Design and Synthesis of Quipazine Based Re-Complexes for the Development of Potential SPECT Imaging Agents with ${ }^{99 \mathrm{~m}} \mathbf{T c}$ for 5-HT Transporter

Mi-Young In, Dae Yoon Chi, ${ }^{\dagger}$ Sun-Ju Choi, ${ }^{\ddagger}$ Kyung-Bae Park, ${ }^{\ddagger}$ and Cheon-Gyu Cho ${ }^{*}$
Department of Chemistry, Hanyang University, Seoul 133-791, Korea
${ }^{\dagger}$ Department of Chemistry, Inha University, Inchon 402-751, Korea
${ }^{\ddagger}$ Radioisotope \& Radiation Application Team, HANARO, KAERI, Daejeon 305-301, Korea Received July 18, 2002

Abstract

6-Nitroquipazine has higher binding affinity for SERT than other selective serotonin reuptake inhibitors. We have prepared 6-nitroquipazine based rhenium complexes which would lead to the development of potential SPECT imaging agents with ${ }^{99 \mathrm{~m}} \mathrm{Tc}$ for $5-\mathrm{HT}$ transporter.

Key Words : Serotonin, Radiotracer, SPECT, Technetium, Rhenium

Introduction

Serotonin transporter (SERT), responsible for the reuptake of serotonin $(5-\mathrm{HT})$, plays a key role in the regulation of synaptic serotonin levels. ${ }^{1}$ Although not fully understood yet, $5-\mathrm{HT}$ is thought to be implicated in many mental disorders including depression, anxiety, schizophrenia, eating disorders and obsessive compulsive disorder. ${ }^{2}$ Serotonin transporter sites are the primary targets for common antidepressant drugs such as fluoxetine, sertraline, and paroxetine. In vivo imaging of SERT in living human beings have been pursued either by PET (positron emission tomography) or by SPECT (single photon emission computed tomography) in order to understand the neurological mechanisms underlying those psychiatric disorders. ${ }^{3}$
Except for a few successful cases, for example, $\left[{ }^{11} \mathrm{C}\right](+)$ McN5652 ${ }^{4}$ for PET and $\left[{ }^{123} \mathrm{I}\right]$ IDAM ${ }^{5}$ for SPECT, the development of such radiotracers has met with only limited success mostly due to their low signal to noise ratios and poor selectivity. ${ }^{6}$ For a routine clinical use, SPECT imaging is preferred to PET technique for its operational convenience and practicality. Both ${ }^{123} \mathrm{I}$ and ${ }^{99 \mathrm{~m}} \mathrm{Tc}$ are the common radionuclides suitable for SPECT imaging. Attachment of ${ }^{123}$ I to a target substrate is normally made through the displacement reaction of ${ }^{123} \mathrm{I}^{-}$with trialkyltin group on the aryl moiety of the target molecule. Introduction of ${ }^{99 \mathrm{~m}} \mathrm{Tc}$ is rather difficult, in synthetic point of view, since it requires a multidentate ligand, connected covalently to the substrate for stable Tccomplexes. ${ }^{7}$ Furthermore, the connection of such chelating groups to a substrate inevitably causes the increase of molecular weight and possible conformational changes, which may lead to the reduction of its binding affinity in several orders. The advantages of ${ }^{123} \mathrm{I}$ are, however, overshadowed by its lesser accessibility, requiring a cyclotron for its generation. It is thus much desirable to develop radiotracers based on more readily available ${ }^{99 \mathrm{~m}} \mathrm{Tc}$, despite the aforementioned drawbacks.

In this present work, we wish to report synthesis of several 6-nitroquipazine ligands as well as Re- and Tc-complexes as novel potential radiotracers for the imaging of SERT. We
chose 6-nitroquipazine for its high binding affinity with SERT. ${ }^{8}$ In fact, Mathis et al. reported syntheses of 5-[$\left.{ }^{123} \mathrm{I}\right]-6$ nitro quipazine and $5-\left[{ }^{76} \mathrm{Br}\right]-6$-nitroquipazine derivatives for SPECT and PET imagings. ${ }^{9}$ Rhenium is a congener of technetium in group VIIa of the periodic table that is commonly used as a model for synthetic viability and spectroscopic characterizations.

