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Two-color Transient Grating Spectroscopy of a Two-level System
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A theoretical description and experimental demonstration of homodyne-detected two-color transient grating (2-C
TG) signal are presented. By treating the coupled bath degrees of freedom as a collection of harmonic
oscillators and using a short-time expansion method, approximated nonlinear response functions were
obtained. An analytic expression for the two-color transient grating signal was obtained by carrying out
relevant Gaussian integrals. The initial rising and decaying parts of the 2-C TG signal is shown to be critically
dependent on the ultrafast inertial component of the solvation correlation function. The experimental results
confirm the predictions of the theoretical model.
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Introduction

Four-wave-mixing transient grating spectroscopy1-3 can be
viewed as a one-dimensional vibrational spectroscopy that is
capable of probing vibrational dynamics and chromophore-
solvent relaxation processes on both the ground and excited
states.4-6 By injecting two simultaneously propagating pulses
in time with different wavevectors, vibrational coherence
states are created on the ground as well as excited states.
Since the pulse widths are sufficiently short to excite
vibrational modes that are coupled to an electronic transition
of the chromophore, the electronic dephasing process
induced by the fluctuating chromophore-solvent interaction
energy can be studied with this transient grating spectros-
copy. In the present paper, we will consider two-color
transient grating spectroscopy (2C-TG), where the pump and
the probe frequencies are different from each other.7,8 In this
case, the initial wavepacket or doorway state, created by the
interactions with the pump pulses is located at a different
region of phase space than that of the window specified by
the width and frequency of the probe pulse. On the other
hand, in the case of conventional 1-C TG, the phase space
region of the initial wavepacket is identical with the window
state.9 Therefore, 1-C TG measures how rapidly the initial
wavepacket moves away from the initial phase space region.
Consequently, the 1-C TG signal decays monotonically. In
contrast, due to the difference between the doorway phase
space and the window phase space, the 2-C TG signal can
rise initially and reach a maximum value at the time when
the propagating wavepacket passes through the window
phase space. Due to this additional experimental controll-
ability of the 2-C TG, it becomes possible to explore a much
wider region of the phase space stet spanned by the coupled
bath degrees of freedom. A theoretical description of the 2-C
TG signal and numerical calculations for a few model

systems will be presented in sections II and III, respectively,
while in section IV experimental results are presented for
two systems.

Theoretical

We will consider a two electronic level system interacting
with external electric fields. Two pulses propagating with
wavevectors of k1 and k2 are used to create particles and
holes on the excited and ground states, respectively. Then the
third pulse which is delayed in time, is injected and the
scattered signal field in the direction of −k1 + k2 + k3 is
detected by employing homodyne or heterodyne methods.
The frequencies of the pump (the first two pulses) fields and
the probe field will be denoted as ωpu and ωpr, respectively.

Then, the third-order polarization associated with the TG
signal is given as10

. (1)

Here, the pulse envelopes are denoted by Ej ( j = 1-3). The
homodyne-detected TG signal is given by the integrated
intensity of the TG signal field that is linearly proportional to
the square of the above third-order polarization within the
slowly-varying-amplitude approximation, i.e.,
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introduce a new integration variable . Then,
we have

× 

(3)

where . In order to obtain
Eq. (3), we assumed that the delay time τ is sufficiently
larger than the pulse width such that the upper limit of the
integration over  can be replaced with .

A. Approximate nonlinear response function. The
general nonlinear response function of a two-level system
was presented before and is given by a sum of the following
four components and their complex conjugates,9 

 

× 

× 

× 

× (4)

where the two auxiliary functions are defined as

 

 (5)

Here, the line broadening function, g(t), is11

(6)

The spectral density representing system-bath coupling
strengths and frequency distribution of the coupled bath
modes was denoted as .

Noting that the electronic coherence relaxation time
during the t3-period is typically very short, one can use the
following truncated Taylor expansion forms, 

,

(7)

where 

 (8)

With this short time expansion approximation, the two
auxiliary functions,  and , can be approximately written
as

 

 (9)

where .
We further assume that  and 

 to find

 . (10)

Also, using a short-time approximation for g(t) with respect
to t1 and t3, we have

 and (12)

where the mean square fluctuation amplitude of the
electronic transition frequency is defined as

. (13)

Thus, the four response function components in Eq. (4)
can be simplified to

× 

× 

.(14)

B. 2-C TG polarization. In order to take into account the
finite pulse width effect on the 2-C TG signal, the pulse
envelope functions are assumed to be identical and of a
Gaussian form, i.e. as  where the
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standard deviation is denoted by ∆. Inserting Eqs. (14) and
Gaussian pulse envelope functions into Eq. (3) and
calculating the integrals over t1 and , we find 

