 \mathrm{mmol}\right.$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ $(1.023 \mathrm{~g}, 3.14 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(18 \mathrm{mg}, 0.079 \mathrm{mmol})$ and 1,4-dioxane (30 mL) was heated for 10 h at $110^{\circ} \mathrm{C}$ followed by dilution with ethyl acetate. The organic layer was washed with brine, dried with MgSO_{4}, and concentrated in vacuo. The residue was purified by column chromatography to give 300 mg (71%) of 4-chloro-8-methoxy-3-phenylquinoline 40: ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.74(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.50(\mathrm{~m}, 6 \mathrm{H}), 6.99(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.99(\mathrm{~s}, 3 \mathrm{H})$. To a solution of $40(300 \mathrm{mg}, 1.12 \mathrm{mmol})$ in 5 mL of methylene chloride was added $1 \mathrm{M} \mathrm{BBr} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.23 \mathrm{~mL}, 1.23 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred for 3 h at room temperature, quenched by addition of small amount of methanol and saturated sodium bicarbonate solution, and partitioned between water and ethyl acetate. The organic layer was dried with MgSO_{4}, and concentrated in vacuo and the residue was purified by column chromatography to give 4-chloro-3-phenylquinolin-8-ol 41 (158 mg , $55 \%)$. A mixture of the quinolinol $41(100 \mathrm{mg}, 0.39 \mathrm{mmol})$, ethyl bromoacetate ($78 \mathrm{mg}, 0.47 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(108 \mathrm{mg}$, $0.78 \mathrm{mmol})$ and $\mathrm{KI}(6 \mathrm{mg}, 0.039 \mathrm{mmol})$ in acetone $(5 \mathrm{~mL})$ was heated for 12 h under reflux, filtered and concentrated in vacuo. The residue was partitioned between ethyl acetate and brine, and the organic layer was dried with MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by silica gel column chromatography to give $28 \mathrm{mg}(28 \%)$ of recovered starting material and (4-chloro-3-phenyl-quino-
lin-8-yloxy)acetic acid ethyl ester ($51 \mathrm{mg}, 38 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.88(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.26-7.61 (m, 6H), $7.05(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 2 \mathrm{H})$, $4.28(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;$ EI-MS m / z (relative intensity) 268 (100), 239 (10), 203 (18), 43 (15). A mixture of ester ($40 \mathrm{mg}, 0.12 \mathrm{mmol}$) and $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(10 \mathrm{mg}$, $0.23 \mathrm{mmol})$ in THF/ $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}(1: 1: 1)$ was stirred for 1 h and concentrated. The aqueous layer was acidified with 1 $N \mathrm{HCl}$. The precipitate was filtered and dried to give 42 (37 $\mathrm{mg}, 97 \%):{ }^{1} \mathrm{H}$ NMR (200 MHz, DMSO- d_{6}) $\delta 8.81(\mathrm{~s}, 1 \mathrm{H})$, $7.43-7.86(\mathrm{~m}, 7 \mathrm{H}), 7.24(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 2 \mathrm{H})$; EIMS m/z (relative intensity) 277 (52), 248 (100), 218 (11), 190 (11), 146 (12), 109 (20), 102 (24).