Results and Discussion

Adopting the better synthetic procedures developed by one of us, ${ }^{10}$ we prepared the key 6-nitroquipazine derivative $\mathbf{1 0}$ with hydroxypropyl handle, starting from 3,4-dihydro$2(1 H)$-quinolinone 1. Deprotonation with 2.0 equiv of LDA at C3 position, followed by quenching with 3-bromopropanol TMS-ether (2) provided the silyl ether $\mathbf{3}$ in 85% yield. Desilylated alcohol was nitrated to give the dihydroquinolinone 5 in overall yield of 40%. The acetylated product 6 was treated with phosphorus oxychloride and DDQ to give the 2-chloroquipazine 7 in 80% isolated yield. Displacement reaction with 1-piperazinecarboxaldehyde (8) provided 9 , which was deacetylated to the alcohol 10. The resulting alcohol was reacted with MsCl in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to furnish the mesylate 11 in 52% yield (Scheme 1).

The mesylate 11, however, did not undergo substitution reaction with the tetradentate ligand 12. Instead, it underwent intramolecular displacement reaction, leading to the formation of the cyclic ammonium species $\mathbf{1 3}$ as shown in Scheme 2, which might be the reason for the low yield in the mesylation step.

Change of the mesylate group on $\mathbf{1 1}$ to the bromide or tosylate gave no improvements. Use of the OH group as a nucleophile would be a reasonable alternative. The alcohol 10 was treated with bromoacetyl bromide, before the coupling with $\mathbf{1 2}$ to provide the 6 -nitroquipazine derivative 14 bearing the ligand for the chelation of Tc or Re.

The ligand $\mathbf{1 5}$ was subjected to ${ }^{99 \mathrm{~m}} \mathrm{Tc}$ loading conditions to produce the ${ }^{99 \mathrm{~m}} \mathrm{Tc}$-complex $\mathbf{1 6}$, which was isolated in pure form by reversed phase HPLC. However, we noticed partial decomposition of the starting ligand and the product ${ }^{99 \mathrm{~m}} \mathrm{Tc}$ -

Scheme 1. Preparation of the piperazine substituted 6-nitroquipazine derivative.

Scheme 2. Result of the attempted displacement reaction of the mesylate $\mathbf{1 1}$ with $\mathbf{1 2}$.

Scheme 3. Preparation of the 6-nitroquipazine- $\mathrm{N}_{2} \mathrm{~S}_{2}$ ligand system 15.

Scheme 4. Incorporation of ${ }^{99 \mathrm{~m}} \mathrm{Tc}$ onto the ligand 15.
complex at the ester linkage during the incorporation of technetium (Scheme 4).
Due to the instability of the ester linkage, we decided to connect the $\mathrm{N}_{2} \mathrm{~S}_{2}$ tetradentate ligand directly with the 6nitroquipazine group via a reductive amination pathway. At this point, we changed the protecting group of the piperazine from formyl to the more stable Boc-group. With the same steps used for the alcohol 10, we prepared the alcohol 19
bearing Boc protecting group in a comparable overall yield (Scheme 5).

Oxidation of the alcohol 19 did not proceed as smoothly as we expected, but still provided sufficient amount of the aldehyde $\mathbf{2 0}$ with PDC in 41% yield. Reductive amination of the aldehyde 20 was successfully carried out to give rise to the corresponding precursor 21 in 80% yield (Scheme 6).

Removal of the trityl groups with Hg^{+2} provided 22 in

Scheme 5. Preparation of the Boc-protected 6-nitroquipazine derivative.

Scheme 6. Oxidation and reductive amination of the alcohol 19.

$\left.\begin{array}{l}23: Z=-t B o c \\ 24: Z=-H(72 \%)\end{array}\right] \begin{gathered}3 \mathrm{~N} \mathrm{HCl} \\ \mathrm{EtOAC}\end{gathered}$

Scheme 7. Deprotection and formation of the Re-complex 23, 24 and 25.
moderate yield, which was subsequently treated with trichlorooxobis(triphenylphosphine)rhenium ${ }^{11}$ to furnish the desired Re-complex 23 in 49% yield. We also prepared the Boc-deprotected Re-complex 24, upon treatment of the complex 23 with 3 N HCl in EtOAc. The Boc-deprotected ${ }^{99 \mathrm{~m}} \mathrm{Tc}$-complex, however, cannot be prepared with the same sequence used for the Re-complex 24, for its short half-life $\left(t_{1 / 2}=6 \mathrm{~h}\right)$. Thus, the Boc group on 21 was removed with 3 N HCl to the ligand system 25, prior to Tc loading step (Scheme 7).

