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The analytical transfer matrix method suggests a new quantization condition for calculating bound state

eigenenergies exactly. In the quantization condition, the phase shifts of bound state wave functions scattered at

classical turning points are explicitly introduced. We calculate the phase shifts of eigenfunctions of the Morse

potential with various boundary conditions in order to understand the physical meaning of phase shifts. The

Morse potential is known to adequately describe the interaction energy between two atoms and, therefore, it is

frequently used to determine the vibrational energy levels of diatomic molecules. The variation of Morse

potential eigenenergies influenced upon by changing boundary conditions is also investigated.
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Introduction

The Morse potential energy function has been used to

describe the potential energy between two atoms.1 In

spectroscopy, though it is not exact, the Morse potential is

frequently used to mimic the vibrational motion of covalent

diatomic molecules or very weak van der Waals com-

plexes.2-7 From a theoretical point of view, the Morse

potential is of great interest because the Morse potential

problem can be analytically solved when the vibrational

angular momentum is neglected. The eigenfunctions of the

Morse potential are expressed in terms of the well-known

confluent hypergeometric functions and the exact eigenener-

gies are obtained in a closed form.1,8 

The original form of the Morse potential has a finite value

at zero atom-atom internuclear distance. But for real

diatomic molecules, the potential should be infinite when

two atoms are in contact. Therefore, the realistic Morse

potential whose value is infinite at the zero internuclear

distance is chosen and extensively examined. With the

potential the eigenenergies are computed in order to see the

difference between the original Morse potential and the

realistic one. The calculations are performed for various

diatomic pairs and we have found that the difference is

negligible for real diatomic molecules.

For a one-dimensional system, when a particle is moving

between two classical turning points, its kinetic energy

cannot be larger than the potential energy at the turning

points. Therefore the particle cannot escape out from the

potential well and oscillates between the two turning points.

But quantum mechanically the particle can enter the

classically forbidden region. The exponentially decaying

wave function in the classically forbidden region should be

connected smoothly to the oscillating wave function in the

classically allowed region at classical turning points. The

wave reflected at the turning point has a different phase,

relative to the incoming wave traveling towards the turning

point. Therefore the phase of wave function should change

through the turning points and the change is called a phase

loss. Furthermore, there should be a scattering phenomenon

unless a potential is constant between the two turning points.

The scattering also causes a phase change, and the additional

scattering-led phase change is called a phase shift.

The recently developed analytical transfer matrix method

(ATMM) suggests a formally exact quantization condition

for nonrelativistic quantum systems.9,10 The quantization

condition has been applied to various potentials and is

considered to be exact.9-12 And in the ATMM quantization

condition, the concept of phase shift is formally introduced.

In this work, the ATMM is applied to the Morse potential

problem in order to understand the nature of phase shifts of

bound state eigenfunctions. By successively changing the

boundary conditions, the original form of Morse potential is

altered to generate various Morse potentials. For each

altered potential the phase shifts of ground and excited state

wave functions are numerically calculated. These calcu-

lations should reveal how the phase shifts vary due to a

potential change. 

The existence of phase shift is ignored in the well-known

WKB (Wentzel-Kramers-Brillouin) approximation.13,14 The

WKB approximation is found to be exact for the harmonic

oscillator potential and also for the Morse potential. The

reason behind this success is that the phase shifts for the

harmonic oscillator or the Morse potential happen to be

.15-18 But the newly calculated phase shifts for the

altered Morse potentials show that the WKB approximation

is not valid for the altered potentials. The more advanced

quantization conditions beyond the WKB, for example, the

WKB with Maslov index19,20 and the supersymmetric

WKB,21,22 are also qualitatively examined in terms of the

ATMM phase shifts.

In the next section, we introduce the Morse potential. And

the calculated eigenenergy differences between the original

Morse potential and the realistic Morse potential are

½π
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presented. In the following section, the ATMM phase shift is

formally defined. And the phase shifts for various Morse

potentials are presented and analyzed. The information

obtained from this work is summarized in the final section.

