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The changes of azimuth and ellipticity due to the linear dichroism and Kerr effect are analytically obtained in
the critical region, when the incident light is completely linearly polarized above (or below) the horizontal at
45°. The results are discussed in two extreme cases in the critical region.
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Introduction activity* when the correlation of density fluctuations is
neglected. Subsequently, we introduce a renormalized pro-
When a static uniform field is applied to a fluid perpendi- pagator by using the average polarizabily and dielectric
cular to the propagation of light, molecules in the fluid aretensors of the fluid. In section Il we first obtain the change
partly oriented. This renders the fluid anisotropy and gives ibf azimuth caused by linear dichroism employing the Orn-
birefringence, that is, the ability to refract light differently in stein-Zernike form of the correlation of density fluctuations.
two directions:® This effect is called the Kerr effect. One of This change is due to the imaginary part of the renormalized
theoretical methods to discuss the birefringence is based gopagator of the fluid due to the correlation, since the
the Rayleigh theory of scattering. Lord Rayl€igiointed  molecular polarizability tensors are assumed to be real in
out that the refraction of light is a consequence of lightnonresonant frequency region. The approximate results are
scattering. The individual molecules scatter a small part ofiven in the two extreme cases in the critical region. Finally,
the incident light and the forward parts of the resultingthe change of ellipticity due to Kerr effect and density
waves combine and interfere with the primary wave, resultfluctuations is obtained and discussed in the critical region.
ing in phase change which is equivalent to an alteration oft is noted that the effects of optical activity on the changes
the light velocity. Thus, owing to the anisotropy of the mole-of azimuth and ellipticity are neglected.
cular polarizability tensors induced by the external field,
there is phase difference between the axes along and perpen- Theory
dicular to the direction of field. Since Kauzmartreated
birefringent scattering including optical activity with the aid Let us consider monochromatic light propagating along y
of quantum mechanical theory, many authtf$ave studi-  and incident on a scattering cell, which is assume to be an
ed birefringent phenomena theoretically by considering thénfinitely wide lamina (xz plane) with the infinitesimal
interactions between molecular polarizability tensors andhickness relative to the wavelength of light. If only a small
light. It is not adequate to discuss the birefringence in thdraction of the wave is scattered by the fluctuating chiral
critical region of a fluid by the Rayleigh scattering theory, fluid in the scattering cell, the disturbance reaching a point
since correlation between the fluctuating variables becomeat R, a large distance from the lamina in the forward
important in the critical region near the critical pdfht? direction is essentially the original light plus a contribution
The purpose of the present paper is to discuss the criticdue to the scattering by the fluctuating fluid in the lamina.
behavior of the phase change of forward-scattered light du€he total light aff is the sum of the primary wave and the
to the linear dichroism and Kerr effect in a chiral fluid. A scattered light from the lamina, which is giveh as
static electric field is applied to the nonpolar chiral fluid,
which is composed of spherical chiral molecules with the E}, = %6,,B+ %icwy{f,g dy%ogexp[iw(RO/c—t)], (D)
same diameter and then some refringence is induced by
distorting the molecular shape to some degree. It is, howwherec is the light velocity in vacuumy,,; is the forward
ever, assumed that even though the anisotropy of moleculaomponent of the macroscopic polarizability density tensor
polarizability tensors is induced, the spherical shape is mairsf the chiral fluid, which will be discussed in detail latty;
tained. Then, we may easily extend the result of polarizais the thickness anBg is the incident light. From now on
bility density tensor of a nonpolar chiral flitd® to the  we shall take units such thais unity.
present problem. The light Eog can be written as the sum of two coherent
In section I, the relationships between the changes dfields completely linearly polarized in theandz directions
azimuth and ellipticity of a scattered light and anisotropy of 2 CES+ES @)
polarizability tensor of a fluid are obtained with the aid of 0T X o
the Stokes' parameter&t'®From the relationship we obtain ~ The general pure polarization state can be described in
the attenuation intensity, Rosenfeld equation and opticalerms of the ellipticity,7 and azimuth,8.*° Then, the
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Table 1 The definition of six basic polarized lights