In summary, we have prepared two 6-nitroquipazine based Re-complexes for in vitro binding study against SERT and spectroscopic characterizations plus one ${ }^{99 \mathrm{~m}} \mathrm{Tc}$ c-complex for in vivo SPECT imaging of SERT. Syntheses of ${ }^{99 \mathrm{~m}}$ Tcversion of $\mathbf{2 3}$ and $\mathbf{2 4}$ as well as their in vitro and in vivo study are under progress and will be reported near future.

Experimental Section

General methods. All ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a 400 MHz Varian NMR spectrometer operating at 400 MHz for ${ }^{1} \mathrm{H}$. Flash column chromatography was performed with Kieselgel 60 Art 9385 (230-400 mesh). All solvents used
were purified according to standard procedures.
3-[2-(4-Formylpiperazin-1-yl)-6-nitroquinoline-3-yl]propyl $\boldsymbol{\alpha}$-Bromoacetate (14). To a solution of $\mathbf{1 0}(20 \mathrm{mg}, 0.058$ mmol) in 1.5 mL of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was dropwise added $\mathrm{Et}_{3} \mathrm{~N}(8.9 \mu \mathrm{~L}, 0.064 \mathrm{mmol})$ at $-20^{\circ} \mathrm{C}$. To the mixture was added bromoacetyl bromide ($5.6 \mu \mathrm{~L}, 0.064 \mathrm{mmol}$) dropwise at $-20^{\circ} \mathrm{C}$. After 15 min at $-20^{\circ} \mathrm{C}$, the reaction mixture was warm to rt and stirred for 9 h , which was then quenched by the addition of water. The mixture was extracted with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The product was isolated by flash column chromatography with EtOAc/ hexanes ($2: 1$) to give $\mathbf{1 4}(18.7 \mathrm{mg})$ as a yellow solid in 69% yield: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.62(\mathrm{~d}, J=2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.34(\mathrm{dd}, J=9.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~s}$, $1 \mathrm{H}), 7.89(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.81$ $(\mathrm{s}, 2 \mathrm{H}), 3.78-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.62-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.46-3.43(\mathrm{~m}$, $2 \mathrm{H}), 3.36-3.33(\mathrm{~m}, 2 \mathrm{H}), 2.91(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.20-2.13$ $(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.0,162.4,160.8$, $148.3,144.0,138.2,135.0,130.0,128.7,124.2,123.4$, $122.6,65.3,50.5,50.0,45.5,40.0,25.6$; FT-IR $\left(\mathrm{CHCl}_{3}\right)$ 2924.5, 2854.4, 1738.0, $1670.8 \mathrm{~cm}^{-1}$; HRMS (FAB) m/z $(\mathrm{M}+1)^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{BrN}_{4} \mathrm{O}_{5} 465.0774$, found 465.0785.