Morse Potential and Eigenenergy Deviations

The Morse potential energy function VM(x) for a diatomic

molecule A-B is1,2

. (1)

where x is the internuclear distance between atom A and

atom B. De is the dissociation energy, xe is the equilibrium

bond length of A-B, and β is an adjustable range parameter.

The Morse potential, Eq. (1) has a minimum value of –De at

x = xe and it is zero at x = . It should be noted that the

Morse potential becomes infinite when x goes to the

negative infinity, i.e., VM(x ) →  as x → – . At x = 0,

VM(0) has a finite value of De
 that is positive

when  > ln2. VM (0) is always positive and usually very

large for covalent diatomic molecules.23,24

The Schrödinger equation for the vibrational motion of

A-B, without vibrational angular momentum, is

(−  < x < )  (2)

where V(x) is approximately equal to VM(x). m is the reduced

mass of atoms A and B. The Eq. (2) can be rewritten in

terms of a new dimensionless variable r for convenience,

 (−  < r < ) (3)

where the new dimensionless quantities are

. (4)

And the dimensionless Morse potential is

.  (5)

VM(r) has a minimum value of –λ2 at r = re. Note that m, De,

and λ are positive. εn (or En) are negative for bound states.

The dimensionless Schrödinger Eq. (3) for the Morse

potential can be exactly solved and the bound state

eigenfunction Ψn is, in terms of a new variable z =

2λ ,

. (6)

 is the confluent hypergeometric function,25 i.e.,

. (7)

where  and . When the

boundary conditions of (r =  or z = 0) = 0 and (r =

−  or z = ) = 0 are imposed, α turns out to be zero or a

negative integer, i.e., α = −n. Then the eigenenergy is

 (8)

where n is a (vibrational) quantum number, i.e., n = 0, 1, 2,

…, nmax. nmax is the largest integer less than . Inserting

Eqs. (7) and (8) into Eq. (6), the better known form of  is

obtained, i.e.,

.  (9)

The normalization constant is 

where  is a gamma function. The Laguerre polynomial

is defined as

.  (10)

The eigenenergy Eq. (8) was obtained from the boundary

condition of (r = −  or z = ) = 0. We call this case

. For real diatomic molecules, however, the distance r

cannot be negative. It should be always positive so that the

correct boundary condition must be (r = 0 or z = z0) = 0

where z0 = . We call this case  as listed in Table 1.
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Table 1. Brief notations for the altered Morse potentials used in this work. All potentials have the same form of VM(r) = λ2(  −
) but their boundary conditions vary

Notation Form of potential Boundary condition

 (r) for −  < r < Ψ (− ) = Ψ ( ) = 0

 (r) for  and ∞ for r < 0 Ψ (0) = Ψ ( ) = 0

 (r) for  and ∞ for r < 0.1 Ψ (0.1) = Ψ ( ) = 0

 (r) for  and ∞ for r < 0.1 Ψ (0.2) = Ψ ( ) = 0

 (r) for  and ∞ for Ψ (1−ln2) = Ψ ( ) = 0
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The correct boundary condition for real diatomic molecules,

of course, gives the different eigenenergy and it can be

determined by solving the equation26

M  =  0  (11)

Consequently the eigenenergies in Eq. (8) are approximate

when the eigenenergies of real diatomic molecules are

desired. The deviation (the eigenenergy difference between

 and ) depends on how large z0 is. When z0 is

infinite (i.e., ), we obtain the Eq. (8).

For real diatomic molecules it has been argued that z0 is

large enough to neglect the deviations.8,23 In this work we

examine whether the argument is valid or not. Since z0 =

, z0 depends on parameters λ and re. But the deviation

of the eigenenergies of  from those of  depends

solely on z0, not on the details of a system. The Eq. (11) is a

transcendental equation so that it cannot be solved

analytically. We solve it numerically for various values of z0.

