Nucleophilic Substitution Reactions of α -Chloroacetanilides with Pyridines in Dimethyl Sulfoxide

Shuchismita Dey, Keshab Kumar Adhikary, Chan Kyung Kim, Bon-Su Lee,* and Hai Whang Lee*

Department of Chemistry, Inha University, Incheon 402-751, Korea. *E-mail: bslee@inha.ac.kr; hwlee@inha.ac.kr Received February 11, 2005

The kinetic studies of the reactions of α -chloroacetanilides (YC₆H₄NRC(=O)CH₂Cl; R=H (4) and CH₃ (5)) with pyridines have been carried out in dimethyl sulfoxide at 95 °C. The pyridinolysis rates are faster with 4 than with 5 whereas the aminolysis rates with benzylamines are faster with 5 than with 4. The Brønsted β_X values are in the range from 0.30 to 0.32 and the cross-interaction constants, ρ_{XY} , are small negative values; $\rho_{XY} = -0.06$ and -0.10 for 4 and 5, respectively. Based on these and other results, the pyridinolyses of α -chloroacetanilides are proposed to proceed *via* a stepwise mechanism with rate-limiting addition of the nucleophile to the carbonyl group to form zwitterionic tetrahedral intermediate (T[±]) followed by a bridged type transition state to expel the leaving group.

Key Words : Pyridinolyses of α -chloroacetanilides, Cross-interaction constants, Stepwise mechanism

Introduction

The nucleophilic substitution reactions of α -halocarbonyl compounds have attracted considerable attention of theoretical¹ as well as experimental organic chemists,² mainly because of the rate-enhancing effect of the α -carbonyl group.^{2a,b,c,3} Although a variety of mechanism has been proposed for α -carbonyl system, by different group of authors, especially in case of phenacyl derivatives, three types among them are conidered to be worthy of note: (i) stepwise mechanism with a prior addition of the nucleophile (XN) to the carbonyl group,⁴ **1**, (ii) bridging of the nucleophile between the α -carbon and the carbonyl carbon in the transition state (TS),^{3,4c,1a,b} **2**, (iii) concerted displacement with an enolate-like TS,⁵ **3**.

In a series of works, we reported an unified mechanism in which the reaction proceeds through an addition intermediate (1) with bridged type TS (2)⁶ in the expulsion of the leaving group, LZ⁻. In a previous work,^{6d} the aminolyses of α -chloroacetanilides (YC₆H₄NRC(=O)CH₂Cl; R=H and CH₃) with benzylamines in dimethyl sulfoxide are found to proceed through a stepwise mechanism with rate-limiting expulsion of the chloride leaving group from a zwitterionic tetrahedral intermediate, T[±], with a bridged type transition state (2) for which the cross-interaction constants,⁷ ρ_{XY} in eqs. 1, where X and Y denote substituents in the nucleophile and substrate, are positive; $\rho_{XY} = +0.21$ and +0.18 with R=H (4) and CH₃ (5), respectively.

$$\log (k_{XY}/k_{HH}) = \rho_X \sigma_X + \rho_Y \sigma_Y + \rho_{XY} \sigma_{XY}$$
(1a)

$$\rho_{XY} = \partial \rho_X / \partial \sigma_Y = \partial \rho_Y / \partial \sigma_X \tag{1b}$$

In the pyridinolysis of phenacyl bromides (YC₆H₄C(=O) CH₂Br) in MeCN, a change of ρ_{XY} from a large positive ($\rho_{XY} = +1.36$) to a small positive ($\rho_{XY} = 0.09$) value indicates a rate-determining step change at the breakpoint (p $K_a^{\circ} = 3.2 - 3.6$) from breakdown to formation of a zwitterionic intermediate, T[±] (1 with XN⁺= pyridinium ion) as the pyridine basicity is increased.^{6c} To gain further evidence in support of our unified mechanism (1+2) for the α -halocarbonyl systems, we carried out kinetic studies of the pyridinolysis of α -chloroacetanilides (4 and 5 with R=H and CH₃, respectively in eq. 2) in dimethyl sulfoxide at 95 °C.

$$\begin{array}{c} R & O \\ I & \parallel \\ YC_{6}H_{4}-N-C-CH_{2}-CI + NC_{5}H_{4}X & \xrightarrow{DMSO} \\ (4,5) & (2) \\ R & \parallel \\ YC_{6}H_{4}-N-C-CH_{2} \cdot NC_{5}H_{4}X + CI \end{array}$$

R = H (4) and CH₃ (5). Y = *p*-CH₃O, *p*-CH₃, H, *p*-Cl and *p*-NO₂. X = *p*-CH₃O, *p*-CH₃, *m*-CH₃ (only for 5), H, *m*-C₆H₅ and *m*-COCH₃.