3-[2-(4-Formylpiperazin-1-yl)-6-nitroquinoline-3-yl]propyl N -(2-tritylsulfanyl-ethyl)-[(2-tritylsufanylethylcabamoyl)-methyl]- $\boldsymbol{\alpha}$-aminoacetate (15). To a solution of $\mathbf{1 4}(18.7 \mathrm{mg}$, $0.04 \mathrm{mmol})$ in 1.5 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was added $\mathbf{1 2}(55.9 \mathrm{mg}$, $0.08 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(8.5 \mathrm{mg}, 0.08 \mathrm{mmol})$ at rt. After 24 h , the reaction mixture was quenched with water and extracted with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The product $\mathbf{1 5}$ (16 mg , 37%) was obtained by flash column chromatography with $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(2: 1)$ as a yellow solid in 37% yield: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.56(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.32$ (dd, $J=9.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}$, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.377 .12(\mathrm{~m}, 30$ H), $4.10(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{dd}, J=5.2,4.8 \mathrm{~Hz}, 2 \mathrm{H})$, 3.54 (dd, $J=7.2,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{dd}, J=5.2,3.2 \mathrm{~Hz}, 2 \mathrm{H})$, 3.31 (dd, $J=4.8,4,4 \mathrm{~Hz}, 2 \mathrm{H}), 3.23$ (s, 2H), 3.07 (s, 2H), 3.04 (dd, $J=12.4,6.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.79 (dd, $J=8.4,7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 2.58(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{t}$, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.09-2.02(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.0,170.8,163.0,161.3,148.9,145.16,145.07$, 144.5, 138.7, 130.5, 130.04, 130.00, 129.3, 128.45, 128.41, 127.27, 127.19, 124.8, 124.1, 123.2; 67.5, 67.4, 64.7, 58.8, 55.6, 54.5, 51.1, 50.5, 46.1, 40.6, 38.8, 32.8, 31.1, 29.4, 28.8, FT-IR $\left(\mathrm{CHCl}_{3}\right) 3343.4,3057.9,3008.5,2960.0,2925.6,2855.5$, 1738.9, 1673.1, $1617.2 \mathrm{~cm}^{-1}$; HRMS (FAB) m/z (M+Na) ${ }^{+}$ calcd for $\mathrm{C}_{63} \mathrm{H}_{62} \mathrm{~N}_{6} \mathrm{NaO}_{6} \mathrm{~S}_{2}$ 1085.4070, found 1085.4063.
The 6-nitroquipazine based ${ }^{99} \mathrm{~m}$ Tc-complex 16. To a mixture of the ligand $\mathbf{1 5}(23 \mu \mathrm{~g}), \mathrm{SnCl}_{2}(125 \mu \mathrm{~g})$ and 1 mg of tartaric acid in $0.05 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$ was added sodium pertechnetate ($370-740 \mathrm{MBq}$) at rt. Upon sonication for 1 min in water bath, the reaction mixture was heated to $100^{\circ} \mathrm{C}$ for 1 h , before cooled to rt . The product mixture was analysed and purified by reversed phase HPLC using gradient system of $\mathrm{H}_{2} \mathrm{O}$ and acetonitrile with flow rate of $1 \mathrm{~mL} / \mathrm{min}$. The peak with retention time of 16 min showed correct UV profile and radioactivity.

3-(3-Acetoxypropyl)-6-nitro-2-(4-N-Boc-piperazin-1-yl)quinoline (18). The mixture of $7(217 \mathrm{mg}, 0.69 \mathrm{mmol})$ and Boc protected piperazine ($\mathbf{1 7}, 194 \mathrm{mg}, 1.04 \mathrm{mmol})$ in 4 mL of anhydrous DMF was stirred for 36 h at $100^{\circ} \mathrm{C}$ and then cooled to rt, poured into 50 mL of ice-crushed water. The resulting precipitate was filtered, washed with 50 mL of water and dried under suction for 10 min . The solid was dissolved in 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over $\mathrm{Mg}_{2} \mathrm{SO}_{4}$, concentrated and purified by column chromatography with $\mathrm{EtOAc} /$ hexanes ($1: 3$) to give $\mathbf{1 8}(236 \mathrm{mg})$ as a yellow solid in 74% yield: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.59(\mathrm{~d}, J=2.8 \mathrm{~Hz}$, 1 H), 8.31 (dd, $J=9.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.65-3.62(\mathrm{~m}, 4 \mathrm{H})$, 3.37-3.34 (m, 4H), 2.86 (dd, $J=8.0,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.13-2.04$ (m, 2H), $2.06(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.4,163.4,155.3,149.1,144.3,138.7,131.0$, 129.2, 124.7, 124.1, 123.1, 80.7, 77.3, 64.4, 50.6, 29.5, 29.2, 29.1, 21.7, 21.1; FT-IR $\left(\mathrm{CHCl}_{3}\right) 3013.8,2926.7,1738.8$, $1696.3,1236.7 \mathrm{~cm}^{-1}$; HRMS (FAB) m/z (M+1) ${ }^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{6} 459.2244$, found 459.2245.