Kind of polarized lights 0 n
horizontally linearly polarized light 2 0
vertically linearly polarized light 0 0
linearly polarized light above the horizontal at 45 174 0
linearly polarized light below the horizontal af45 -4 0
right circularly polarized light 0 -r4
left circularly polarized light 0 m4
complex amplitude may be written as
E, = E, [(cosBcos) +i sindsinn) X

+ (sind cog) +i coBsinn) z], ©))
where

T T T T

<Pz, —=<n<=
203 =n=y @)

The six basic polarization states of the incident field are
given in the Table 1.

The Stokes parameters for the incident and scattered lights

are defined dg+1¢

lo= <onon*> + <Eoonz*>, Mo = <E0><on*> - <E02Eoz*>|
Co= _(<onEoz*> + <Eoonx*>),
_i(<onEoz*> <E02on*>)
|f—<E Ex "> + <E Ez "> M=
= _(<E><Ez >+ 45zEx >), S=

<E)(Ex > = <E2Ez
—i(<EE;> - <EZEX >),

Q)

where the subscripts andf in the above definition denote
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+ (i YiIM]dy, (60)
S =-i(E E; -E; EX)
= SHSRA (V= Vilo = (at VoM,
= (= VAo + (et Vi) S1dy. (60)

In Egs. (2.6)Reandim denote the real and imaginary parts,
respectively. The changes of intensity, azimuth and ellipti-
city are effectively infinitesimal so we can write-1 =dl
6;—6=d6 andn;—n=dn . The differential equations for
the changes of intensity, azimuth and ellipticity with the
respect taly are given as

dl

dy M =l w[IM(Yee + Vo) +IM(Yex— V.,)cOs21cos 29
_Irn()}xz+ )}zx)0052700329‘Re())xz— )}zx)Sinzn]i (7a)

49 2([|m()}xx + ;) COS2D-R€( Yox — i) SiN26]

dy
tan2:7+[|m())XX Vo2 SiN20+Im( .+ Vi) cos 28/

the incident and total forward lights, respectively, and the tan 25 -tan2 = 2d9/cog26,

sharp brackets represents the statistical average.
The Stokes' parametgrof the transmitted wave is, using

Eq. (1)
lf = <EEx > + <EE, >
= [(3p+i% V(- |2 Vi)
+ (O +'2 Vas AY) (O =i % Vzde)]<El3Ey

Using the definition of Stokes parameters given in Eq. (5),
we obtainl; and the other parameters up to the first order of

dy as follows
l= Io_%)lm[(yxfx + y;y)|0+(yxfx_ y;y)Mo_
(Ve + 03) Co=i (Joy— %) Se1 A, (6a)

M = [Eq En3-[Er, Er0
rMo_%)lm[(y;x + )’sz)|0+(fo_ nyZ)Mo_(yfo"' nyX)Co

Vo) Sl dy, (6b)

_i(yxfz_

Ci = [Ey E[+ [Ey, Er0

|—Co+%)lm[(y>zy+ nyx)Io_(y;Z_ nyX)MO_(%X-{- nyZ)CO

coS27=1M(Ver— Vi) (7b)
0 SI-Re(yh— )sin26-Rel Yo+ Yo)cos 28]
+ [IMm(Yx— Vi) cOS28-1m( .+ ) sin26]sin2n
+ Re(Yho— Vo) cOS 2], (7¢)
where we have used the relations
tan 2y — tan2) = 2dn /cog2n, (8)

For the linearly polarized light above (below) the horizontal at
45°, we obtain

& = 1 SAMOA V) HImOr ), (92)
33 D eim( o= V)= Im(she— Yo, (9b)
y:_Z[quVxx_sz)_Rdez_))zx)]- (90)

The sign + corresponds to the lights polarized linearly
above and below the horizontal af 4&spectively. The first
equation, Eq. (9a) describes the absorptiathe absorptive
parts of the molecular polarizability tensors and the effect of
density fluctuations; Eq. (9b) expresses an azimuth change
due to linear dichroism brought about through a differential
absorption of the two linearly polarized components of the
incident light resolved along theandz directions and Eq.
(9¢) shows the corresponding ellipticity change due to linear
birefrigence, that is, Kerr effect. We may apply these
equations to discuss various kinds of phenomena contained
in Egs. (7).