Results and Discussion

The reactions followed the clean second-order rate law given by eqs. 3 and 4, where [Py] is the pyridine concentration. The pseudo-first-order rate constants observed (k_{obsd})

$$d [Cl-] / dt = k_{obsd} [substrate]$$
(3)

$$k_{\rm obsd} = k_0 + k_{\rm N} \left[{\rm Py} \right] \tag{4}$$

obeyed eq. 4, for all reactions with negligible $k_0 (\cong 0)$ in DMSO. The second-order rate constants for pyridinolysis, $k_{\rm N}$ (M⁻¹s⁻¹), summarized in Table 1 and Table 2 for 4 and 5, respectively, were obtained as the slopes of the plots of k_{obsd} against pyridine concentrations, [Py], in eq. (4). No thirdorder or higher order terms were detected, and no complications were found in the determination of k_{obsd} or in the linear plots of eq. 4. The rate is faster with a stronger nucleophile and with a stronger electron withdrawing group in the substrate, 4 and 5 as normally observed for a typical nucleophilic substitution reaction. The rate constants for the pyridinolysis of α -chloroacetanilides are found to be smaller than those for the aminolysis with benzylamines e.g. for Y=H, (4); $k_{\rm N} = 7.63 \times 10^{-3} \,{\rm M}^{-1}{\rm s}^{-1}$ for benzylamine (pK_a = 9.38 in water) in DMSO at 55 °C^{6d} and $k_{\rm N} = 1.02 \times 10^{-3}$ $M^{-1}s^{-1}$ for pyridine (pK_a = 5.21 in water) in DMSO at 95 °C as the basicity (nucleophilicity) of pyridine is smaller than that of benzylamine. The Brønsted coefficients β_X (β_{nuc}), Hammett constants ρ_X (ρ_{nuc}) and ρ_Y values and the crossinteraction constants ρ_{XY} values are also shown in Table 1 and 2 for 4 and 5, respectively. The pK_a values of pyridines used in the Brønsted plots were those determined in water as shown in Figures 1 (4) and 2 (5), respectively.

The Brønsted coefficients in Tables 1 and 2 could be in error since the rate data in Tables (in DMSO) should be plotted using pK_a values measured in DMSO. However the β_X values, determined by the pK_a values in water, are

Figure 1. Brønsted plots of $\log k_N vs. pK_a(X)$ for the pyridinolysis of Y- α -chloroacetanilides (4) in DMSO at 95 °C.

considered to provide reasonable guides, as has been shown for the β_X values in the pyridinolysis of *N*-methyl-*N*-aryl carbamoyl chloride (YC₆H₄N(CH₃)C(=O)Cl) in DMSO.^{10a} The plots of p $K_a(\varepsilon)$ (in five solvents including water) vs. σ gave the slopes, $\rho_S(\varepsilon)$, which is linear with Onsager dielectric function $(\varepsilon-1)/(2\varepsilon+1)$ with r = 0.999. Spillane *et al.*¹¹ reported that the Brønsted coefficients (β_X) for the reaction of *N*-phenylsulfamoyl chloride (YC₆H₄NHSO₂Cl) with anilines in DMSO are similar when determined using

Table 1. Second-order rate constants, $(k_N \times 10^4/M^{-1} s^{-1})$ and selectivity parameters^{*a*} for the pyridinolysis of Y-*a*-chloroacetanilides in DMSO at 95 °C

X Y	<i>p</i> -OCH ₃	<i>p</i> -CH ₃	Н	<i>p</i> -Cl	p-NO ₂	$\rho_{ m Y}{}^b$
p-CH ₃ O	30.3	30.5	35.4	39.9	53.1	0.24 ± 0.01
<i>p</i> -CH ₃	23.8	24.2	27.0	30.1	40.4	0.22 ± 0.01
Н	12.3	13.0	15.2	15.5	21.3	0.22 ± 0.01
$m-C_6H_5$	9.80	11.2	11.8	13.1	15.8	0.18 ± 0.01
<i>m</i> -COCH ₃	3.13	3.39	3.62	3.95	5.20	0.20 ± 0.01
$ ho_{ m x}{}^{c}$	-1.55 ± 0.04	-1.49 ± 0.05	-1.54 ± 0.04	-1.56 ± 0.03	-1.58 ± 0.05	
$\beta_{\mathbf{X}}{}^{d}$	0.31 ± 0.01	0.30 ± 0.01	0.31 ± 0.01	0.32 ± 0.01	0.32 ± 0.01	$\rho_{\rm XY}{}^e = -0.06 \pm 0.05$

 ${}^{a}\sigma$ values were taken from ref. 8. The β_{X} values were determined using pKa values in water. The pKa values were taken from ref. 9. b Correlation coefficients, r, were better than 0.990 in all cases. ${}^{c}r \ge 0.998$. ${}^{d}r \ge 0.999$. ${}^{e}r = 0.997$

Table 2. Second-order rate constants, $(k_N \times 10^4/M^{-1} \text{ s}^{-1})$ and selectivity parameters^{*a*} for the pyridinolysis of *N*-methyl-Y- α -chloroacetanilides in DMSO at 95 °C