3-(3-Hydroxypropyl)-6-nitro-2-(4-N-Boc-piperazin-1-yl)-
quinoline (19). The mixture of $\mathbf{1 8}(236 \mathrm{mg}, 0.51 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(162 \mathrm{mg}, 1.53 \mathrm{mmol})$ in 5 mL of MeOH and 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred for 15 h at rt . The reaction was quenched by adding 60 mL of water and the resulting solution was extracted with 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The alcohol $19(180 \mathrm{mg})$ was obtained by column chromatography with EtOAc/hexanes (2:1) as a yellow solid in 84% yield: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.60(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.32$ (dd, $J=9.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.65-3.63(\mathrm{~m}, 6 \mathrm{H}), 3.36-3.34(\mathrm{~m}, 4 \mathrm{H}), 2.91(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 2.02-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{bt}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.6,155.3,149.0,144.3$, $138.9,131.7,129.2,124.9,124.0,122.9,80.7,77.4,62.2$, 50.7, 33.6, 30.4, 29.2, 28.4; FT-IR $\left(\mathrm{CHCl}_{3}\right) 3440.7,2925.8$, $2856.8,1694.2 \mathrm{~cm}^{-1}$; HRMS (FAB) m/z $(\mathrm{M}+1)^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{5} 417.2138$, found 417.2145 .

3-(3-Oxapropyl)-6-nitro-2-(4-N-Boc-piperazin-1-yl)quinoline (20). The mixture of $19(180 \mathrm{mg}, 0.43 \mathrm{mmol})$ and pyridinium dichromate ($485 \mathrm{mg}, 1.29 \mathrm{mmol}$) in 7 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred for 24 h at rt . The reaction mixture was then filtered through a pad of Celite with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and concentrated. The product $20(84 \mathrm{mg})$ was obtained by flash column chromatography with EtOAc/hexanes (1:2) as a yellow solid in 47% yield: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $9.86(\mathrm{~s}, 1 \mathrm{H}), 8.58(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{dd}, J=9.2,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.62(\mathrm{~m}$, $4 \mathrm{H}), 3.36-3.34(\mathrm{~m}, 4 \mathrm{H}), 3.13(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $200.6,163.3,155.3,149.2,144.5,138.8,130.3,129.3,124.7$, 124.1, 123.3, 80.7, 77.3, 50.7, 44.1, 29.2, 24.9; FT-IR $\left(\mathrm{CHCl}_{3}\right)$ 2975.7, 2927.6, 2853.3, 1695.8, $1616.2 \mathrm{~cm}^{-1}$; HRMS (FAB) $\mathrm{m} / \mathrm{z}(\mathrm{M}+1)^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{5} 415.1981$, found 415.1965.

3-(3-N-(2-Tritylsulfanylethyl)- N-[(2-tritylsufanylethyl-cabamoyl)methyl]amino-propyl)-6-nitro-2-(4-N-Boc-pipe-razin-1-yl)quinoline (21). To a solution of 20 ($84 \mathrm{mg}, 0.20$ mmol) in 4 mL of $\mathrm{MeOH} /$ acetic acid (99:1) was added $\mathbf{1 2}$ ($209 \mathrm{mg}, 0.30 \mathrm{mmol}$) and sodium cyanoborohydride (19 mg , 0.30 mmol) at rt . After stirring for 5 h at rt , reaction mixture was quenched by adding 10 mL of water. The resulting solution was extracted with 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The product $21(153 \mathrm{mg})$ was obtained by flash column chromatography with EtOAc/hexanes ($1: 2$) as a yellow solid in 71% yield: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.39(\mathrm{~d}, J$ $=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{dd}, J=9.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.09(\mathrm{~m}$, $30 \mathrm{H}), 3.57-3.56(\mathrm{~m}, 4 \mathrm{H}), 3.29-3.26(\mathrm{~m}, 4 \mathrm{H}), 3.04(\mathrm{dd}, J=$ $12.4,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{~s}, 2 \mathrm{H}), 2.71(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 2.45-2.35 (m, 6H), $2.28(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.86-1.78(\mathrm{~m}$, 2H), 1.49 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 171.3, $163.4,155.3,149.0,145.2,145.1,144.3,138.5,131.2,130.1$, $130.0,129.1,128.5,128.4,127.4,127.3,127.1,124.7,124.2$, 123.1, 80.1, 67.6, 67.5, 59.1, 55.4, 54.7, 50.5, 38.8, 33.0, 31.0, 30.1, 29.3, 28.2; FT-IR $\left(\mathrm{CHCl}_{3}\right) 3348.3,3058.4$, 2973.6, 2928.4, 2856.2, $1682.7 \mathrm{~cm}^{-1}$; HRMS (FAB) m/z $(\mathrm{M}+\mathrm{Na})^{+}$calcd for $\mathrm{C}_{65} \mathrm{H}_{68} \mathrm{NaN}_{6} \mathrm{O}_{5} \mathrm{~S}_{2}$ 1099.4590, found

