Lactonization of ω -Hydroxycarboxylic Acids

Lactonization of ω-Hydroxycarboxylic Acids Using (4,5-Dichloro-6-oxo-6*H*-pyridazin-1-yl)phosphoric Acid Diethyl Ester

Min-Jung Kim, Jeum-Jong Kim, Ju-Eun Won, Seung-Beom Kang, Song-Eun Park, Kwang-Ju Jung, Sang-Gyeong Lee,^{*} and Yong-Jin Yoon^{*}

Department of Chemistry & Environmental Biotechnology National Core Research Center, Research Institute of Natural Science, Graduate School for Molecular Materials and Nanochemistry, Gyeongsang National University, Jinju 660-701, Korea *E-mail address: yjyoon@gnu.ac.kr Received July 30, 2008

(4,5-Dichloro-6-oxo-6*H*-pyridazin-1-yl)phosphoric acid diethyl ester (3) is an efficient coupling agent for lactonization of aliphatic and aromatic ω -hydroxycarboxylic acids. Lactonization of ω -hydroxycarboxylic acids with 3 in the presence of equimolar amounts of a base gave the corresponding monoolides, diolides, triolides and/or tetraolides.

Key Words : Lactonization, ω -Hydroxycarboxylic acid, (6-Oxo-6*H*-pyridazin-1-yl)phosphoric acid diethyl ester, Lactone

Introduction

Lactonization is an important process in the synthesis of the natural product.¹ Accordingly, preparation of lactones from ω -hydroxycarboxylic acids is also major concern in synthetic organic chemistry. Although several useful methods have therefore been reported,²⁻¹⁶ the research in this field still active even now.¹⁷

In connection with the research on the synthetic application of 2-substituted pyridazin-3(2H)-ones,¹⁸ we found that 2-benzenesulfonyl-4,5-dichloropyridazin-3(2H)-ones serve as a coupling reagent.¹⁹ However, this coupling regent requires two equivalents of carboxylic acids for the esterification and the amidation of carboxylic acids.¹⁹ We therefore developed (4,5-disubstituted-6-oxo-6*H*-pyridazin-1yl)phosphoric acid diethyl esters as novel and efficient coup-

Scheme 1. Preparation of 3.

ling agent.²⁰ Herein we report a lactonization of ω -hydroxycarboxylic acids using (4,5-dichloro-6-oxo-6*H*-pyridazin-1yl)phosphoric acid diethyl ester (**3**) as a coupling agent.

Results and Discussion

(4,5-Dichloro-6-oxo-6*H*-pyridazin-1-yl)phosphoric acid diethyl ester (**3**) was easily prepared in 96% yields *via* the reaction of 4,5-dichloropyridazin-3(2*H*)-ones (**1**) with diethyl chlorophosphate (**2**) in the presence of triethylamine in acetonitrile at room temperature.²⁰

Initially, direct lactonization of 2-hydroxyphenylacetic acid (**4a**) using **3** was studied in a variety of representative organic solvents and bases (Table 1). From the preliminary experiments, we selected potassium carbonate/ethyl acetate and *N*,*N*-dimethylaminopyridine/tetrahydrofuran system for the lactonization of ω -hydroxycarboxylic acids using **3**.

Results of the lactonization using various ω -hydroxycarboxylic acids listed in Table 2. The corresponding monoolides, diolides, triolides and/or tetraolides were obtained in moderate to high yields under the reaction conditions mentioned above. Lactonization of 2-hydroxybenzoic acid (4b) using 3 in the presence of DMAP in tetrahydrofuran at room temperature gave the corresponding triolide 7b as the main (Table 2 entry 1). Whereas, treatment of 2-hydroxybenzoic acid (4b) using 3 in the presence of potassium carbonate in

Scheme 2. Lactonization of ω -hydroxycarboxylic acid using 3.