[4-(4-Chloro-3-phenylquinolin-8-yl)phenoxy]acetic acid (44). To a mixture of 4-chloro-3-phenylquinolin-8-ol 41 ($600 \mathrm{mg}, 2.35 \mathrm{mmol}$), pyridine ($1.9 \mathrm{~mL}, 23.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added trifluoromethanesulfonic anhyride $(0.79 \mathrm{~mL}, 4.7 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred for 10 h , washed with dilute hydrochloric acid, and extracted with ethyl acetate. The organic layer was dried with MgSO_{4} and concentrated in vacuo and the residue was purified by column chromatography to give 4-chloro-3-phenylquinolin-8-yl trifluoromethanesulfonate 43 (346 mg , 38%): ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.98(\mathrm{~s}, 1 \mathrm{H}), 8.35-8.40$ (m, 1H), 7.67-7.70 (m, 2H), 7.47-7.56 (m, 5H); EI-MS m/z (relative intensity) $389(\mathrm{M}+2,38), 387\left(\mathrm{M}^{+}, 89\right), 254(74)$, 226 (100), 190 (39), 163 (21). A mixture of triflate (292 mg , 0.753 mmol), p-methoxyphenylboronic acid ($172 \mathrm{mg}, 1.13$ $\mathrm{mmol}), \mathrm{LiCl}(32 \mathrm{mg}, 0.753 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(490 \mathrm{mg}, 1.506$ $\mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(9 \mathrm{mg}, 0.038 \mathrm{mmol})$ in 1,4-dioxane (15 mL) was heated for 10 h at $110{ }^{\circ} \mathrm{C}$. The resulting mixture was washed with brine and the aqueous layer was extracted with ethyl acetate. The combined organic layer was dried with and concentrated. The residue was purified by column chromatography to give 4-chloro-8-(4-methoxyphenyl)-3phenylquinoline ($52 \mathrm{mg}, 20 \%$): ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.88(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{dd}, J=7.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.80(\mathrm{~m}$, 9H), 7.03-7.09 (m, 2H), 3.89 (s, 3H); EI-MS m/z (relative intensity) 347 ($\mathrm{M}+2,47$), $345\left(\mathrm{M}^{+}, 100\right), 330(33), 133$ (39). To a solution of methoxyquinoline ($50 \mathrm{mg}, 0.145 \mathrm{mmol}$) in 5 mL of methylene chloride was added dropwise $1 \mathrm{M} \mathrm{BBr}_{3} /$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL}, 1.0 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred for 4 h at room temperature, quenched by sequential addition of methanol and saturated sodium bicarbonate solution, and extracted with ethyl acetate. The organic layer was dried with MgSO_{4}, and concentrated in vacuo and the residue was purified by column chromatography to give 4-(4-chloro-3-phenylquinolin-8-yl)phenol 29 $\mathrm{mg}(60 \%)$. A mixture of the phenol ($40 \mathrm{mg}, 0.12 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(33 \mathrm{mg}, 0.24 \mathrm{mmol})$, KI ($2 \mathrm{mg}, 0.012 \mathrm{mmol}$) and ethyl bromoacetate ($78 \mathrm{mg}, 0.47 \mathrm{mmol}$) in DMF (5 mL) was stirred for 12 h , and washed with brine. The aqueous layer was extracted with ethyl acetate and the combined organic layer was dried with MgSO_{4} and concentrated in vacuo. The residue was purified by silica gel column chromatography to give 38 mg (75%) of [4-(4-chloro-3-phenylquinolin-8-yl)phenoxy]acetic acid ethyl ester: ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta 8.87(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{dd}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.76(\mathrm{~m}$, $9 \mathrm{H}), 7.06$ (dd, $J=6.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H}), 4.28(\mathrm{q}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 1.28 (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$); EI-MS m/z (relative intensity) 419 (M+2, 19), 417 ($\mathrm{M}^{+}, 53$), 330 (100), 314 (22), 278 (25), 139 (34). A mixture of ester ($10 \mathrm{mg}, 0.024 \mathrm{mmol}$) and $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{mg}, 0.048 \mathrm{mmol})$ in $\mathrm{THF} / \mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}$ ($1: 1: 1,1 \mathrm{~mL}$) was stirred for 1 h and concentrated. The aqueous layer was acidified with 1 N HCl at $0^{\circ} \mathrm{C}$. The precipitate was filtered and dried to give 44 ($9.0 \mathrm{mg}, 95 \%$): ${ }^{1} \mathrm{H}$ NMR (200 MHz, DMSO- d_{6}) $\delta 8.88$ (s, 1H), 8.31-8.36 $(\mathrm{m}, 1 \mathrm{H}), 7.85-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.63(\mathrm{~m}, 7 \mathrm{H}), 7.01-7.06$ (m, 2H), 4.75 (s, 2H); EI-MS m/z (relative intensity) 197 (2), 194 (2), 145 (5), 83 (7), 58 (11), 43 (100).