1099.4562.

3-(3- N-(2-Mercaptoethyl)- N-[(2-mercaptoethylcabamo-yl)methyl]aminopropyl)-6-nitro-2-(4-N-Boc-piperazin-1yl)quinoline (22). To a stirred solution of $21(153 \mathrm{mg}, 0.14$ mmol) in a $1: 1$ mixture of EtOAc and EtOH (7 mL) was added a solution of mercury (II) acetate $(115 \mathrm{mg}, 0.36$ $\mathrm{mmol})$ in $\mathrm{EtOH}(3 \mathrm{~mL})$. The reaction mixture was stirred for 20 min at $80^{\circ} \mathrm{C}$ and then cooled to rt . The reaction mixture was treated with dithiothreitol ($65 \mathrm{mg}, 0.42 \mathrm{mmol}$), stirred for an additional 10 min , before passed through a pad of Celite with EtOAc. The filtrate solution was concentrated and purified by column chromatography with $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($1: 100$) to furnish $22(46 \mathrm{mg})$ as a yellow solid in 56% yield: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.59(\mathrm{~d}, J=2.4,1 \mathrm{H})$, 8.31 (dd, $J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.77$ (t, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.63-3.61(\mathrm{~m}, 4 \mathrm{H}), 3.47$ (dd, $J=12.4,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.36-3.34(\mathrm{~m}, 4 \mathrm{H}), 3.14(\mathrm{~s}, 2 \mathrm{H})$, $2.81(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.75-2.57(\mathrm{~m}, 10 \mathrm{H}), 1.99-1.91(\mathrm{~m}$, $2 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.5$, 163.4, 155.3, 149.1, 144.4, 138.4, 131.0, 129.2, 124.7, 124.1, $123.1,80.8,59.3,58.4,55.2,50.6,42.6,30.5,30.1,29.2$, 28.0, 25.5, 23.7; FT-IR $\left(\mathrm{CHCl}_{3}\right) 3343.2,2974.0,2929.4$, $2856.0,1681.8 \mathrm{~cm}^{-1}$; HRMS (FAB) m/z $(\mathrm{M}+\mathrm{Na})^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{NaN}_{6} \mathrm{O}_{5} \mathrm{~S}_{2} 615.2399$, found 615.2396.

Re-complex 23. To a stirred solution of 22 (46.7 mg , $0.079 \mathrm{mmol})$ in $\mathrm{MeOH}(13 \mathrm{~mL})$ were added 1 M NaOAc in $\mathrm{MeOH}(1.2 \mathrm{~mL}, 1.185 \mathrm{mmol})$ and trichlorooxo-bis(triphenylphosphine)rhenium ($79 \mathrm{mg}, 0.095 \mathrm{mmol}$) at rt . The reaction mixture was heated to $80^{\circ} \mathrm{C}$ and stirred for 2 h . The cooled reaction mixture was diluted with $\mathrm{EtOAc}(30 \mathrm{~mL})$, washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The Recomplex 23 (42.5 mg) was obtained by flash column chromatography with $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 60)$ as yellow solids in 68% yield: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.62(\mathrm{~d}, J$ $=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{dd}, J=9.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H})$, $7.90(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J$ $=6.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-4.06(\mathrm{~m}$, overlapped, 1 H), 3.96 (ddd, $J=17.6,14.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.63-3.57(\mathrm{~m}, 4 \mathrm{H}), 3.34-3.31(\mathrm{~m}, 4 \mathrm{H}), 3.33-3.31(\mathrm{~m}, 4 \mathrm{H})$, 3.28-3.23 (m, 2H), 3,21-3.13 (m, 2H), 2.91-2.84 (m, 3H), 2.33-2.22 (m, 2H), 1.70-1.62 (m, 2H), $1.50(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 187.2,163.3,155.3,149.3$, 144.6, 138.8, 129.7, 129.6, 124.7, 124.1, 123.6, 80.9, 67.5, $65.4,63.7,60.6,50.9,48.8,39.8,30.5,29.6,29.3,25.3$; FTIR $\left(\mathrm{CHCl}_{3}\right) 2928.0,2856.7,1681.2,1651.2,965.8 \mathrm{~cm}^{-1}$; HRMS (FAB) m/z $(\mathrm{M}+\mathrm{Na})^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{NaN}_{6} \mathrm{O}_{6} \mathrm{ReS}_{2}$ 815.1671, found 815.1703.