 Table 1. Lactonization of 2-hydroxyphenylacetic acid using 3 at room temperature

$\begin{array}{c} & & & \\ & & & & \\$				
Entry	Base ^{<i>a</i>}	Solvent	Time	5a (%) ^b
1	Et ₃ N	THF	1.5 h	91
2	Et ₃ N	Toluene	1 h	92
3	Et ₃ N	Acetone	4 h	92
4	Et ₃ N	CH ₃ CN	7 h	82
5	Et ₃ N	CH_2Cl_2	31 h	89
6	Et ₃ N	(Et) ₂ O	40 min	93
7	Et ₃ N	EtOAc	3.5 h	93
8	Et ₃ N	H_2O	-	-
9	K_2CO_3	(Et) ₂ O	40 min	80
10	Cs_2CO_2	(Et) ₂ O	10 min	68
11	NaH	(Et) ₂ O	7 h	65
12	Na ₂ CO ₃	(Et) ₂ O	3 h	91
13	DMAP	(Et) ₂ O	10 min	90
14	KO'Bu	(Et) ₂ O	40 h	63
15	K_2CO_3	THF	4.5 h	95
16	DMAP	THF	20 min	96
17	K_2CO_3	Toluene	12 h	73
18	DMAP	Toluene	1 h	91
19	K_2CO_3	EtOAc	6.5 h	97
20	DMAP	EtOAc	20 min	88

^{*a*}DMAP = N,N-Dimethylaminopyridine. ^{*b*}Isolated yields.

ethyl acetate or tetrahydrofuran at room temperature gave trisalicylide (**7b**) and **8b** as main instead of the corresponding monoolide (Table 2 entries 2 and 3).

Min-Jung Kim et al.

Lactonization of 3-(2-hydroxyphenyl)propanoic acid (4c) using 3 under three reaction conditions mentioned above afforded the corresponding lactone chroman-2-one (5c) in good and excellent yields (Table 2 entries 4-6). On the other hand, trans-3-(2-hydroxyphenyl)acrylic acid (4d) was reacted with 3 under three reaction conditions to give coumarin 5d in 11-36% yields and the corresponding diolide 6d in 44-59% yields, respectively (Table 2 entries 7-9). The synthesis of 5d from 4d was also reported.²¹ Lactonization of 12hydroxydodecanoic acid (4e) using 3 under N,N-dimethylaminopyridine/THF and potassium carbonate/EtOAc system gave the corresponding lactone 5e (2-11%) and diolide 6e (55%), respectively. However, the reaction of 4e did not occur when potassium carbonate/THF system was used. Lactonization of 10-hydroxdecanoic acid (4f) using 3 in the presence of potassium carbonate in refluxing ethyl acetate gave the corresponding diolide 6f in 81% yield (Table 2 entry 14), whereas the reaction of 4e did not occur when potassium carbonate/THF system was used. Although reaction of 4f with 3 under N,N-dimethylaminopyridine/THF system gave 6f, the reaction did not occur completely. On the other hand, we could not detect the characteristic effect of the amounts of 3, solvents and/or bases on the selectivity of the products under our conditions.

In order to cyclize *trans*-3-(2-hydroxyphenyl)acrylic acid (4d), *trans*-isomer must change to the corresponding *cis*-isomer. The lactonization of *trans*-3-(2-hydroxyphenyl)-acrylic acid (4d) to 5d using compound 3 may proceed *via* the Pathway A, B and C. Among three pathways, the Pathway B and the Pathway C may be more favorable under the basic condition. On the other hand, the diolide 6d may be yield by the cyclization between two *trans*-phenoxide intermediates.

The structures of all synthesized compounds were esta-

Lactonization of ω -Hydroxycarboxylic Acids

Table 2. Lactonization of *w*-hydroxycarboxylic acid

^aDMAP = N,N-Dimethylaminopyridine. rt = Room temperature. rf = Reflux. ^bIsolated yields. ^cWe also detected two unknown products on TLC.

blished by ir, nmr, elemental analysis and/or mass spectrometry. In all the reactions described above, reusable 4,5dichloropyridazin-3(2H)-one (1) was isolated quantitatively.