Let us consider a chiral fluid. The fluid is nonpolar before
an external static electric field is applied. The molecules in
the fluid are assumed to be spherical with diamet@he
anisotropy in the fluid is generated in the fluid by a partial
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orientation of the induced moment due to the field and
fluctuations of fluid density, assuming that the molecules are
still spherical. Then, extending the previous theory for the
macroscopic polarizability density tensor of the nonpolar
chiral fluid}**® we may easily obtain the macroscopic
polarizability density tensor of an anisotropic chiral fluid as

follows;

Vas(k, @) = Vas(k, ) +Vag (K,0);

(10)

_ _ P ' ' '
Vap(K, @) = 0gpPo _&(27'04‘[ dkdw S(k—k, w—w)

aaarKafB'(k' ) O)’) Apg,

Vap (K@) = Vap (K, @) o

2

+ &%dewdw S(k—K, w—a)

aaa’l—o}r/’cx”(kliw)(ﬁ_ﬁ')a"ﬁy

2

- &%Ifdkdw Si(k—K, w—a)

(11a)

UaaKaar (K@) [Varp (K, 00)+ Varpr(K, )]

2

- &%Ifdkdw Si(k—K, w—a)

aaa’K;”cx”(k'!w)[y;’ﬁ (k’,(;)')"'y(;'ﬂ[g (k,O))]

In Egs. (2.11) we adopted the tensor notation in which the
is

(11b)

repeated indices mean summation over the indiggs,
the second order molecular polarizability tengmrjs the

density of the fluid at equilibriun&(ﬁ, ) is the correlation

function of density fluctuations given as

Si(k-K, w—w) = p>p(k,w)Ap(k, o)

Yap andy,; are given as

(12)

Yap (K@) =1(B=B)ap/ki* Aaalap (K, ) (B— B )ppy
Vap (K@) = 1(B=B)apki*20aa Lo (K@) (B—B)ppy.

(13)
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i — 2 Olm[(uB)nm(MA)mn]
g, = =3 — o)
Basy hZP of—wﬁmﬂlglmosw ByA
2| oa%mRe[(UB)nm(ng)mn]
+ =20, - , 14c
h =P wz—wﬁmﬂlglmosw (14c)
wherep; is defined as
pn = exp(—En/keT)/ Y exp(—Eq/ksT) (15)

whm 1S the circular transition frequency from the n-th state to
the m-th statey, M andg are the electric dipole moment,
magnetic moment and electric quadrapole moment, respec-
tively; € is an infinitesimal positive real numbe@ékxs anddus,
are the Kronecker delta and Levi-Civita tensor, respectively,
and ksT is the Boltzman factor. The above results were
obtained by the quantum statisitical method and thus are
different from quantum mechanical results in the sense that
the tensors show the temperature dependence and the time
reversal symmetry is introduced to obtain the tensors.