Re-complex 24. To a solution of $23(32 \mathrm{mg}, 0.040 \mathrm{mmol})$ in 3 mL of EtOAc was added $3 \mathrm{~N} \mathrm{HCl}(1.5 \mathrm{~mL})$ at rt . After stirring for 24 h at rt , the reaction mixture was diluted with $\operatorname{EtOAc}(10 \mathrm{~mL})$, washed with $1 \mathrm{M} \mathrm{NaHCO}_{3}(2 \times 10 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by column chromatography with $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 10)$ to furnish $24(20 \mathrm{mg})$ as a yellow solid in 72% yield: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99$ (s, $1 \mathrm{H}), 7.90(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56$ $(\mathrm{d}, J=6.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-4.06$
(m, overlapped, 1 H$),$, 4.01-3.94 (m, 1H), 3.65-3.58 (m, 1H), 3.36-3.33 (m, 4H), 3.30-3.14 (m, 4H), 3.10-3.08 (m, 4H), 2.94-2.84 (m, 3H), 2.34-2.24 (m, 2H), 1.70-1.62 (m, 2H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 187.2,163.6,149.5,144.5$, 138.8, 129.7, 129.5, 124.6, 124.1, 123.5, 67.5, 65.3, 63.8, 60.0, 52.2, 48.8, 46.8, 39.8, 29.9, 25.2; FT-IR $\left(\mathrm{CHCl}_{3}\right) 2924.8$, 2855.7, 1651.1, $964.9 \mathrm{~cm}^{-1}$; HRMS (FAB) m/z (M+1)+ calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{ReS}_{2}$ 693.1327, found 693.1325.

3-(3-N-(2-Tritylsulfanylethyl)- N-[(2-tritylsufanylethyl-cabamoyl)methyl]amino-propyl)-6-nitro-2-(piperazin-1yl)quinoline (25). To a solution of $21(16 \mathrm{mg}, 0.015 \mathrm{mmol})$ in 1.5 mL of EtOAc wad added $3 \mathrm{~N} \mathrm{HCl}(1 \mathrm{~mL})$ at room temperature. After stirring for 24 h at rt , the reaction mixture was diluted with EtOAc (10 mL). The organic portion was washed with $1 \mathrm{~N} \mathrm{NaHCO}_{3}(2 \times 10 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The product $25(8.5 \mathrm{mg})$ was obtained by flash column chromatography with $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 30)$ as a yellow solid in 58% yield: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.36(\mathrm{~d}, J$ $=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{dd}, J=9.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.07(\mathrm{~m}$, $30 \mathrm{H}), 3.31-3.28(\mathrm{~m}, 4 \mathrm{H}), 3.04(\mathrm{dd}, J=12.0,6.4 \mathrm{~Hz}, 2 \mathrm{H})$, 3.00-2.96 (m, 4H), $2.91(\mathrm{~s}, 2 \mathrm{H}), 2.72-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.45-$ $2.35(\mathrm{~m}, 6 \mathrm{H}), 2.28(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.84-1.76(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.4,163.7,149.2,145.2$, 145.1, 144.0, 138.3, 131.3, 130.1, 130.0, 129.0, 128.5, 128.4, $127.4,127.3,124.5,124.2,123.0,67.6,67.5,59.1,55.3$, $54.8,51.9,46.8,38.8,33.0,31.0,30.4,28.1 ;$ FT-IR $\left(\mathrm{CHCl}_{3}\right)$ 2917.4, 2853.3, 1671.1, $1615.2 \mathrm{~cm}^{-1}$; HRMS (FAB) m/z $(\mathrm{M}+1)^{+}$calcd for $\mathrm{C}_{60} \mathrm{H}_{61} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{~S}_{2} 977.4247$, found 977.4244.

