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A piperazinylalkylisoxazole library containing 86 compounds was constructed and evaluated for the binding
affinities to dopamine (D3) and serotonin (5-HT2A/2C) receptor to develop antipsychotics. Dopamine antagonists
(DA) showing selectivity for D3 receptor over the D2 receptor, serotonin antagonists (SA), and serotonin-
dopamine dual antagonists (SDA) were identified based on their binding affinity and selectivity. The analogues
were divided into three groups of 7 DAs (D3), 33 SAs (5-HT2A/2C), and 46 SDAs (D3 and 5-HT2A/2C). A
classification model was generated for identifying structural characteristics of those antagonists with different
affinity profiles. On the basis of the results from our previous study, we conducted the generation of the
decision trees by the recursive-partitioning (RP) method using Cerius2 2D descriptors, and identified and
interpreted the descriptors that discriminate in-house antipsychotic compounds.
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Introduction

Traditionally, antipsychotics have been considered to act
via the blockade of the classical ‘dopamine D2 receptor’.1,2

In early 1990, the discovery of dopamine D3 and D4 receptor
and their distribution in brain allowed us to consider a new
group of antipsychotics devoid of extrapyramidal side-
effects.3

The second generation antipsychotic drugs, also called
atypical antipsychotics serotonin-dopamine dual antagonists
(SDAs), were discovered with the fact that clozapine blocks
not only dopamine receptor (D2 and D4) but also serotonin
(5-HT2A) receptor.4 In comparison with previous antipsy-
chotics, these drugs have been reported to have a reduced
propensity to cause extrapyramidal side effects,5 to be more
effective against negative psychotic symptoms,6 to improve
neurocognitive function and functional outcome,7 and to be
possibly effective in patients who are resistant to other
treatments.8 Later, it was proved that the selective serotonin
antagonists could be new group of antipsychotics as them-
selves. Actually, the selective 5-HT2A antagonist MDL
100907 has shown antipsychotic potential without specific
affinity for dopamine receptor.9 Therefore, agents bind to
subtype, 5-HT2B and 5-HT2C, as well as to 5-HT2A receptor
were established as another class of atypical antipsychotics
because of high sequence homology between them.10

Currently, those three-classes of dopamine antagonists (DA),
serotonin antagonists (SA), and serotonin-dopamine dual
antagonists (SDA) are being developed for antipsychotics. 

In previous report, we have designed and synthesized
piperazinylalkylisoxazole library which consists of active
dopamine D3 antagonists through combinatorial method.11

At this time, we carried out the additional screening to

measure affinity for 5-HT2A/2C receptor. Although the library
compounds have been constructed on common scaffold,
they displayed different biological profiles according to their
various substituents and the chain length (Figure 1). There-
fore, it looks very interesting to identify the structural
characteristics differentiating these three classes of antipsy-
chotics. The ligand-based analysis can be rational strategy,
since the three-dimensional structure of aminergic G-pro-
tein-coupled receptors (GPCRs) is not experimentally known.

We have previously reported the classification models of
dopamine antagonists (DA), serotonin antagonists (SA), and
serotonin-dopamine dual antagonists (SDA) collected from
the MDDR database.12 The decision trees from recursive
partitioning (RP)13 has resulted the best predictions as com-
pared with other methods employed, LDA (linear discrimi-
nation analysis),14 SIMCA (soft independent modeling of
class analogy),15 and ANN (artificial neural network).16

Recursive partitioning (RP) is a family of data analysis
techniques dividing a data set into subgroups according to
appropriate descriptors. The RP method has many advant-
ages in respect that it overcomes the difficulties of handling
non-linear relationships and it can be free from many of the
restrictive assumptions of standard linear regression that are
associated with error terms. The decision trees resulting
from RP can be another good point, which make it easy to
understand visually without considering complex statistical
analysis.

On that score, we present here a RP model to classify our
in-house piperazinylalkylisoxazole library using 2D descrip-
tors and to describe the essential decisive factors to split into
three-classes of antipsychotics. Therefore, we would analyze
the selectivity profile of compounds visually according to
their substitutions. This RP decision tree-based visual
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analysis will utilize for further work to synthesize receptor
selective compounds.

Methods

Dataset. A small library of piperazinylalkylisoxazoles
was constructed through solution phase combinatorial syn-
thesis. The generated analogues were evaluated in vitro for
dopamine and serotonin receptors binding affinities by
measuring their ability to displace radioligands ([3H]spiper-
one for D2, [3H]YM-09151-2 for D3, [3H]Ketanserin for 5-

Figure 1. Structure of piperazinalkylisoxazole analogues used in
the recursive partitioning analysis.