X Y	<i>p</i> -OCH ₃	<i>p</i> -CH ₃	Н	<i>p</i> -Cl	p-NO ₂	$\rho_{Y}{}^{b}$
p-CH ₃ O	21.0	22.8	26.7	35.0	52.6	0.40 ± 0.04
p-CH ₃	15.7	16.7	18.6	23.2	33.0	0.32 ± 0.03
<i>m</i> -CH ₃	11.1	11.3	13.4	17.0	26.1	0.40 ± 0.05
Н	9.46	9.51	10.2	12.8	17.1	0.23 ± 0.03
$m-C_6H_5$	7.51	7.72	8.46	10.8	15.1	0.30 ± 0.02
<i>m</i> -COCH ₃	2.29	2.33	2.58	3.21	4.67	0.31 ± 0.02
$ ho_{ m X}{}^c$	-1.48 ± 0.05	-1.52 ± 0.04	-1.56 ± 0.02	-1.58 ± 0.02	-1.60 ± 0.05	
$\beta_{\mathbf{x}}{}^{d}$	0.30 ± 0.01	0.30 ± 0.01	0.31 ± 0.01	0.32 ± 0.01	0.32 ± 0.01	$\rho_{\rm XY}^{\ e} = -0.10 \pm 0.05$

^{*a*}Same as Table 1. ^{*b*} $r \ge 0.990$. ^{*c*} $r \ge 0.998$. ^{*d*} $r \ge 0.996$. ^{*e*}r = 0.997

Figure 2. Brønsted plots of $\log k_N vs. pK_a(X)$ for the pyridinolysis of *N*-methyl-Y- α -chloroacetanilides (**5**) in DMSO at 95 °C.

 pK_a values of anilines measured in water ($\beta_X = 0.69$) and in DMSO ($\beta_X = 0.62$). This provides evidence in support of correlating the rate data determined in DMSO with the pK_a values measured in water.

We propose for the present series of reactions, the stepwise mechanism with rate limiting formation of T^{\pm} , followed by bridged type transition state to expel the chloride leaving group, in eq. 5 where $k_{\rm N} = k_{\rm a}$ since $k_{-\rm a} << k_{\rm b}$. Nucleophile of pyridine attacks

Reactants (eqn. 2)
$$\begin{array}{c} k_{a}, \mathbf{rds} \\ k_{a}, \mathbf{rds} \\ k_{a} \end{array} \xrightarrow{\mathsf{YC}_{6}H_{4} - \mathsf{N} - \mathsf{C} - \mathsf{CH}_{2}\mathsf{Cl}} \\ \mathsf{YC}_{6}H_{4} - \mathsf{N} - \mathsf{C} - \mathsf{CH}_{2} \\ \mathsf{YC}_{6}H_{4} - \mathsf{N} - \mathsf{C} - \mathsf{CH}_{2} \\ k_{b} \end{array} \xrightarrow{\mathsf{K}_{b}} \begin{array}{c} \mathsf{K} & \delta & \delta \\ \mathsf{YC}_{6}H_{4} - \mathsf{N} - \mathsf{C} - \mathsf{CH}_{2} \\ \mathsf{K}_{2} + \mathsf{NC}_{5}H_{4}\mathsf{X} \end{array} \xrightarrow{\mathsf{TS}} \begin{array}{c} \mathsf{R} & \delta & \delta \\ \mathsf{YC}_{6}H_{4} - \mathsf{N} - \mathsf{C} - \mathsf{CH}_{2} \\ \mathsf{K}_{2} + \mathsf{NC}_{5}H_{4}\mathsf{X} \end{array} \xrightarrow{\mathsf{TS}} \begin{array}{c} \mathsf{R} & \delta & \delta \\ \mathsf{K}_{b} & \mathsf{K}_{b} & \mathsf{K}_{b} \end{array} \xrightarrow{\mathsf{K}_{b}} \begin{array}{c} \mathsf{R} & \delta & \delta \\ \mathsf{K}_{b} & \mathsf{K}_{b} & \mathsf{K}_{b} \end{array} \xrightarrow{\mathsf{K}_{b}} \begin{array}{c} \mathsf{K}_{b} & \mathsf{K}_{b} \\ \mathsf{K}_{b} & \mathsf{K}_{b} & \mathsf{K}_{b} \end{array} \xrightarrow{\mathsf{K}_{b}} \begin{array}{c} \mathsf{K}_{b} & \mathsf{K}_{b} \\ \mathsf{K}_{b} & \mathsf{K}_{b} & \mathsf{K}_{b} \end{array} \xrightarrow{\mathsf{K}_{b}} \begin{array}{c} \mathsf{K}_{b} & \mathsf{K}_{b} \\ \mathsf{K}_{b} & \mathsf{K}_{b} & \mathsf{K}_{b} \end{array} \xrightarrow{\mathsf{K}_{b}} \begin{array}{c} \mathsf{K}_{b} & \mathsf{K}_{b} \\ \mathsf{K}_{b} & \mathsf{K}_{b} & \mathsf{K}_{b} \end{array} \xrightarrow{\mathsf{K}_{b}} \begin{array}{c} \mathsf{K}_{b} & \mathsf{K}_{b} \\ \mathsf{K}_{b} & \mathsf{K}_{b} & \mathsf{K}_{b} \end{array} \xrightarrow{\mathsf{K}_{b}} \begin{array}{c} \mathsf{K}_{b} & \mathsf{K}_{b} \\ \mathsf{K}_{b} & \mathsf{K}_{b} \end{array} \xrightarrow{\mathsf{K}_{b}} \begin{array}{c} \mathsf{K}_{b} & \mathsf{K}_{b} \\ \mathsf{K}_{b} & \mathsf{K}_{b} \end{array} \xrightarrow{\mathsf{K}_{b}} \begin{array}{c} \mathsf{K}_{b} & \mathsf{K}_{b} \\ \mathsf{K}_{b} & \mathsf{K}_{b} \end{array} \xrightarrow{\mathsf{K}_{b}} \end{array} \xrightarrow{\mathsf{K}_{b}} \begin{array}{c} \mathsf{K}_{b} & \mathsf{K}_{b} \end{array} \xrightarrow{\mathsf{K}_{b}} \end{array} \xrightarrow{\mathsf{K}_{b}} \end{array} \xrightarrow{\mathsf{K}_{b}} \begin{array}{c} \mathsf{K}_{b} & \mathsf{K}_{b} \end{array} \xrightarrow{\mathsf{K}_{b}} \end{array} \xrightarrow{\mathsf{K}_{b}} \end{array} \xrightarrow{\mathsf{K}_{b}} \begin{array}{c} \mathsf{K}_{b} & \mathsf{K}_{b} \end{array} \xrightarrow{\mathsf{K}_{b}} \end{array} \xrightarrow{\mathsf{K}_{b}} \end{array} \xrightarrow{\mathsf{K}_{b}} \end{array} \xrightarrow{\mathsf{K}_{b}} \begin{array}{c} \mathsf{K}_{b} & \mathsf{K}_{b} \end{array} \xrightarrow{\mathsf{K}_{b}} \end{array} \xrightarrow{\mathsf{K}_{b}} \end{array} \xrightarrow{\mathsf{K}_{b}} \begin{array}{c} \mathsf{K}_{b} & \mathsf{K}_{b} \end{array} \xrightarrow{\mathsf{K}_{b}} \end{array} \xrightarrow{\mathsf{K}_{b}} \end{array} \xrightarrow{\mathsf{K}_{b}} \end{array} \xrightarrow{\mathsf{K}_{b}} \end{array} \xrightarrow{\mathsf{K}_{b}} \end{array} \xrightarrow{\mathsf{K}_{b}} \end{array}$$