(4-Carboxy-2-methylquinolin-3-yl)oxyacetic acid (47). A mixture of 4-carboxy-2-methylquinolin-2-ol 45 (300 mg , $1.43 \mathrm{mmol})$, methyl bromoacetate $(0.270 \mathrm{~mL}, 1.43 \mathrm{mmol})$, and potassium carbonate ($400 \mathrm{mg}, 2.86 \mathrm{mmol}$) in 15 mL of acetone was heated for 5 h under reflux and concentrated. The residue was diluted with ethyl acetate and washed with brine, dried with MgSO_{4}, and concentrated. The residue was purified by column chromatography to give 150 mg (30\%) of methyl (4-methoxycarbonylmethoxycarbonyl-2-methyl-quinolin-3-yl)oxyacetate $46:{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 2.77 ($\mathrm{s}, 3 \mathrm{H}$), 3.83 ($\mathrm{s}, 3 \mathrm{H}$), 3.87 ($\mathrm{s}, 3 \mathrm{H}$), 4.71 ($\mathrm{s}, 2 \mathrm{H}$), 4.98 (s , $2 \mathrm{H}), 7.62(\mathrm{~m}, 2 \mathrm{H}), 8.10(\mathrm{~m}, 2 \mathrm{H})$. A mixture of 46 (140 mg , $0.40 \mathrm{mmol})$ and $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(67 \mathrm{mg}, 1.6 \mathrm{mmol})$ in THF : water : methanol ($1: 1: 1,12 \mathrm{~mL}$) was stirred for 1 h , concentrated in vacuo, washed with ether, and acidified by addition of 1 N hydrochloric acid. The resulting precipitate was filtered and dried to give 47 ($80 \mathrm{mg}, 75 \%$): ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.45-7.70 (m, $3 \mathrm{H}), 4.68(\mathrm{~s}, 2 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H})$.
4-Chloro-6-decyloxyquinolin-3-carboxylic acid (50). A mixture of 4-decyloxyaniline $48(1.00 \mathrm{~g}, 4.01 \mathrm{mmol})$ and diethyl ethoxymethylene malonate $(0.810 \mathrm{~mL}, 4.01 \mathrm{mmol})$ in ethanol (50 mL) was heated for 30 min at $90^{\circ} \mathrm{C}$, cooled to room temperature, and concentrated in vacuo. The residue and diphenyl ether (100 mL) was heated for 2 h at $260^{\circ} \mathrm{C}$. After cooling to room temperature, the mixture was stirred for 30 min with addition of petroleum ether $(100 \mathrm{~mL})$. The precipitate was filtered to give 6-deyloxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid ethyl ester 49 (1.67 g , $99 \%):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 0.88(\mathrm{t}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 1.60-1.27(\mathrm{~m}, 17 \mathrm{H}), 1.89-1.82(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{t}, J=6.5$ $\mathrm{Hz}, 2 \mathrm{H}), 4.48-4.22(\mathrm{~m}, 3 \mathrm{H}), 7.93-7.41(\mathrm{~m}, 3 \mathrm{H}), 8.99(\mathrm{~s}, 1 \mathrm{H})$. A mixture of the quinolone $49(1.00 \mathrm{~g}, 2.68 \mathrm{mmol})$ and POCl_{3} was heated under reflux and excess POCl_{3} was quenched by addition of ice-water. The resulting mixture was neutralized with saturated sodium bicarbonate and extracted with ethyl acetate. The organic layer was washed with brine, dried with MgSO_{4}, and concentrated in vacuo. The residue was purified by column chromatography to give 4-chloro-6-decyloxyquinoline-3-carboxylic acid ethyl ester $(0.932 \mathrm{~g}, 89 \%)$ as yellow solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$ $\delta 0.88(\mathrm{~m}, 3 \mathrm{H}), 1.65-1.21(\mathrm{~m}, 16 \mathrm{H}), 1.86$ (quintet, $J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 4.14(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.29$ $(\mathrm{m}, 3 \mathrm{H}), 8.02(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.04(\mathrm{~s}, 1 \mathrm{H})$; EI-MS m/z
(relative intensity) $391\left(\mathrm{M}^{+}, 0.3\right), 384$ (24), 292 (1.2), 264 (8.8) 251 (100). A mixture of the ester ($927 \mathrm{mg}, 2.36 \mathrm{mmol}$) and 2 $N \mathrm{NaOH}$ in ethanol $(30 \mathrm{~mL})$ was heated at reflux. The resulting mixture was cooled to room temperature and neutralized with $1 \mathrm{~N}-\mathrm{HCl}$ to give white crystalline $50(691 \mathrm{mg}, 80 \%):{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}$, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dd}, J=9.1 \mathrm{~Hz}, 2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~m}$, $2 \mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.27(\mathrm{~m}, 16 \mathrm{H}), 0.89(\mathrm{~m}, 3 \mathrm{H})$.