Table 1. The structure and activity class of selected dopamine or
serotonin active compounds

entry n R1 R2

inhibitory activity (%) at 1 μM

D3 5HT2Aor 2C class

1 3 Q b 82 49 DA
2 4 G a 92 46 DA
3 4 K f 83 35 DA
4 4 M f 85 42 DA
5 4 Q b 103 49 DA
6 4 Q f 102 42 DA
7 3 W k 83 49 DA
8 2 B j 14 94 SA
9 2 R j 5 89 SA
10 2 O j 35 86 SA
11 2 E j 0 72 SA
12 3 R m 0 82 SA
13 3 J m 8 68 SA
14 3 R c 25 95 SA
15 3 J c 34 88 SA
16 3 K c 24 86 SA
17 3 L c 0 90 SA
18 3 N c 8 82 SA
19 3 W c 0 65 SA
20 3 S c 37 100 SA
21 3 U c 0 92 SA
22 3 V c 0 90 SA
23 3 R h 20 79 SA
24 3 J h 3 78 SA
25 3 K h 0 86 SA
26 3 L h 0 95 SA
27 3 N h 0 90 SA
28 3 W h 0 63 SA
29 3 T h 0 67 SA
30 3 S h 14 91 SA
31 3 U h 0 93 SA
32 3 V h 34 83 SA
33 3 R q 27 91 SA
34 3 J q 14 85 SA
35 3 K q 24 85 SA
36 3 L q 25 82 SA
37 3 N q 14 77 SA
38 3 W q 0 61 SA
39 3 U q 14 84 SA
40 3 V q 0 89 SA
41 3 B d 94 95 SDA
42 4 A a 85 95 SDA
43 4 B a 110 99 SDA
44 4 B c 109 100 SDA
45 4 B d 102 100 SDA
46 4 B e 108 100 SDA
47 4 B f 105 96 SDA
48 4 B i 102 97 SDA
49 4 C a 103 100 SDA
50 4 C i 80 96 SDA
51 4 D a 106 99 SDA
52 4 D b 96 100 SDA
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HT2A, [3H]Imipramine for 5-HT2C) from the cloned human
receptors which were expressed in CHO cells, respectively.11

The binding affinity (% inhibition value at 1 µM of test
compound) of the ligands on each receptor was used for
categorizing activity class. To consider only atypical anti-
psychotics, the ligands showing binding affinity for dop-
amine D2 receptor were deleted in dataset. The ligands that
present more than 70% of binding affinity (< 1 μM) for one
receptor and report less than 50% for the other one were

classified into either SA or DA class. The ligands that show
more than 70% binding affinity (< 1 μM) for the both
receptors were assigned to SDA class. Table 1 shows the
structure and binding data of the selected compounds.

RP Model Generation. Two-dimensional descriptors of
Cerius2 were used for RP study. Descriptors with constant
values as well as descriptors containing 95% of zero values
were removed. The correlation matrices of descriptors were
built and some descriptors were deleted on the basis of the
correlation threshold of R = 0.9. Finally, total 22 descriptors
were obtained as shown in Table 2 and used as independent
variables (X) in the all analyses.

The RP method was performed using the CART algorithm
implemented in Cerius2 version 4.10.17 The RP method
categorizes objects by deriving a binary decision tree in
which descriptors are used to split the data set into smaller,
homogeneous subsets. The activity classes were weighted
equally, and the splits were scored using Gini Impurity
scoring function. The pruning factor values were varied
between 0 and 3. The sample number 1 was considered as
the minimum number of samples in any node. The various
values were used for maximum tree depth (layers < 10) and
the default values were accepted for maximum number of
generic splits (30), and the number of knots per variable
(20). The optimum decision tree was determined by standards
described in our previous report.12

Results and Discussion

Generation of Recursive Partitioning Trees. To classify
the piperazinylalkylisoxazoles library into their own activity
class, the recursive partitioning model was developed using
the topological descriptors which is based on molecular
graph theory. The resulting model was determined by vari-
ation of parameters described in experimental section, trying
to increase following values: The definition, “Class%Obs-
Correct”, is a measure of the number of compounds
correctly predicted to belong to a class as a percentage of the
total number of compounds observed to be each class. The
measure of “Overall%PredCorrect” represents the total
number of compounds correctly classified divided by the
number of compounds predicted to belong to each class. The
enrichment factor for a specific class is the ratio of the
“Overall%PredCorrect” to the original percentage of com-
pounds belonging to that class. The statistical results of the
best RP model are reported in Tables 3 and 4. The entire set
composed of 86 antagonists was classified with 90.70% of
good classification rates. For DA class, 5 compounds (71.43