Acknowledgment. This work was supported by Nation Mid \& Long Term Nuclear R\&D Program of the Ministry of Science and Technology (MOST) in Korea.

References and Notes

1. Povlock, S. L.; Amara, S. G. In Neurotransmitter Transporters; Structure, Function and Regulation; Reith, M. E. A., Ed.; Humania: New Jersey, 1997; pp 1-28.
2. Meltzer, C. C.; Smith, G.; Dekosky, S. T.; Pollock, B. G.; Mathis, C. A.; Moore, R. Y.; Kupfer, J. J.; Reynolds, C. F. Neuropsycopharmacology 1998, 18, 407.
3. (a) Frazer, A. J. Clin. Psychiatry 1997, 6, 9. (b) Wong, D. T.; Bymaster, F. P. Adv. Exp. Med. Biol. 1995, 363, 77. (b) Szabo, Z.; Scheffel, U.; Mathews, W. B.; Ravert, H. T.; Szabo, K.; Kraut, M.; Palmon, S.; Ricaurte, G. A.; Dannals, R. F. J. Cereb. Blood Flow Metab. 1999, 19, 967. (c) Wilson, A. A.; Ginovart, N.; Schmidt, M.; Meyer, J. H.; Threlkeld, P. G.; Houle, S. J. Med. Chem. 2000, 43, 3103.
4. Suehiro, M.; Scheffel, U.; Ravert, H. T.; Dannals, R. F.; Wagner, H. N., Jr. Life Sci. 1993, 53, 883.
5. Oya, S.; Kung, M.-P.; Acton, P. D.; Mu, M.; Hou, C.; Kung, H. F. J. Med. Chem. 1999, 42, 333.
6. (a) Hashimoto, K.; Goromaru, T. Eur. J. Pharmacol. 1990, 180, 272. (b) Hashimoto, K.; Goromaru, T. Neuropharmacology 1991, 30, 113.
7. Volkert, W. A.; Jurisson, S. In Technetium and Rhenium: Their Chemistry and Its Applications; Yoshihara, K.; Omori, T., Ed.; Springer: New York, 1993; p 123.
8. (a) Mathis, C. A.; Enas, J. D.; Hanrahan, S. M.; Akgun, E. J.

Labelled Compd. Radiopharm. 1994, 34, 905. (b) Mathis, C. A.; Taylor, S. E.; Biegon, A.; Enas, J. D. Brain Research 1993, 619, 229. (c) Biegon, A.; Mathis, C. A.; Hanrahan, S. M.; Jagust, W. J. Brain Research 1993, 619, 236.
9. (a) Jagust, W. J.; Eberling, J. L.; Biegon, A.; Taylor, S. E.; VanBrocklin, H. F.; Jordan, S.; Hanrahan, S. M.; Roberts, J. A.; Brennan, K. M.; Mathis, C. A. J. Nucl. Med. 1996, 37, 1207-1214. (b) Lundkvist, C.; Loc'h, C.; Halldin, C.; Mathis, C.; Swahn, C.G.; Mertens, J.; Farde, L.; Maziere, B. J. Labelled Compd.

Radiopharm. 1997, 40, 586
10. (a) Lee, B. S.; Chu, S.; Chi, D. Y.; Choe, Y. S.; Jeong, K. J.; Jin, C. J. Med. Chem. 2002, submitted. (b) Lee, B. S.; Chu, S.; Lee, B. C.; Chi, D. Y.; Choe, Y. S.; Jeong, K. J.; Jin, C. Bioorg. Med. Chem. Lett. 2000, 10, 1559. (c) Lee, B. S.; Lee, B. C.; Jun, J.-G.; Chi, D. Y. Heterocycles 1998, 48, 2637.
11. O'Neil, J. P.; Wilson, S. R.; Katzenellenbogen, J. A. Inorg. Chem. 1994, 33, 319.