First let us consider the isotropic fluid, neglecting the
effect of density correlation. In this case we may use the
orientational average for the tensors, that is,

1 R
[haBD: éaoﬁaﬂ ma[iy[l: DﬁaByD_ éﬁodaﬁyl (16)

wheré’

00 RE (Do B ] (172)

2
a, = =20, - )
3h=P af_wﬁm+|lg|m0£w

_ 2« o M) on(M)mil
Bo= Sthnwz_ ot ”JE“OW (17b)

Substituting Eq. (16) to Eq. (9), we have

d__1

dy - 3Im(a0)p0a)l, (18a)
do_ _1 1 0 2

G- 6|m[%1 3aopo[,eo}pow , (18b)
dn__1 1.0

dy = —GR{%[ 3aopo[ﬁo}p0w2. (18c)

Ltz and Kz are the propagator due to the existence of In Egs. (2.18b) and (2.18c) the term-§b,p,) is the

discontinuity between molecules at the Lorentz cavity anctorrection for the undue differentiation at the Lorentz cavity.
the renormalized propagator, respectivélgnd 8 and B’
are the third order molecular polarizability tensors. @hg

andB’ are given as

From the Eq. (18a) we obtain for the final attenuation
intensity in a cell with a finite path length

1
I =l.exp —3Im(a,)powl |. 19
00y = 25 ChnR L (e )on( )] e {-3m(ana] (19)
a n 2 2 . ’
h w _0-)nm+|!€";n0£w where |, is the initial intensity. The Eq. (18b) shows the
2 oIM[(Ue) sl M) il famous Rosenfeld equatfofor the azimuth change in an
s = 5200 Lo —Alnal 5 isotropic fluid as follows
Pes = pwz—wﬁmﬂlimogw n P
2i Re[( ) (9pnd] AG:‘%'m[E—%aopoEpopo}wzl. (20)
+ FlzPﬁw”m Ha)om 9y mn , (14b)

o — W+ ilim e
£ -

It should be noted that in the original Rosenfeld equation it is
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written as Whenx, y << 1,f(x, y) andg(x, y) become approximately 1/3

1 and 1. We may use the static approximation for the corre-

=-3 lation function in the case that the velocity of a molecule in
the fluid is very small compared with the light velocity. We

'Ehe expressioim(B,)w corresponds to@,, . Theterm-(1 take the Ornstein-Zernike correlation function as the static

éaopo) is not included, when a molecule is considered. Thdunction, which is given as
ellipticity change is given as Si(K—K , w— ) =27 w— 6 )S,(K— K):

A8 =-3Gq (f)pocd. (21)

_1nd0l, 0 ) = — KeTX
An = GRY HF5aupcfips o (22) SK=K) = Ty 27)
wherek is the isothermal compressibility factor ahi the

The results in Egs. (21) and (22) confirm the fact that th . . .
. i . . correlation length of density fluctuations.

linear dichroism and Kerr effect do not exist for the forward- It is verv easv to investigate the effect of density fluctu-
scattered light in an isotropic achiral fluid and the changes of Yy Y 9 y

i S : L ations on the azimuth and ellipticity in the nonresonant
azimuth and ellipticity are caused by optical activity in an : . . A
. . . . frequency region. In this region the molecular polarizability
isotropic chiral fluid.

X . . .tensors can be considered real and their dependence on
Now let us consider an anisotropy fluid caused by a stati .
. g . ; . : . frequency can be approximately neglected. Thus, the tensor
uniform electric field applied to an isotropic fluid perpendi-

f o .
cular to the propagation direction and af #é6the azimuth Yoo IS QIVEN AS
of an incident linearly polarized light (thus the electric field
is applied along the-direction). First, let us assume that the
light varies slowly over the molecular dimension. This
assumption is obviously valid in the nonresonant frequency
region where the frequency dependence of the polarizability
tenors can be neglected and thus it can be said that the
tensors are real in the nonresonant region. The effect of the
term in Eq. (11b) is also neglected compared with that in Eq(.)f

e

1 £0+2 a
(2m)*3(&.—1)
Sik—K , w— o) x aupoKaa(k' ).  (28)

y;a(k,(})) = Qqafo™ iapg dk'dw

Results

Now we are ready to give the final results for the changes

(11a), since Bk || <<d{|] in optical frequency region,

[I---]| being the norm of tensor. Let us define the average oé.
. - . |
the second order molecular polarizability tensor and dielec

tric tensor of the fluid as

azimuth and ellipticity in the critical region.