(15)

where

(16)

In the above equation (15), S(t) is the solvation correlation
function that can be expressed in terms of the spectral
density as

. (17)

and the solvation reorganization energy is 

. (18)

The Dawson integral, F(x), in Eq. (15) is defined as12

. (19)

Eq. (15) constitutes the principal result of the present
paper. Because of the τ-dependent terms in Eq. (15), the
third-order TG polarization provides information on the
spectral diffusion induced by the chromophore-solvent
dynamics. Also, it should be noted that the polarization is
complex. If one carries out a heterodyne detection experi-
ment, it would be possible to measure the real and imaginary
parts of the polarization separately. The real and imaginary
parts of the polarization correspond to the transient
birefringence and the transient dichroism, respectively.13 

The homodyne-detected transient grating signal can now
be calculated and found to be

(20)

Numerical Calculation Results

In this section, we will present numerically calculated 1-C
and 2-C TG signals for a simple model system. The solvation

reorganization energy, λ, will be assumed to be 600 cm−9. In
the high-temperature limit, the mean square fluctuation
amplitude, Ω2, of the electronic transition frequency is
related to λ by ( ) where kB and T are the
Boltzmann constant and the temperature, respectively.14

We next assume that the solvation correlation function,
S(t), consists of two components, i.e., a Gaussian and an
exponential component with the form5

(21)

where the unit of time is the picosecond. The ratio of the
Gaussian component to the exponential component is
1 : 0.5. In the following calculations, the Gaussian decay
constant Γ will be varied to investigate the Γ-dependence of
the 2-C TG signal. 

Throughout the present paper, the pump field frequency
will be assumed to be in resonance with the absorption
band maximum, i.e., ωpu = ωeg. Although the approximate
expression for the TG polarization in Eq. (15) is useful, it
should be noted that Eq. (15) cannot be used to describe the
case when the pump field frequency deviates from ωeg. A
more general theory is currently being developed and will be
presented elsewhere. In the present paper, we will focus on
the case when only the probe field frequency is tunable and
the detuning factor W is defined as

. (22)

A. One-color TG signal. One-color TG signals are
calculated for varying Γ (=100, 200, 300, 400, and 500 fs)
and plotted in Figure 1(a). As in the work of Joo et al.,5 the
initial decaying part of the 1-C TG signal is found to be
dependent on the ultrafast component of S(t). In this case of
the 1-C TG, the phase space region of the initially created
wavepacket is identical to that of the window so that the
signal at time zero is maximum and then decreases as the
wavepacket moves away from the phase space region of the
window. In Figure 1(b), the two contributions from the
transient birefringence and dichroism, when Γ = 100 fs, are
separately plotted and the figure shows that the transient
dichroic contribution is dominant in this case. 

B. Two-color TG signal. We next calculate the two-color
TG signal. In order to investigate the detuning-factor-
dependence of the 2-C TG signal, by varying W from 0 to
1400 cm−1, a series of downhill (i.e., ) 2-C TG
signals are plotted in Figure 2(a). A positive value of W
corresponds to a ‘downhill’ 2-C TG experiment with the
third frequency being lower than the first two.

As the detuning factor W increases, the signal exhibits a
non-monotonic behavior. For instance, if W= 800 cm−1, the
location of the window is, along the solvation coordinate,
800 cm−1 away from that of the initially created wavepacket
so that it takes a finite time (about 80 fs) for the propagating
wavepacket to reach the window region. This means that the
detuning factor, W, determines the energy separation
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between the doorway and the window along the solvation
energy coordinate. 

Since the Stokes shift equals 2λ, when W= 1200 cm−1 the
window is located at the bottom of the excited state potential
energy surface constructed by the chromophore-solvent
coupling modes. In this case, the TG signal rises up to a
finite value and decays slowly by the excited state population
relaxation process. If one carefully examines the 2-C TG
signal of W= 1200 cm−1 however, the signal reaches a
maximum and decays slightly even though the lifetime
broadening contribution was not taken into account in the
present numerical calculations (see Fig. 2(a)). This is
because the homodyne-detected 2-C TG signal contains a
contribution from the transient birefringence which initially
rise and decays slowly (see the inset of Fig. 1). 