The choice of z0 is rather arbitrary. We start the calculations

for small z0 (i.e., z0 = 5.4 with λ = 1, re = 1) and repeat the

same calculations by increasing z0 until the deviation

becomes negligible. The results are tabulated in Table 2.

As seen in Table 2, when z0 is small, the deviation is very

large. The deviation becomes larger as n becomes higher. It

is because the inner classical turning point of higher n state

lies closer to r = 0. As z0 increases, the deviation becomes

smaller as expected. And when z0 is ~80 (see the z0 = 76 case

in Table 2), the deviation becomes virtually zero. For typical

covalent diatomic molecules, the dissociation energy (De)

ranges from 0.01 to 0.4 au, the equilibrium internuclear

distance (xe) ranges from 1 to 5 au, the reduced mass (m)

ranges from 1800 to 200000 au, and the range parameter (β)

is 0.5-1.5 au−1. When we convert them into the dimension-

less parameters, λ ranges from ~6 to ~400 and re ranges

from ~1 to ~5. For example, for the X1Σg
+ state of H2, λ is

~18 and re is ~1.4. The last entry of z0 = 150 (λ = 18, re =

1.4) in Table 2 can be regarded as the case for diatomic

molecule H2. Since, in this work, we want only to examine

the difference between  and , the very accurate

parameter values are not necessary. 

For H2, the deviation is completely negligible so that z0 =

150 is large enough to be considered as infinity. For other

covalent diatomic molecules, De might be smaller than that

of H2, so λ is smaller (see Eq. 4). But m of other diatomic

molecules is always much larger than that of H2, so λ
becomes larger. And xe is also larger but β is about the same.

Overall, it turns out that z0 of other diatomic molecules is

always larger than z0 of H2. For example, for the X1Σg
+ state

of I2, λ is ~115 and re is ~5.0 so that z0 = 34000. Therefore,

in conclusion, the  potential is quite suitable for

describing the vibrational motion of covalent diatomic

molecules. For diatomic van der Waals complexes, De is

very small but m is usually large. Consequently, λ turns out

to be larger than 100 so that the above conclusion is also

valid for van der Waals complexes. The purpose of the

current calculations is not to show that the Morse potential

itself is a good approximation to a real potential. Rather, the

calculations confirm the longstanding belief − the fact that

the Morse potential ( ) is not infinite at r = 0 does not

pose any problem when it is applied to real diatomic

molecules.

ATMM and Phase Shifts

Very recently the analytical transfer matrix method

(ATMM) has been suggested to effectively determine the

eigenenergy of bound states of non-relativistic quantum

systems.9-12 The method is based on two conditions; i) the

bound state wave function must exponentially decay beyond

classical turning points and ii) the wave function and its first

order derivative must be continuous at the turning points.

The ATMM quantization condition, for one-dimensional

system, can be summarized as10

 n = 0, 1, 2, … (12)
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Table 2. Eigenenergies (εn) of  and  at various z0
(=2λere)

z0 = 5.4(λ = 1, re = 1) z0 = 11(λ = 2, re = 1)

n n 

0 −2.25 −2.17999 0 −2.25 −2.17475

1 −0.25 −0.20649

z0 = 16(λ = 3, re = 1) z0 = 27(λ = 5, re = 1)

n n 
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10 −12.25 −12.2496 10 −56.25 −56.2500

11 −6.25 −6.2496 11 −42.25 −42.2500

12 −2.25 −2.2497 12 −30.25 −30.2500

13 −0.25 −0.2499 13 −20.25 −20.2500
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where n is the quantum number. rL and rR are inner (short

distance) and outer (long distance) classical turning point,

respectively, i.e., V(rL) = V(rR) = εn. κn is the momentum, i.e.,

 (13)

where V(r) is the potential, m is the mass and εn is the

eigenenergy of the n-th state. κn(r) is always positive

between rL and rR .