The change of azimuth in critical region The linear
chroism is obtained from the imaginary parts of the tensor
components given in Eq. (28). Substitution of Eq. (27) into
Eq. (25) leads to

- aXX + zaZZ. —
ao 3 ’ azz ayy- (23) |my(k, w);)( - A Eﬁ_ (] + 2|j2( axxpo)ZkBT)gwafl(Syr)a
32nd 3 O Kwé (29a)
Thus the Lorentz-Lorenz formula is given as
e (o 1 e+ 2KeTX 5
oo = 3(&,—1)/(£:+2). (24) IMUK, @)zz = 7573 (02) keoz?” fa(sir),
where g, is the average dielectric constant of fluid at equi- (29b)
librium. The renormalized propagator in a fluid is expressed
I : “Where
by the average molecular polarizability tensor and dielectric ,
-11 2 2 2
o) = oL g s 2sny
ko) =+ [(ak,aw) + 3KsKy0
UoPoKa(K, ) = —5 /'(ak,aw)%l— >
3 Makaw)+1 2 O 5 5 2 5
1 fo(sr) = 2ES[LESO 4 Lr S 22810 (50
-3l W(ak.aw)-1][(akaw) + 3] 2> sr |02 O 0+ &%+ 252
. - kg,kg,[l _ fwno — fk
IKe—(w +ilim £) x Y(akaw)] 'H -5 (25 = =
[K=(02+ilimg) x Wakaw)] " H -5 (25) TP TIII L
where the functions are The change of azimuth@is
_ _ -1
") = 32NN L= ol ()T AB(K ) = 16%3%252 tisz ¢
Wxy) = aopg(xY)[1- Aol (XI ™. (26) X ) i
f(x y) = _lg. [Si_n)_(%cow + ys|ny) [axxfl(syr)"'zazzfz(s,r)]p0| . (31)
' xdx x ' where the sign £ corresponds to the lights polarized linearly

g(xy) = cos<cos/+§sinxsiny.

above and below the horizontal at 4fspectively. Let us
take the zeroth approximation fgrthat is,
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kMnow; no = &5°, 32 +2
b0 o = & ( ) Re Vlzz(k 0) - Crzzpo 27712[%%_1;}(022/)0) kBTKék
wheren, is the refractive index.
When the system is in the critical region far from the 9 1k [Eo+2
critical point, that iséwn.<<1, we have [ Q(aopo)~ 16 (8" 3 %D(Ek)} (36b)
IMY )iy = ~Br° sl’%uﬁ(axxpo) ksTxw’, (33a) where we have neglected the term proportion&itandthe

1 19 Ef functions are defined as
MYt =~ FEom 20 (0.p0) ke TX S, (33b)

6me o -
; Q(aopo) = [ dxT () [1+T (x)]™,
+2
AB(w) = F gi’%@; ke Tx "
247‘[ D(EK) = Sln 1 — 2b + 3(1 b2)1/2
[(@0) = (00) ] (33c) k
The A8 becomes divergent as the isothermal compressibility b = (1+ sz)w (37)
coefficientk diverges ag? and is proportional tof.
If the system is very close to its critical point, the resultsThe functionQ(a.0,) may be approximated as
are
3nr 3a.0, f
M@ = e B2 (0,00 )ZKBTK %) 5 15+ 20,p,0 (39)
XX — D XXMo
167m, When the fluid is in the critical region far from the critical
[1-2In(2&n,w)], (34a)  point, ®(&k) becomes
8
ImpY)., = 871“ Eﬁdﬂz(azzpo)zkﬁ*” , (34b) ®(&) Hig k. (39)
If the system is very close to the critical point, the function
+2 has the following maximal limit value
AB(w) = +_1én },ZELEFKBT &2f g
1
[P 11-IN(28E0,0)] -2 011, (340) PO 40)
if énycw>>1. The first term is much Iarger than the other in the two
When the system is extremely close to the critical point, theXtreme cases. Thugk, O)"“’ becomes
behavior ofAfis described by Eq. (34c), whieri] n,ca The f __ 1 [Et+2 2 2
effect of density fluctuations in the casefafn, >>1 is quite Rey(k,0)aa = 2717k, — 1%0“”'00) ke Tk
different from that given in eq. (33c). It is logarithmically 9 lQ(a ) (41)
divergent. Futhermore the change of azimuth close to the g <\doPo):