Conclusions

In conclusion, compound **3** is an efficient coupling agent for lactonization of aliphatic and aromatic ω -hydroxycarboxylic acids. It is noted that a simple method for the synthesis of various lactones was established by using equimolar amounts of ω -hydroxycarboxylic acids and **3** in the presence of equimolar amounts of a base. Compound **1** can be recovered quantitatively for reuse.

Experimental Section

General. Melting points were determined with a capillary apparatus and uncorrected. NMR spectra were recorded on a 300 MHz spectrometer with chemical shift values reported in δ units (ppm) relative to an internal standard (TMS). IR spectra were obtained on a Hitachi 270-50 or Mattson Genesis Series FT-IR spectrophotometer. Elemental analyses were performed with CHNS-932 (Leco). Mass spectra were obtained on a GC Mate 2, JEOL. The open-bed chromatography was carried out on silica gel (70-230 mesh, Merck) using gravity flow. The column was packed with slurries made from the elution solvent.

Typical procedure for lactonization. A solution of ω -

hydroxycarboxylic acids (3.0 mmol), compound **3** (1.36 g, 4.5 mmol) and a base (3.3 mmol) in solvent (30 mL) was stirred until ω -hydroxycarboxylic acids were disappeared at room temperature (or at reflux temperature). After filtering, the solvent was evaporated under reduced pressure. The resulting residue was applied to the top of an open-bed silica gel column (3.5 × 15 cm). The column was eluted with ethyl acetate/*n*-hexane (1:2, v/v). Fractions containing the product were combined and evaporated under reduced pressure to give the corresponding lactone, diolide, triolide and/or tetraolide, respectively.

Compound 5a: Liquid. $R_f = 0.74$ (EtOAc:*n*-hexane = 1:1, v/v). IR (KBr): 3070, 2950, 1810, 1620, 1600, 1480, 1460, 1400, 1330, 1300, 1230, 1120, 1060, 900, 760 cm⁻¹. ¹H NMR (CDCl₃): δ 7.28 (d, 2H, J = 7.6 Hz), 7.05-7.14 (m, 2H), 3.70 ppm (s, 2H). ¹³C NMR (CDCl₃): δ 174, 154.7, 132.9, 128.8, 124.7, 124.1, 123.1, 111.0 ppm. Elemental analysis calcd for C₈H₆O₂: C, 72.96; H, 5.44. Found: C, 73.05; H, 5.49. MS (EI): Exact mass calcd for C₈H₆O₂ 134.0368, Found: *m/z* 134 (M⁺⁺).

Compound 7b: mp 195-197 °C. $R_f = 0.44$ (CH₂Cl₂). IR (KBr) 3100, 2950, 1740, 1620, 1500, 1460, 1300, 1260, 1230, 1135, 1090, 1040, 760, 700, 540 cm⁻¹. ¹H NMR (CDCl₃): δ 7.97 (d, 3H, J = 7.6 Hz), 7.66 (t, 3H, J = 7.7 Hz), 7.52 (d, 3H, J = 7.6 Hz), 7.41 ppm (t, 3H, J = 7.7 Hz). ¹³C NMR (CDCl₃): δ 164.7, 148.6, 133.3, 126.2, 123.9, 123.8 ppm. Elemental analysis calcd for C₂₁H₁₂O₆: C, 70.00; H, 3.36. Found: C, 70.05; H, 3.39. MS (EI): Exact mass calcd for C₂₁H₁₂O₆ 360.0634, Found: m/z 360 (M⁺⁺).

Compound 8b: mp 240 °C decomposition. $R_f = 0.22$ (CH₂Cl₂). IR (KBr) 2923, 1723, 1602, 1486, 1450, 1286, 1286, 1248, 1218, 1202, 1115, 1073, 1031, 744, 687, 667 cm⁻¹. ¹H NMR (CDCl₃): δ 8.30 (d, 4H, J = 7.8 Hz), 7.64-7.59 (m, 4H, J = 7.5 Hz), 7.39 (t, 4H, J = 5.7 Hz), 7.20 ppm (d, 4H, J = 8.1 Hz). ¹³C NMR (CDCl₃): δ 163.1, 151.0, 134.8, 132.8, 126.5, 124.3, 122.3 ppm. Elemental analysis calcd for C₂₈H₁₆O₈: C, 70.00; H, 3.36. Found: C, 70.07; H, 3.40. MS (EI): Exact mass calcd for C₂₈H₁₆O₈ 480.0845, Found: m/z 480 (M⁺⁺).