in vitro Enzyme Assay. The tests were performed against recombinant human PTP-1B using fluorescein diphosphate (FDP) as a substrate. The medium was 30 mM Tris, 75 mM $\mathrm{NaCl}, 0.67 \mathrm{mM}$ EDTA in 1 mM DTT (pH 8.0) buffer with $20 \mu \mathrm{M}$ FDP, and $0.1 \mu \mathrm{~g}$ of PTP-1B. After an hour at room temperature with inhibitor, the enzyme activity was determined by measuring the fluorescence of the product, fluorescein monophosphate (FMT) at 485 nm (excitation) and 538 nm (emission). $\mathrm{IC}_{50}(\mu \mathrm{M})$ values were determined from direct regression curve analysis. Isozyme selectivity was determined likewise using appropriate phosphatases.

Conclusion

Several classes of compounds (heteroarylcarboxylic acids, phenoxyacetic acids, and quinolinoxyacetic acids) were prepared and tested as PTP-1B inhibitors. Some of the compounds showed remarkable inhibition in in vitro assays. Compounds with long chain alkyl substituents showed submicromolar IC_{50}, suggesting that the inhibition can be enhanced by lipophilic substitution within these classes of compounds.

Acknowledgements. The authors appreciate the financial support by Ministry of Science and Technology of Korea and Bioneer Corporation and the generous supply of chemical library by the Korea Chemical Bank.

References

1. (a) Kennedy, B. P.; Ramachandran, C. Biochem. Pharmacol. 2000, 60, 877. (b) Moller, N.; Iversen, L.; Andersen, H.; McCormack, J. Curr. Opin. Drug Discov. Dev. 2000, 3, 527.
2. Elchebly, M.; Payette, P.; Michaliszyn, E.; Cromlish, W.; Collins, S.; Loy, A. L.; Normandin, D.; Cheng, A.; Himms-Hagen, J.; Chan, C.-C.; Ramachandran, C.; Gresser, M. J.; Tremblay, M. L.; Kennedy, B. P. Science 1999, 283, 1544.
3. Evans, J. L.; Jallal, B. Exp. Opin. Invest. Drugs 1999, 8, 139.
4. Johnson, T. O.; Ermolieff, J.; Jirousek, M. R. Nature Reviews/ Drug Discovery 2002, 1, 696.: Van Huijsduijnen, R. H.; Bombrun, A.; Swinnen, D. Drug Discovery Today 2002, 7, 1013.
5. Larsen, S. D.; Barf, T.; Liljebris, C.; May, P. D.; Ogg, D.; O'Sullivan, T. J.; Palazuk, B. J.; Schostarez, H. J.; Stevens, F. C.; Bleasdale, J. E. J. Med. Chem. 2002, 45, 598 and references cited therein.
6. (a) Ahn, J. H.; Cho, S. Y.; Ha, J. D.; Chu, S. Y.; Jung, S. H.; Jung, Y. S.; Baek, J. Y.; Choi, I. K.; Shin, E. Y.; Kang, S. K.; Kim, S. S.; Cheon, H. G.; Yang, S. D.; Choi J.-K. Bioorg. Med. Chem. Lett. 2002, 12, 1941. (b) Ahn, J. H.; Cho, S. Y.; Ha, J. D.; Kang, S. K.; Jung, S. H.; Kim, H.-M.; Baek, J. Y.; Han, S. S.; Shin, E. Y.; Kim, S. S.; Kim, K. R.; Cheon, H. G.; Yang, S. D.; Choi, J.-K. Bull. Korean Chem. Soc. 2003, in press.
7. Satoh, T.; Itaya, T.; Miura, M.; Nomura, M. Chem. Lett. 1996, 823.
8. Saunders, J. C.; Williamson, W. R. N. J. Med. Chem. 1979, 22, 1554.
9. Yum, E. K.; Kang, S. K.; Choi, J.-K. Bull. Korean Chem. Soc. 2001, 22, 644.
10. Miyaura, M.; Suzuki, A. Chem. Rev. 1995, 95, 2457.

[^0]: *Corresponding Author. E-mail: jkchoi@krict.re.kr