firstly on carbonyl carbon (not α -carbon) to form the zwitterionic intermediate, T^{\pm} , in eq. 5 in the rate-determining step. In a previous work,^{6d} we have explained that nucleo-phile initially interacts more strongly with carbonyl carbon (π^*_{C-O}) than with α -carbon (σ^*_{C-Cl}) on MO theoretical approach.¹² In the second step, the departing pyridine molecule shifts to the α -carbon with simultaneous expulsion of Cl⁻ leaving group, in a bridging type (**2**) transition state structure. This is reasonable, since in the intermediate there is only one LUMO (σ^*_{C-Cl}) left for the amine to attack. The proposed mechanism for the present work can be justified on the following grounds.

(1) In the present system, we observed faster rates with 4 than with 5, compairing k_N values in Table 1 and 2. This is reasonable, because CH₃ group is a stronger electron donor

(compare to H), which donate electron to the anilino nitrogen. As a result, electron density on carbonyl carbon increases in 5 (R=CH₃) rather than in 4 (R=H) and nucleophile attacks less strongly in the former, *i.e.*, the initial ratelimiting carbonyl addition step (k_a) is retarded. In contrast, the reaction rates of α -chloroacetanilides with benzylamines in DMSO are faster with 5 ($R=CH_3$) than with 4 (R=H) which was taken to imply the rate-limiting expulsion of the leaving group from T^{\pm} . This is in accord with the sequence of amine expulsion rate from T^{\pm} ; benzylamines > secondary alicyclic amines > anilines > pyridines.¹³ The aminolysis of α -chloroacetanilides is one of the typical models to show the sequence of the amine expulsion rate from T^{\pm} explicitly. In case of the aminolysis of α -chloroacetanilides with benzylamines, the benzylamine expulsion rate (k_{-a}) from T[±] is faster than the leaving group expulsion rate (k_b) , $k_{-a} \gg k_b$, and the leaving group expulsion is rate-determining step. On the other hand, the pyridine expulsion rate from T^{\pm} is slower than the leaving group expulsion rate, $k_b >> k_{-a}$, and the bond formation step is rate-determining one for the pyridinolysis of α -chloroacetanilides. For the aminolysis of α -chloroacetanilides with benzylamines, the leaving group expulsion from T^{\pm} is enhanced by a stronger electron donating R (CH₃ relative to H) which leads to faster rates with 5 (R=CH₃) than with 4 (R=H).