Compound 5c: Liquid. $R_f = 0.69$ (EtOAc:*n*-hexane = 1:1, v/v). IR (KBr) 3100, 300, 2950, 2900, 1790, 1630, 1600, 1500, 1470, 1440, 1370, 1400, 1260, 1240, 1160, 1120, 1040, 1000, 920, 780 cm⁻¹. ¹H NMR (CDCl₃): δ 7.18-7.26 (m, 2H), 7.09 (d, 1H, J = 4.7 Hz), 7.01 (d, 1H, J = 8.1 Hz), 2.78 (t, 2H, J = 7.8 Hz), 2.72-2.77 ppm (m, 2H). ¹³C NMR (CDCl₃): δ 168.6, 152.0, 128.2, 128.1, 124.4, 122.7, 116.8, 29.2, 23.6 ppm. Elemental analysis calcd for C₉H₈O₂: C, 72.96; H, 5.44. Found: C, 73.01; H, 5.49. MS (EI): Exact mass calcd for C₉H₈O₂ 148.0524, Found: *m*/z 148 (M⁺⁺).

Compound 5d: mp 67-69 °C. $R_f = 0.78$ (EtOAc:CH₂Cl₂= 1:4, v/v). IR (KBr) 3070, 2950, 1760, 1650, 1620, 1600, 1510, 1460, 1360, 1340, 1280, 1240, 1210, 1160, 1130, 1000 cm⁻¹. ¹H NMR (CDCl₃): δ 7.71 (d, 1H, J = 9.5 Hz), 7.48-7.57 (m, 2H), 7.26-7.35 (m, 2H), 6.43 ppm (d, 1H, J = 9.5Hz). ¹³C NMR (CDCl₃): δ 160.8, 154.1, 143.4, 131.8, 127.9, 124.4, 118.9, 116.9, 116.7 ppm. Elemental analysis calcd for C₉H₆O₂: C, 73.97; H, 4.14. Found: C, 74.05; H, 4.19. MS (EI): Exact mass calcd for $C_9H_6O_2$ 146.0368, Found: *m*/*z* 146 (M^+).

Compound 6d: mp 218-220 °C. $R_f = 0.71$ (EtOAc:CH₂Cl₂ = 1:4, v/v).

IR (KBr) 3070, 2940, 2860, 1730, 1710, 1620, 1600, 1560, 1460, 1400, 1260, 1180, 110, 930, 830 cm⁻¹. ¹H NMR (CDCl₃): δ 7.90 (d, 2H, J = 16.1 Hz), 7.41-7.52 (m, 6H), 7.30 (t, 2H, J = 7.4 Hz), 6.85 ppm (d, 2H, J = 16.1 Hz). ¹³C NMR (CDCl₃): δ 164.2, 149.1, 143.1, 131.4, 130.9, 126.8, 126.1, 123.2, 121.5 ppm. Elemental analysis calcd for C₁₈H₁₂O₄: C, 73.97; H, 4.14. Found: C, 74.06; H, 4.20. MS (EI): Exact mass calcd for C₁₈H₁₂O₄ 292.0736, Found: m/z 292 (M⁺⁺).

Compound 5e: Liquid (lit.²² mp 2-3 °C). $R_f = 0.62$ (CH₂Cl₂). IR (KBr) 2950, 2880, 1740, 1270, 1240, 1220, 1120 cm⁻¹. ¹H NMR (CDCl₃): δ 4.16 (t, 2H, J = 5.16 Hz), 2.34-2.38 (m, 2H), 1.62-1.70 (m, 4H), 1.35-1.45 ppm (m, 14H). ¹³C NMR (CDCl₃): δ 34.7, 29.7, 27.4, 22.7, 26.6, 26.4, 25.4, 25.3, 24.9, 24.5, 24.2 ppm. Elemental analysis calcd for C₁₂H₂₂O₂: C, 72.68; H, 11.18. MS (EI): Exact mass calcd for C₁₂H₂₂O₂ 198.1620, Found: m/z 198 (M⁺⁺).