critical point behaves as extinctiaf rather thanw® It is if a<<{.
very interesting that the change of azimuth shows th
phenomena of critical opalescericé.
The critical behavior of the ellipticity change The real 1 [&+2)
picity chang Btk ) = 65 5 | (@)

eI'he components of dynamic part are expressed as

part of y,, may be written as,

Re))aa(k w) - aa[;po+Re))aa(k 0)+Re¢aa(k w) (35) X kBTKE_Z(JJZk_l 1(r S), (42&)

— L
The first part in the right hand side of Eqg. (34) is due to the AYedk, ) = n{ } (@)’
anisotropy of molecular polarizability tensor. The second
and third terms are due to the static and dynamic parts of the % ke TKE WK Ho(1,5). (42b)
renormalized propagator, respectively. The static part can behere the functionbkl; andH; are given as
analytically obtained in the case that the correlation length is

much larger than the diameter of a molecule, thdt¥s;a. _ 12
The solutions are given as o(19) = %H 2% 4 Zrz%l (1—r )
2 +5rf —32 r
Re YooK, 0) = QxPo (€t 201 1 ) keTK 1+ x tan™ D— (43
ool 0) = aopit ol (35 (@ haTHE Sy el ()

[%Q(aopo)—g%z—f(so—1)%54%2%13(&)},(36a) Ha(r,9) = Bmsht 25 %sm - (1)
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[1 + [;L+sz[‘q x tarr [[@—sz Ay(w),q of Egs. (48). Thug\n(w) in the case ofn>>1 is

L1 (43

Chgr2O Ui+s?Ha —ry2) expressed as

When the system is in the critical region far from its critical An = :Fl(axx 0z7) P Fs eilzcu[f
: ) 4 256m° 0 3 O
point, the functions become
2 2
Ha(r,9) = 88/, Ha(r,9) = 481k, (44) [3(ax0)” — (azzpo) ] xkeTkE™ wl, (49)
if &k, andéwn, <<1. if &now>>1.

Using these results, we obtain
2
Ayha(k, @) = %{(ST”)} (Toapo) ke TKE WP, (45)

if E&kandén,w<<1.

The term due to the density fluctuations is proportional to
«?, while the molecular contributing term behavesuaghe

effect of density fluctuations becomes important as the
system approaches the critical point. Extremely close to the
critical point the term can be comparable or larger than the

From Egs. (41) and (45), the change of ellipticity is express-
ed as

molecular contribution.
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An =FZ(1+ A) (o= a)pol, (46)

if énow<<landé>>a,

1.

where the sigrF  corresponds to the lights polarized linearly
above(below) the horizontal at%Bespectively.

2.

54 &t 2)(axt azz)pokBTKF 3

[T[(s ~1) aQ(C"oPoH(e0 + 2)5(02} 47)

The parameteA describes the effect of density fluctuations

on ellipticity change. The molecular effect An is larger 6.
than the effect of density fluctuations in the case that the7.

system is far from the critical point.

If the system is very close to the critical poi( w)h, is 8.

obtained by using the zeroth approximationkfor Eq. (32) 18-
8yl = S B2 DT (@, p ) HeThE F,  (482)

64 11.

if &nocw>>1. ig

5 + 2 14

AyAw) = e [‘8—)} (apo)kaTkE'SF, (48D) 15

16.

if &now>>1. 17.

y(r,0)%. given in Eq. (41) can be neglected compared with
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