(2) The sign of cross-interaction constants ρ_{XY} are *negative* but very small magnitude, $\rho_{XY} = -0.06$ and -0.10 for the reactions of 4 and 5, respectively in contrast to the positive ρ_{XY} = +0.21 and +0.18 for the reactions of 4 and 5 with benzylamines,^{6d} respectively. The very small magnitude of ρ_{XY} in this work is partly ascribed to the intervening NR group in the substrate between the reaction center carbon and the benzene ring *i.e.*, the fall-off by a factor of 2.4-2.8 due to an intervening group.⁷ In all the aminolysis of phenacyl derivatives involving different nucleophiles (benzylamines, anilines or pyridines), different leaving groups (chlorides, bromides or arensulfonates) and different solvents (MeOH, MeCN or DMSO), the ρ_{XY} values were positive which were taken to indicate the reactions proceed by a stepwise mechanism with rate-limiting expulsion of the leaving group: $\rho_{XY} = 0.05^{6e}$ and $\rho_{XY} = 1.36^{6c}$ for the reactions of phenacyl bromides with benzylamines and with pyridines in MeCN, respectively; $\rho_{XY} = 0.02 \cdot 0.04^{6b}$ and $\rho_{XY} = 0.05$ -0.14^{6a} for the reactions of phenacyl benzenesulfonates $(YC_6H_4C(=O)CH_2OSO_2C_6H_4Z)$ with benzylamines in MeOH and with anilines in MeOH-MeCN, respectively; $\rho_{XY} = 0.21$ and 0.18^{6d} for the reactions of 4 and 5 with benzylamines in DMSO, respectively. The acyl transfer reactions with ratelimiting expulsion of the leaving group also give relatively large positive ρ_{XY} values: $\rho_{XY} = 0.38 \cdot 0.42^{14a}$ for the reactions of p-nitrophenyl benzoates (YC₆H₄C(=O)OC₆H₄-p-NO₂) with benzylamines in MeOH; $\rho_{XY} = 0.53 \cdot 0.64^{14b}$ for the reactions of benzoic anhydrides (YC₆H₄C(=O)OC(=O)- C_6H_5) with anilines in MeOH; $\rho_{XY} = 1.35 \cdot 1.49^{15a}$ and 0.51-0.61^{15b} for the reactions of S-phenyl benzoates (YC₆H₄C-(=O)SC₆H₄Z) with anilines in MeOH and with benzylamines in MeCN, respectively; $\rho_{XY} = 0.61 \cdot 0.71^{15c}$ for the reactions of aryl dithiobenzoates $(YC_6H_4C(=S)SC_6H_4Z)$ with anilines in MeCN. In contrast, all of the $S_N 2$ displacement reactions of various substrates with amines are reported to give negative ρ_{XY} values.⁷ A stronger electronacceptor substituent in the substrate ($\partial \sigma_{\rm Y} > 0$) leads to a greater degree of bond formation ($\partial \rho_X < 0$) so that $\rho_{XY} =$ $\partial \rho_X / \partial \sigma_Y$ is negative. For a stepwise reaction with the ratelimiting formation of tetrahedral intermediate, T^{\pm} , the sign of ρ_{XY} will be same for the forward reaction of concerted $S_N 2$ processes, $r_{c,15c,16}$ *i.e.*, $\rho_{XY} < 0$, as shown in the present work. However, as discussed previously,^{6c} in the partitioning of tetrahedral intermediate the rate of expulsion of amines is increased $(\partial \rho_X > 0)$ by a stronger electron-acceptor substituent in the acyl group $(\partial \sigma_{\rm Y} > 0)^{17}$ so that $\rho_{\rm XY} = \partial \rho_{\rm X}/2$ $\partial \sigma_{\rm Y}$ should be positive. Thus the sign and magnitude of $\rho_{\rm XY}$ would be compensated by the two factors, *i.e.*, $\rho_{XY} < 0$ for bond formation step and $\rho_{XY} > 0$ for amine expulsion from T^{\pm} . As a result of compensation effects of opposite signs, the $\rho_{\rm XY}$ values for the reactions of the rate-limiting formation of T^{\pm} are very small negative or positive: $\rho_{XY} = -0.06$ and -0.10 for the pyridinolysis of 4 and 5 (this work) in DMSO, respectively; $\rho_{XY} = +0.09$ for the rate-limiting formation part of pyridinolysis of phenacyl bromide in MeCN^{6c}; ρ_{XY} = +0.05 for the aminolysis of aryl dithiobenzoates with benzylamines in MeCN.¹⁸