The phase shift δ(n) is

 (14)

where  =  and  = . Pn(r)

is the (minus) log derivative of the n-th state wave function

, i.e., . Of course, Pn(r)

satisfies the following Riccati equation,

.  (15)

Since the integrand in Eq. (14),  has

a dimension of momentum, we can also consider it as a

momentum complementary to the momentum κn. The sum

of two momenta,  is called the

quantum momentum function that includes the effect of

phase shifts occurring at the classical turning points. That is,

in addition to the phase loss, the phase shift δ(n) appears in

the ATMM quantization condition, Eq. (12). It can be

interpreted as the phase change resulting from the wave

scattered at the turning points. In general δ(n) depends on n

or eigenenergy εn. 

The well-known semiclassical WKB method is one of the

useful approximations for calculating eigenenergies of the

Schrödinger equation.13,14 Its quantization condition is

.  (16)

In Eq. (16), the  in the right hand side represents the

phase loss under the WKB approximation. Of course this

phase loss of  is only approximate. However, the WKB

method is exact for the harmonic oscillator or the Morse

potential15-18 so that their phase loss is definitely . 

The ATMM quantization condition Eq. (12) can be

rewritten as

.  (17)

Here we see that the term  in ATMM

represents the sum of phase loss and phase shift. If δ (n) is

, Eq. (17) becomes identical with Eq. (16). For both of

the harmonic oscillator potential9 and the Morse potential

( ),27 the δ (n) is calculated to be . Therefore we

can say that the phase loss is  and the phase shift is

 for the harmonic oscillator or the Morse potential. It

indirectly proves that there should exist a phase shift.

In our previous work,27 we exactly (analytically) deter-

mine the phase shift, eigenenergy, etc. of the Morse

potential, i.e., V(r) = , by using the ATMM method

with the aid of supersymmetry algebra.28,29 The phase

integral for momentum part is analytically obtained as

, (18)

and the phase shift is also analytically derived to be δ (n) =

 for any n. And the ATMM quantization condition of

Eq. (12) produces the eigenenergy 

that is identical with the previously known expression of Eq.

(8).

The discussions above are on the original Morse potential,

. And the conclusion was δ (n) =  for any n. In

order to understand the phase shift more deeply we have

calculated the phase shifts for variously altered Morse

potentials by numerically solving the Riccati equation (15).

The phase shift under discussion is the scattering-led phase

change of bound state wave at the classical turning points,

which is different from the phase shift of scattered wave in

continuum. For continuum state phase shifts of the Morse

potential, see Ref. 30. 

The test system chosen is the case of z0 = 27 (λ = 5, re = 1).

Here z0 = 27 is a bit smaller than the usual z0 value for real

diatomic molecules. But the purpose of calculations is only

to examine the change of phase shifts, not to obtain the

realistic values. The altered Morse potentials for which

calculations are performed are i)  defined previously, ii)

 in which the potential is infinite when r < 0.1, iii) 

in which the potential is infinite when r < 0.2, and iv)  in

which the potential is infinite when r < 1−ln2. Note that

(r) = 0 when r = 1−ln2. The altered potentials are

basically Morse type potentials but they are slightly different

to each other. In this way, we believe, the change of phase

shifts can be systematically investigated. The altered poten-

tials are summarized in Table 1.

The calculated phase shifts (in units of π) are tabulated in

Table 3. As the potential varies from  to , i.e.,

 →  →  →  → , the infinite wall of

potential (V(r) = ∞) comes closer to the left (inner) turning

point rL to increase the eigenenergy (higher). Since all of the

altered potentials are the same between the two turning

points, the kinetic energy (or momentum) of a particle under

 potential is smallest and the kinetic energy (or

momentum) under  potential is largest. Given a

potential, a particle with a large momentum is weakly

scattered so that the phase shift of scattered wave should be

small. Therefore the phase shifts must keep decreasing as the

potential varies from  to . This trend is clearly

manifested in Table 3. It also verifies that the phase shift

under discussion must be scattering-led phase change at the

classical turning points.