Compound 6e: mp 97-99 °C. $R_f = 0.79$ (EtOAc:*n*-hexane = 1:2, v/v). IR (KBr) 2950, 2880, 1740, 1270, 1240, 1220, 1120 cm⁻¹. ¹H NMR (CDCl₃): δ 4.10 (t, 4H, J = 5.9 Hz), 2.31 (t, 4H, J = 7.0 Hz), 1.57-1.66 (m, 8H), 1.28-1.41 ppm (m, 28H). ¹³C NMR (CDCl₃): δ 173.9, 64.1, 53.4, 34.7, 29.5, 29.4, 28.9, 28.6, 26.1, 25.3 ppm. Elemental analysis calcd for C₂₄H₄₄O₄: C, 72.68; H, 11.18. Found; C, 72.71; H, 11.21. MS (EI): Exact mass calcd for C₂₄H₄₄O₄ 396.3240, Found: m/z 396 (M⁺⁺).

Compound 6f: mp 88-90 °C. $R_f = 0.85$ (EtOAc:*n*-hexane = 1:1, v/v). IR (KBr) 2923, 2853, 1734, 1274, 1237, 1186, 1109 cm⁻¹. ¹H NMR (CDCl₃): δ 4.05-4.13 (m, 4H), 2.28-2.34 (m, 4H), 1.61 (t, 8H, J = 7.0 Hz), 1.28 ppm (d, 20H, J = 12.2 Hz). ¹³C NMR (CDCl₃): δ 64.0, 34.9, 29.4, 29.1, 29.0, 28.6, 26.1, 25.4 ppm. Elemental analysis calcd for C₂₀H₃₆O₄: C, 70.55; H, 10.66. Found: C, 70.58; H, 10.70. MS (EI): Exact mass calcd for C₂₀H₃₆O₄ 340.2614, Found *m/z* 340 (M⁺⁺).

Acknowledgments. This work was supported by a grant from the Korea Science and Engineering Foundation (KOSEF) to the Environmental Biotechnology National Core Research Center (grant #: R15-2003-012-02001-0).

References

- 1. Parenty, A.; Moreau, X.; Campagne, J.-M. Chem. Rev. 2006, 106, 911.
- 2. Andrus, M. B.; Argade, A. B. Tetrahedron Lett. 1996, 37, 5049.
- 3. Boden, E. P.; Keck, G. E. J. Org. Chem. 1985, 50, 2394.
- 4. Guillern, D.; Linstrumelle, G. Tetrahedron Lett. 1985, 26, 3811.
- (a) Mulzer, J.; Kirstein, H. M.; Buschmann, J.; Lehmann, C; Luger, P. J. Am. Chem. Soc. 1991, 113, 910. (b) White, J. D.; Blakemore, P. R.; Browder, C. C.; Hong, J.; Lincoln, C. M.; Nagornyy, P. A.; Robarge, L. A.; Wardrop, D. J. J. Am. Chem. Soc. 2001, 123, 8593. (c) Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. 1979, 52, 1989.
- 6. Corey, E. J.; Nicolaou, K. C. J. Am. Chem. Soc. 1974, 96, 5614.