(3) The initial rate-limiting formation of T^{\pm} is also supported by the smaller magnitude of β_X (0.30-0.32 for both 4 and 5), indicating the degree of bond formation, than those of the aminolysis with benzylamines ($\beta_{\rm X} = 0.56$ -0.87).^{6d} In case of acyl transfer reactions of aryl dithiobenzoates with benzylamines in MeCN for which the ratelimiting attack on the thiocarbonyl, $\beta_{\rm X} = 0.19 \cdot 0.26^{18}$ are found. A biphasic dependence of $\log k_N$ on the pyridine basicity was obtained for aryl dithiobenzoates,19 aryl dithioacetates²⁰ and aryl furan-2-carbodithioates (c- $C_4H_3OC(=S)SC_6H_4Z)^{21}$ in MeCN with a breakpoint at pK_a° where the rate-limiting step is changed from bond breaking to bond formation as the basicity of pyridine is increased. The $\beta_{\rm X}$ values are also small for the rate-limiting formation parts of the acyl transfer reactions of pyridinolysis of aryl dithiobenzoates ($\beta_{\rm X} = 0.16 \cdot 0.18$),¹⁹ aryl dithioacetates ($\beta_{\rm X} =$ $(0.37-0.39)^{20}$ and aryl furan-2-carbodithioates ($\beta_{\rm X} = 0.16$ - $(0.17)^{21}$ in MeCN. In contrast, the β_X values are within narrow range of 0.7 ± 0.1 for the aminolysis of phenacyl derivatives which proceed stepwise through a zwitterionic tetrahedral intermediate with rate-limiting expulsion of the leaving group; $\beta_X = 0.69 \cdot 0.73^{6e}$ and $\beta_X = 0.65 \cdot 0.80^{6e}$ for the reactions of phenacyl bromides with benzylamines and with anilines in MeCN, respectively; $\beta_X = 0.63 \cdot 0.76^{6b}$ and $\beta_X =$ 0.65-0.76^{6a} for the reactions of phenacyl benzenesulfonates with benzylamines in MeOH and with anilines in MeOH-MeCN, respectively; $\beta_X = 0.56 \cdot 0.87^{6d}$ and $\beta_X = 0.61 \cdot 0.87^{6d}$ for the reactions of 4 and 5 with benzylamines in DMSO, respectively. The rate-limiting expulsion parts of pyridinolysis of aryl dithiobenzoates, aryl dithioacetates and aryl furan-2-carbodithioates give $\beta_{\rm X} = 0.71 \cdot 0.78$,¹⁹ 0.83-0.94²⁰ and 0.73-0.81,²¹ respectively. The large magnitudes of

Brønsted coefficients, β_X (β_{nuc}) $\geq 0.8^{15b,c,17a,22}$ are normally considered to represent a stepwise mechanism with ratelimiting expulsion of the leaving group. Castro *et al.* investigated the quinuclidinolysis of ethyl *S*-4-nitrophenyl thiocarbonate ($\beta_X = 0.85$)^{13c} and methyl 4-nitrophenyl carbonate ($\beta_X = 0.86$),²³ a stepwise mechanism with ratelimiting breakdown of T[±] is proposed.

(4) The reactivity-selectivity principle (RSP) does not hold to the studied system, *i.e.*, the faster rate ($\partial k_N > 0$) is invariably accompanied by a larger magnitude of selectivity parameters, $\partial |\rho_X| > 0$, $\partial \rho_Y > 0$ and $\partial \beta_X > 0$ as shown in Tables 1 and 2. The fail of RSP is another criterion for the stepwise mechanism with rate-limiting addition of the nucleophile to the substrate.²⁴

The activation parameters for **4** ($\Delta H^{\neq} = 12$ -15 kcal mol⁻¹ and $\Delta S^{\neq} = -34$ to -37 cal mol⁻¹ K⁻¹) and **5** ($\Delta H^{\neq} = 14$ -16 kcal mol⁻¹ and $\Delta S^{\neq} = -30$ to -33 cal mol⁻¹ K⁻¹) are summarized in Table 3. The activation enthalpies for the pyridinolysis are slightly larger than those for the aminolysis with benzylamines ($\Delta H^{\neq} = 9$ -13 and 10-15 kcal mol⁻¹ for **4** and **5**, respectively)^{6d} while the activation entropies for pyridinolysis are smaller than those for aminolysis with benzylamines ($\Delta S^{\neq} = -20$ to -30 and $\Delta S^{\neq} = -14$ to -28 cal mol⁻¹ K⁻¹ for **4** and **5**, respectively).^{6d} These suggest that the degree of bond formation for pyridinolysis is larger than that for aminolysis with benzylamines in the bond formation step.

Finally, we can interpret the pyridinolysis of α -chloro-

Table 3. Activation parameters^{*a*} for the reactions of *N*-R-Y- α -chloroacetanilides with X-pyridines in DMSO

R	Х	Y	Temp.	$k_{\rm N} \times 10^4$	ΔH^{\neq}	$-\Delta S^{\neq}$
			(°C)	$(M^{-l} s^{-l})$	(kcal mol ⁻¹) (ca	l mol ^{-l} K ^{-l})
Н	Н	$p-NO_2$	75	7.79	12.5 ± 0.3^b	37 ± 1
			85	13.1		
			95	21.3		
	p-CH ₃ O	Н	75	12.4	13.4 ± 0.2	34 ± 1
			85	22.0		
			95	35.4		
(4)	$m-C_6H_5$	p-Cl	75	4.10	14.6 ± 0.2	32 ± 1
			85	7.42		
			95	13.1		
	Н	Н	75	4.99	14.0 ± 0.2	34 ± 1
			85	8.99		
			95	15.2		
CH ₃ (5)	Н	$p-NO_2$	75	5.58	14.4 ± 0.3	33 ± 1
			85	10.1		
			95	17.1		
	p-CH ₃ O	Н	75	8.86	13.8 ± 0.3	33 ± 1
			85	16.2		
			95	26.7		
	$m-C_6H_5$	<i>p</i> -Cl	75	3.36	14.7 ± 0.2	32 ± 1
			85	6.15		
			95	10.8		
	Н	Н	75	2.94	15.5 ± 0.2	30 ± 1
			85	5.61		
			95	10.2		