As n increases, the phase shifts decrease. The higher n

state has a larger total energy and the kinetic energy becomes

much larger than the potential energy. It certainly diminishes

the scattering so that the phase shift for higher n state is

small. This trend is also shown in Table 3. 
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For the altered potentials, of course, the WKB approxi-

mation is not valid. The WKB quantization condition with

the Maslov index is19,20

 (19)

The Maslov index μ is the total phase loss during one period

in units of . For the Morse potential , μ is exactly

2. μ is, in general, non-integral and depends on a potential. A

wave function is required to evaluate an exact μ. If we

consider μ as an n-dependent parameter that makes the

quantization condition Eq. (19) exact, we can equate Eq.

(12) with Eq. (19) to have

μ (n) = 4(1−δ (n)/π)  (20)

With the phase shifts in Table 3, we can calculate the Maslov

index for our altered Morse potentials. The μ for the n = 0

state are 2, 2.00, 2.01, 2.04, 2.10 for , , ,

, and , respectively. The Maslov index becomes

further off from 2 as the potential gets more altered. This

simple observation does not offer any new concept but it

confirms that one has to know a wave function beforehand

when the exact results are desired. And the phase shift δ (n)

must be dependent on the wave function as given in Eq.

(14).

The supersymmetric WKB (SWKB) method,21,22 based on

supersymmetric quantum mechanics,28,29 has also been

suggested. The lowest order form of SWKB for unbroken

supersymmetry to which the Morse potential belongs is

 n = 0, 1, 2, …. (21)

 is defined for the hierarchy of Hamiltonians H(s) (s =

1, 2, 3…) as

 (22)

The two turning points  and  are given by  =

 = 0. W (s)(r) is a superpotential for hierarchy s. For

details, please consult Refs. 28 and 29. The Eq. (21) is

proved to be exact for the ground state (n = 0) of each H (s)

for a shape invariant potential. Note that for a shape

invariant potential, the ground state energy can be shifted to

zero. Because  =  for unbroken supersymmetry,

the SWKB quantization condition gives the exact eigenener-

gies for all n states of a shape invariant potential (H(1)).17 The

lowest order SWKB quantization condition Eq. (21) is exact

for the Morse potential ( ) because the Morse potential

is shape invariant. For the altered potentials ( , etc.), we

find that the SWKB is not exact though our altered

potentials are still the shape invariant Morse potential. That

is because the wave functions of the altered potentials are

different from that of . Note that the SWKB

quantization condition depends on W (s)(r), i.e., consequently

on the ground state wave function.

The above analyses shed a light for understanding the

nature of phase shift. The scattering-led phase shift of bound

state wave function occurs at classical turning points when a

particle is oscillating between the two turning points. This

phase shift must be non-zero when the potential in the

classically allowed region is not constant.

Conclusion

Through the analytical transfer matrix method, we have

examined the phase shifts of bound state wave functions of

the Morse potential appearing in the quantization condition.

During the course of work we have learned the followings. i)

In addition to the phase loss emanating from the quantum

effect that a wave function should exist in a classically

forbidden region, there should be another term (called phase

shift) accounting for the phase change. ii) The phase shift in

ATMM quantization condition is none other than the phase

change of scattered wave at classical turning points. iii) For

the Morse potential , the phase shifts are  for all

bound states. For this case the WKB method is exact. The

WKB method is not exact for potentials like , etc.

where the phase shifts are not exactly , while ATMM is

still exact.

The potential function for real diatomic molecules should

be infinite when the two atoms are in contact, i.e., the

potential should satisfy the boundary condition of V(r) → 

as r → 0. However, the frequently used form of Morse

potential ( , Eq. 5) does not possess correct boundary

conditions for real diatomic molecules. The Morse potential

with the correct boundary condition ( ) has been

examined by calculating the eigenenergies of various

diatomic pairs. And it is found that for real diatomic

molecules, the eigenenergies of  are virtually identical

with those of . iv) Therefore the original Morse

potential can be, without a loss of accuracy, applied to real

diatomic molecules.
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