Table 1. Continued

entry n R1 R2

inhibitory activity (%) at 1 μM

D3 5HT2Aor 2C class

53 4 D c 97 99 SDA
54 4 D d 101 95 SDA
55 4 D e 91 94 SDA
56 4 D f 100 95 SDA
57 4 D i 108 100 SDA
58 4 E a 88 100 SDA
59 4 F c 105 90 SDA
60 4 A g 82 98 SDA
61 3 Q i 96 85 SDA
62 4 K l 102 93 SDA
63 4 M c 96 95 SDA
64 3 M g 96 96 SDA
65 3 P c 102 88 SDA
66 3 S m 84 100 SDA
67 3 U n 88 100 SDA
68 3 U s 88 99 SDA
69 3 K t 100 94 SDA
70 3 K h 100 98 SDA
71 3 L h 100 100 SDA
72 3 T h 97 87 SDA
73 3 S h 100 100 SDA
74 3 U h 100 100 SDA
75 3 L o 82 100 SDA
76 3 S o 85 100 SDA
77 3 K k 100 96 SDA
78 3 L k 94 100 SDA
79 3 S k 82 100 SDA
80 3 U k 100 99 SDA
81 3 K p 85 96 SDA
82 3 S p 94 100 SDA
83 3 U p 89 100 SDA
84 3 K q 89 95 SDA
85 3 L q 87 100 SDA
86 3 U q 90 100 SDA

Table 2. Descriptors used to develop classification model

descriptor information

Kappa indices15 (6) the shape of a molecule
E_state_keys16 (12) the electrotopological interaction for each atom

log Z17 (1) the degree of branching
Wiener18 (1) the length of chemical bonds existing between all pairs of heavy atoms

structural descriptor (2) the number of H-bond donor and acceptor
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%) among 7 DAs were correctly classified. The number of
DA was much smaller than SA and SDA classes. Although
current data set seems to be highly unbalanced, the practical
HTS experiment consists of very few actives and mostly
inactive compounds. As mentioned in introduction section,
the RP algorithm offers many advantages for classifying
those data.

The classification rate for SA and SDA was 100% and
86.96%, respectively. The number of true positives among
the predictions in each activity class is also listed as the term
“Overall%PredCorrect”. It is noted that 83.33% in the
predicted DA class are true hits (DAs), 84.62% of the
predicted SA class are true hits, and 97.56% of the predicted
SDA class are true hits. The enrichment factor (10.24, 2.21
and 1.82 for DA, SA, and SDA, respectively) also described
that the final RP model could be statistically significant for
classifying our own library.

Description of Decision Trees. Figure 2 displays the
optimized 5-leaf recursive partitioning decision tree by the
encouraged descriptors to classify three active classes. The
red color indicates DA class, the green color means SA
class, and the SDA class is plotted using dark gray color.
The structure of decision tree consists of 5 terminal nodes
and 4 non-terminal nodes. At each node (decision point),
molecules were split into groups, higher and lower responses,
according to their descriptors.

One of key descriptors of our RP tree is electrotopological
value (E-state key) computed for each atom in a molecule
which encode information about both the topological

environment of that atom and the electronic interactions of
all other atoms in the molecule. That is, the information of
the electron accessibility at that atom and the degree of
adjacency or topological state of the atom were provided by
E-state key. The meaning of the E-state symbols in the
Cerius2 implementation is as follows: S: sum of numerical
value for following atom type, s: single bond d: double bond
t: triple bond a: aromatic bond.

Table 5 reports the description and illustration of decision
factors that were found to be important. The S_ssCH2 was
the first decisive factor which stands for the sum of intrinsic
values for -CH2 atom type with two single bonds. This split
provided the information that most of SAs have relatively
lower availability of -CH2 (sp3) atoms (alkyl chain length =
2-3) for intermolecular interaction compare to the parts in
SDAs and DAs (alkyl chain length = 3-4). The E-state key,
S_sF, followed as the second descriptor to classify SDA and
DA class. This demonstrates the accessibility at fluorine in
some DAs is larger than most SDAs. To characterize the
structural difference of DA compounds from the SDAs, the
topological descriptor logZ was selected. This means that
many SAs have different aspects of the molecular shape

Table 3. Classification results for dopamine antagonists (DA),
serotonin antagonists (SA), serotonin-dopamine dual antagonists
(SDA)

observed
predicted

DA SA SDA

DA (7) 5 1 1
SA (33) 0 33 0

SDA (46) 1 5 40

Table 4. Statistical results of recursive partitioning

class # of compounds (%)a Class%Obscorrb Overall%Precorrc enrichmentd

DA 7 (8.1) 71.43 83.33 10.24
SA 33 (38.4) 100 84.62 2.21

SDA 46 (53.5) 86.96 97.56 1.82
aThe number of samples in each class. bintraclass prediction. coverall prediction. dthe enrichment factor: Overall%Precorr divided by the original
percentage of compounds belonging to that class (%).