Next, the two contributions from the transient bire-
fringence and dichroism are separately plotted in Figure 2(b)
in the case when W= 800 cm−1 and Γ = 100 fs. Unlike the
case of 1-C TG, the transient dichroic but and the transient
birefringent contributions are of similar maximum ampli-
tude. In other words, as the detuning increases, the transient
birefringence contribution becomes crucial, but the long
time decaying pattern is more or less dictated by the

transient dichroic response. 
As expected, the temporal profile of the 2-C TG signal is

strongly dependent on the ultrafast (inertial) decaying
component of the solvation correlation function, S(t).
Numerically calculated 2-C TG signals are plotted in Figure
3 for a Gaussian decay constant Γ varied from 100 to 500 fs.
Here, the detuning factor W is fixed at 800 cm−1. As can be
seen in Figure 3, the finite delay time of the signal, which is
the time required for the propagating wavepacket to reach
the region of the window, increases as the solvation
correlation function slows down. Although one can make an
attempt to predict this delay time by treating the evolution of
the wavepacket as a ballistic motion of which equation of
motion is a generalized Langevin equation for a harmonic
oscillator (note that the associated time-dependent friction
kernel can be obtained by using the Fourier spectrum of the
solvation correlation function in Eq. (21)),15 due to the
complication that the homodyne-detected 2-C TG is
determined by both the transient dichroism and the transient
birefringence contributions it is not straightforward to
develop a simple theoretical model for this problem.

Figure 1. (a) Calculated 1-C TG signals for Γ = 100, 200, 300, 400,
and 500 fs. (b) Transient dichroism and the birefringence
contributions to the 1-C TG signal for Γ = 100 fs.

Figure 2. (a) Calculated ‘downhill’ 2-C TG signals for a detuning
W = 0, 200, 400, 600, 800, 1000, 1200, and 1400 cm−1. Here, Γ =
100 fs. (b) Both the transient dichroism and the birefringence
contributions to the 2-C TG signal for Γ = 100 fs and W = 800 cm−1.
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Experimental Section

Figure 4 shows the absorption spectra of the dyes IR144
and DTTCI, both dissolved in methanol. Also shown are the
spectra of the 800 nm and 750 nm femtosecond pulses used
for the experiment. The laser pulses have a duration of 45 fs
for all the experiments described. A more detailed descrip-
tion of the pulse generation and experimental set up can be
found in reference 16.

Figure 5 shows the four possible homodyne-detected one-
and two-color transient grating signals for DTTCI in
methanol. Clearly both the uphill and downhill 2C-TG
signals differ significantly from the 1C-TG signals and
conform to the predictions of Figures 1-3. The two-color
signals exhibit rise times of 100-150 fs, while the one-color
signals decay monotonically. All the signals contain
vibrational wavepacket contributions that were not included
in the calculated curves in Figures 1-3. Comparing Figures 2
and 5 suggests that the detuning (833 cm−1) is sufficient to

place the window near the bottom of the excited state
surface, since no pronounced maximum in the signal is
observed.

For a system with a larger reorganization energy, a distinct
maximum in the 2C-TG signal is expected as the population
passes through the window region. IR144 in the same
solvent, methanol, has a total Stokes shift of ~1500 cm−1 as
compared with ~430 cm−1 for DTTCI. Figure 6 compares
the 1C-TG and 2C-TG for IR144 in MeOH−note the
logarithmic timescale. The 2C-TG result corresponds to
750-750-800 nm (downhill) and clearly exhibits a maximum
and a rapid decay as expected for intermediate (with respect
to 2λ) detunings.

Summary

In the present paper, a theoretical description and experi-
mental illustrations of 2-C TG spectroscopy was presented.
When the probe field frequency is different from that of the
pump field, the 2-C TG signal exhibits a non-monotonic
decaying pattern. Since the frequency of the probe field
determines the location of the detection window along the

Figure 3. Calculated 2-C TG signals for Γ = 100, 200, 300, 400,
and 500 fs. W = 800 cm−1.

Figure 4. Absorption spectra for IR144 (solid) and DTTCI (dotted)
in dilute methanol solution, along with the spectra of the 45 fs 750
nm (dot dashed) and 800 nm (dashed) laser pulses.

Figure 5. Experimental 1-C TG and 2-C TG signals for DTTCI in
methanol. 1-C TG at 800 nm (; ) and 750 nm (5 ). Both uphill
(800, 800, 750 nm, í ) and downhill (750, 750, 800 nm, 0 ) results
are shown. 

Figure 6. Experimental 1-C TG (750 nm, 5 ) and 2-C TG (downhill,
750, 750, 800 nm, 0 ) signals for IR144 in methanol. Note the
logarithmic time axis.
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solvation energy coordinate, the propagating wavepacket
achieves maximal overlap only after a finite time delay,
which critically depends on the solvation reorganization
energy and the time scale of the solvation correlation
function. In this regard, the 2-C TG spectroscopy is a useful
tool for the investigation of the entire solvation energy
surface and correlation time of the chromophore-solvent
dynamics. A companion paper in this volume describes two-
color photon echo peak shift spectrsocopy.17
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