^aCalculated by Eyring equation. ^bStandard deviation

acetanilides as a stepwise with rate-limiting formation of zwitterionic tetrahedral intermediate, based on Hammett constants ρ_X and ρ_Y , Brønsted coefficients β_X , cross-interaction constants ρ_{XY} , RSP and activation parameters. The enolate-like transition state and an alternative reaction path through an epoxide type transition state are ruled out based on the previous works.^{6d,e}

Experimental Section

Materials. Aldrich GR grade pyridines were used without further purification. All other materials were as reported previously.^{6d}

Kinetic Procedure. Rate constants were determined as described previously.^{6d} For the present work, [Substrate] = 1×10^{-3} and [Py] = 0.13-0.21 M were used.

Product Analysis. *p*-Nitro- and *N*-methyl *p*-nitro- α chloroacetanilides (0.0003 moles) were refluxed with 4picoline (0.003 moles) in 40 mL acetonitrile at 95 °C. After more than 15 half-lives, solvent was removed under reduced pressure and the product was purified by washing several times with ether. Analytical data of the product gave the following results:

p-NO₂C₆H₄NHC(=O)CH₂N⁺C₅H₄-p-CH₃Cl⁻. White solid; mp 248 °C; $\delta_{\rm H}$ (200 MHz, DMSO-*d*₆) 2.66 (3H, s, CH₃), 5.69 (2H, s, CH₂), 11.7 (1H, s, NH), 7.89 (2H, d, *J* = 9.2 Hz, benzene), 8.05 (2H, d, *J* = 6.6 Hz, pyridine), 8.27 (2H, d, *J* = 9.6 Hz, benzene), 8.90 (2H, d, *J* = 7.0 Hz, pyridine); $\delta_{\rm C}$ (50 MHz, DMSO-*d*₆) 22.3, 62.2, 119.7, 125.8, 128.5, 143.4, 145.1, 146.0, 160.6, 165.3; *v*_{max} (nujol mull) 3469, 3389, 1716, 1563, 1258. Anal. Calcd for C₁₄H₁₄ClN₃O₃: C, 54.6; H, 4.6; N, 13.7. Found: C, 54.5; H, 4.7; N, 13.6.

p-NO₂C₆H₄N(CH₃)C(=O)CH₂N⁺C₅H₄-*p*-CH₃CΓ. White solid; mp 242 °C; $\delta_{\rm H}$ (200 MHz, DMSO-*d*₆) 2.62 (3H, s, CH₃), 3.36 (3H, s, N-CH₃), 5.70 (2H, bs, CH₂), 7.82 (2H, d, *J* = 7.0 Hz, benzene), 8.02 (2H, d, *J* = 6.2 Hz, pyridine), 8.35 (2H, d, *J* = 8.4 Hz, benzene), 8.87 (2H, d, *J* = 6.4 Hz, pyridine); $\delta_{\rm C}$ (50 MHz, DMSO-*d*₆) 21.6, 37.0, 60.9, 124.7, 127.8, 129.2, 145.2, 145.4, 147.7, 159.8, 165.1; $\nu_{\rm max}$ (nujol mull) 3560, 3397, 1681, 1518, 1295. Anal. Calcd. for C₁₅H₁₆ClN₃O₃: C, 56.0 H, 5.0; N, 13.1. Found: C, 55.8; H, 5.2; N, 13.2.

Acknowledgement. This work was supported by Korea Research Foundation Grant (KRF-2002-070-C00061).

References

- (a) Dewar, M. J. S. *The Electronic Theory of Organic Chemistry*; Oxford University Press: Oxford, 1949; p 73. (b) McLennan, D. J.; Pross, A. *J. Chem. Soc. Perkin Trans.* 2 1984, 981. (c) Pross, A.; Aviram, K.; Klix, R. C.; Kost, D.; Back, R. D. *New J. Chem.* 1984, 8, 711. (d) Shaik, S. S. *J. Am. Chem. Soc.* 1983, *105*, 4359. (e) Pross, A.; De Frees, D. J.; Levi, B. A.; Pollack, S. K.; Radom, L.; Hehre, W. J. *J. Org. Chem.* 1981, *46*, 1693. (f) Kost, D.; Aviram, K. *Tetrahedron Lett.* 1982, *23*, 4157. (g) Wolfe, S.; Mitchell, D. J.; Schelegel, H. B. *Can. J. Chem.* 1982, *60*, 1291.
- (a) Conant, J. B.; Kirner, W. R. J. Am. Chem. Soc. 1924, 46, 232.
 (b) Ross, S. D.; Finkelstein, M.; Petersen, R. C. J. Am. Chem. Soc. 1968, 90, 6411.
 (c) Halvorsen, A.; Songstad, J. J. Chem. Soc.,

Chem. Commun. 1978, 327. (d) Bartlett, P. D.; Trachtenberg, E. N. J. Am. Chem. Soc. 1958, 80, 15808. (e) Thorpe, J. W.; Warkentin, J. Can. J. Chem. 1973, 51, 927. (f) Bordwell, F. G.; Brannen, W. T. J. Am. Chem. Soc. 1964, 86, 4645. (g) Lee, I.; Sung, D. D. Curr. Org. Chem. 2004, 8, 557.