Table 5. Summary definition of all descriptors that were found to be important by decision tree with best predictive ability

index description illustration

S_ssCH2 Sum of the atom level E-state values for all the group, -CH2, in the molecule

S_sF Sum of the atom level E-state values for all fluorine atoms in the molecule
S_dO Sum of the atom level E-state values for all oxygen atom with one double bond in the molecule.
Log Z the degree of branching of the molecule

Figure 2. The best RP tree generated with pruning factor (2), and 5
maximum tree depth. The red color indicates dopamine anta-
gonists, the green color means serotonin antagonists, and the
serotonin-dopamine dual antagonists are plotted using dark gray
color.
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compared to the other classes. The remaining group was
classified to subgroups with the E-state key, S_dO, which
imply that some DAs and SDAs have different electro-
topological environment around all oxygen atom with one
double.

Based on these results, we summarized following points.
In the first place, the main structural difference between SA
and DA or SDA class was decided on the electrotopological
value around the -CH2 atom type. Secondly, the remarkable
structural difference between DA and SDA class could be
summarized by the availability of oxygen atom with one
double, fluorine connected to aromatic ring, and the degree
of branching of certain molecule when an antagonist binds
to receptor.

We have employed RP methods with 2D structural
descriptors to analyze the structure-activity relationships
between our DA, SA, and SDA compounds. The classifi-
cation by above descriptors produced considerable discrimi-
native power in spite of high degree of structural similarity
of the library. The decision trees contain useful information
that leads to the expedient criteria in predicting selectivity of
the compounds. The identified distinctive structural aspects
for each class could be guideline to design selective anti-
psychotic candidates for individual therapy.

Model Validation by Cross-validation Test. To avoid
overfitting and to improve generalization of the classifi-
cation models, ten different trial data sets were validated.
Eight-tenths of all compounds were taken as a training set to

derive models and the remaining compounds were set to the
test set (8:2). The average and standard deviation results of
ten different trials are summarized in Table 6. The training
sets achieved acceptable classification percent and the test
sets also showed reasonably good predictability. The predic-
tion rate of DA class seems to be relatively low. We used
seven compounds as training set and only three compounds
as test set. Considering the number of limitation in data set,
the prediction rate is acceptable. The key descriptors deter-
mined in each trial set were consistent with those from total
set. The predictive powers prove that our models are valid to
classify and predict the active class of new candidates.

To validate the robustness of our decision tree, we also
generated two-class RP models. As shown in Table 7, all the
models produced good statistical values. The key descriptors
on two-class (DA/SA and SA/SDA) decision tree generated
were almost consistent with decisive factors on the best
model of three classes (Figure 3). The decision trees of two-
class model showed like sub-tree model of three-class

Table 7. Statistical results of two-class of recursive partitioning

class # of compounds (%) Class%Obscorr Overall%Precorr enrichment

SA (33) 41.77 100.0 84.62 2.03
SDA (46) 58.23 86.96 100.0 1.72

class # of compounds (%) Class%Obscorr Overall%Precorr enrichment

DA (7) 13.21 100 38.89 2.94
SDA (46) 86.79 76.09 100 1.15

class # of compounds (%) Class%Obscorr Overall%Precorr enrichment

DA (7) 17.50 71.43 100 5.71
SA (33) 82.50 100 94.29 1.14

Table 6. Mean values and standard deviations of classification
obtained in ten different training and test sets 

training DA SA SDA total

Class%Obscorr 65.0 ± 12.9 93.9 ± 3.3 82.6 ± 7.4 86.6 ± 7.1
Overall%Precorr 65.0 ± 1.5 86.1 ± 9.3 88.4 ± 4.7 84.0 ± 4.9
enrichment 7.6 ± 0.0 2.5 ± 0.5 1.6 ± 0.1 .
prediction 56.8 ± 16.4 78.2 ± 13.6 80.0 ± 9.4 71.8 ± 11.3

Figure 3. Two-class of RP model. The decisive factors produced by optimum parameter are almost consistent with the three-class of RP
model (Figure 2). Decision tree for classifying a) dopamine and serotonin antagonists, b) serotonin and serotonin-dopamine dual
antagonists, and c) dopamine and serotonin-dopamine dual antagonists.
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model. This is the evidence that the best model of three
classes was not generated by some chance.

Conclusion

The aim of the present study is to develop discriminative
model to predict receptor selective antagonists. The percent
activity data was only available instead of continuous
activity values such as IC50 and we divided the compounds
into activity classes responsible for each receptor. We have
employed RP classification model because it has advantage
for classifying class analogy activity data and for consider-
ing appropriate descriptors recursively. We have previously
tested other classification methods using published anti-
psychotics and have obtained the best model with RP
method. Here, we have successfully built up the visualized
decision tree using the topological descriptors encoding the
chemical environment around important functional groups.
To design new compounds with specific activity class, it
could be used to decide the substituents around main
scaffold. Furthermore, current model will be improved
continuously with our further product compounds.
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