- 3. Streitwieser, Jr., A. Solvolytic Displacement Reactions; McGraw-Hill: NewYork, 1962.
- 4. (a) Baker, J. W. Trans Faraday Soc. 1951, 37, 643. (b) Bunton, C. A. Nucleophilic Substitution at a Saturated Carbon Atom; Elsevier: New York, 1963; p 5. (c) Winstein, S.; Grunwald, E.; Jones, H. W. J. Am. Chem. Soc. 1951, 73, 2700.
- (a) Yousaf, T. I.; Lewis, E. S. J. Am. Chem. Soc. 1987, 109, 6137. (b) Forster, W.; Laird, R. M. J. Chem. Soc., Perkin Trans. 2 1982, 135.
- (a) Lee, I.; Shim, C. S.; Chung, S. Y.; Lee, H. W. J. Chem. Soc., Perkin Trans. 2 1988, 975. (b) Lee, I.; Shim, C. S.; Lee, H. W. J. Phys. Org. Chem. 1989, 2, 484. (c) Koh, H. J.; Han, K. L.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 4706. (d) Lee, K. S.; Adhikary, K. K.; Lee, H. W.; Lee, B.-S.; Lee, I. Org. Biomol. Chem. 2003, 1, 1989. (e) Lee, I.; Lee, H. W.; Yu, Y.-K. Bull. Korean Chem. Soc. 2003, 24, 993.
- (a) Lee, I. Chem. Soc. Rev. 1990, 19, 317. (b) Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57. (c) Lee, I.; Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529.
- 8. Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165.
- 9. Dean, J. A. *Handbook of Organic Chemistry*; MaGraw-Hill: New York, ch. 8, 1987.
- (a) Lee, I.; Hong, S. W.; Koh, H. J.; Lee, Y.; Lee, B.-S.; Lee, H. W. J. Org. Chem. 2001, 66, 8549. (b) Kim, T.-H.; Huh, C.; Lee, B.-S.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1995, 2257. (c) Koh, H. J.; Kim, T. H.; Lee, B.-S.; Lee, I. J. Chem. Res. (S) 1996, 482.
- 11. Spillane, W. J.; Hogan, G.; McGrath, P.; King, J.; Brack, C. J. Chem. Soc., Perkin Trans. 2 1996, 2099.
- (a) Fukui, K. Theory of Orientation and Stereoselection; Springerverlag: Berlin, 1975. (b) Fleming, I. Frontier Orbitals and Organic Chemical Reactions; Wiley: London, 1976. (c) Li, H. G.; Kim, C. K.; Lee, B.-S.; Kim, C. K.; Rhee, S. K.; Lee, I. J. Am. Chem. Soc. 2002, 123, 2326.
- (a) Castro, E. A.; Sales, M. J.; Santos, J. G. J. Org. Chem. 1994, 59, 30. (b) Castro, E. A.; Leandro, L.; Millan, P.; Santos, J. G. J. Org. Chem. 1999, 64, 1953. (c) Castro, E. A.; Munoz, P.; Santos, J. G. J. Org. Chem. 1999, 64, 8298. (d) Oh, H. K.; Kim, S. K.; Cho, I. H.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 2000, 2306.
- (a) Koh, H. J.; Lee, H. C.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 1995, 16, 839. (b) Lee, B. C.; Yoon, J. H.; Lee, C. G.; Lee, I. J. Phys. Org. Chem. 1994, 7, 273.
- (a) Lee, I.; Shim, C. S.; Lee, H. W. J. Chem. Res. (S) 1992, 90. (b) Lee, I.; Koh, H. J. New J. Chem. 1996, 20, 131. (c) Oh, H. K.; Shin, C. H.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1995, 1169.
- (a) Lee, I. Bull. Korean Chem. Soc. 1994, 15, 985. (b) Yew, K. H.; Koh, H. J.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1995, 2263.
- (a) Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6970.
 (b) Castro, E. A.; Steinfort, G. B. J. Chem. Soc., Perkin Trans. 2 1983, 453. (c) Song, B. D.; Jencks, W. P. J. Am. Chem. Soc. 1989, 111, 8479.
- Oh, H. K.; Shin, C. H.; Lee, I. Bull. Korean. Chem. Soc. 1995, 16, 657.
- Oh, H. K.; Lee, J. M.; Lee, H. W.; Lee, I. Int. J. Chem. Kinet. 2004, 36, 434.
- Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 3874.
- 21. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 8995.
- 22. Satterthwait, A. C.; Jencks, W. P. J. Am. Chem. Soc. 1974, 96, 7018.
- 23. Castro, E. A.; Aliaga, M.; Compodonico, P.; Santos, J. G. J. Org. Chem. 2002, 67, 8911.
- 24. (a) Pross, A. Adv. Phys. Org. Chem. 1977, 14, 69. (b) Buncel, E.; Wilson, H. J. Chem. Edu. 1987, 64, 475.