Lactonization of ω -Hydroxycarboxylic Acids

- 7. Mukaiyama, T.; Usui, M.; Saigo, K. Chem. Lett. 1976, 49.
- Venkatarman, K.; Wagle, D. R. Tetrahedron Lett. 1980, 21, 1983.
- (a) Shiina, I.; Kubota, M.; Ibuka, R. *Tetrahedron Lett.* **2002**, *43*, 7535.
 (b) Shiina, I.; Kubota, M.; Oshiumi, H.; Hashizume, M. J. Org. Chem. **2004**, *69*, 1822.
- (a) Shiina, I.; Kubota, T. Chem. Lett. 1994, 677. (b) Shiina, I. Tetrahedron 2004, 60, 1587.
- Ishihara, K.; Kubota, M.; Kurihara, H.; Yamamoto, H. J. Org. Chem. 1996, 61, 4560.
- 12. Oohashi, Y.; Fukumoto, K.; Mukaiyama, T. *Chem. Lett.* **2005**, *34*, 72.
- (a) Fusisawa, T.; Mori, T.; Fukumoto, K.; Sato, T. Chem. Lett. 1982, 1891. (b) Isobe, T.; Ishikawa, T. J. Org. Chem. 1999, 64, 6984.
- Ahmed, A.; Taniguchi, N.; Kinoshita, H.; Inomata, K.; Kotake, H. Bull. Chem. Soc. Jpn. 1984, 57, 781.
- (a) Kaiho, T.; Masamune, S.; Toyoda, T. J. Org. Chem. 1982, 47, 1612. (b) Corey, E. T.; Hua, D. H.; Pan, B. C.; Seitz, S. P. J. Am. Chem. Soc. 1982, 104, 6818. (c) Diago-Meseguer, J.; PAlomo-Coll, A. L.; Fernandez-Lizarbe, J. R.; Zugaza-Bilbao, A. Synthesis 1980, 547. (d) Coste, J.; Frerot, E.; Jouin, P.; Castro, B. Tetrahedron Lett. 1991, 32, 1967. (e) Frerot, E.; Coste, J.; Pantaloni, A.; Dufour, P. Tetrahedron 1991, 47, 259.
- (a) As a review; Han, S. Y.; Kim, Y. A. Tetrahedron 2004, 60, 2447. (b) Corey, E. J.; Brunelle, D. J. Tetrahedron Lett. 1976, 28, 3409. (c) Steliou, K.; Nowsielska, A. S.; Favre, A.; Poupart, M. A.; Hanessian, S. J. Am. Chem. Soc. 1980, 102, 7578. (d) Steliou, K.; Poupart, M. A. J. Am. Chem. Soc. 1983, 105, 7130. (e) Otera, J.; Yano, T.; Himeno, Y.; Nozaki, H. Tetrahedron Lett. 1986, 27, 4501. (f) Shiina, I.; Fukuda, Y.; Ishii, T.; Fujisawa, H.; Mukaiyama, T. Chem. Lett. 1998, 831. (g) Shiina, I.; Fujisawa, H.; Ishii, T.;

Bull. Korean Chem. Soc. 2008, Vol. 29, No. 11 2251

Fukada, Y. Heterocycles 2000, 52, 1105.

- 17. For some examples of recent mediating agents, see refs. (9), (10), (12), and (16).
- 18. (a) Kim, J. J.; Kweon, D. H.; Cho, S. D.; Kim, H. K.; Lee, S. G.; Yoon, Y. J. Synlett 2006, 194. (b) Kim, J. J.; Kweon, D. H.; Cho, S. D.; Kim, H. K.; Lee, S. G.; Falck, J. R.; Yoon, Y. J. Tetrahedron 2005, 61, 5889. (c) Park, Y. D.; Kim, J. J.; Cho, S. D.; Lee, S. G.; Falck, J. R.; Yoon, Y. J. Synthesis 2005, 1136. (d) Lee, S. G.; Kim, J. J.; Kim, H. K.; Kweon, D. H.; Kang, Y. J.; Cho, S. D.; Kim, S. K.; Yoon, Y. J. Curr. Org. Chem. 2004, 8, 1463. (e) Park, Y. D.; Kim, H. K.; Kim, J. J.; Cho, S. D.; Kim, S. K.; Shiro, M.; Yoon, Y. J. J. Org. Chem. 2003, 68, 9113. (f) Kim, J. J.; Park, Y. D.; Lee, W. S.; Cho, S. D.; Yoon, Y. J. Synthesis 2003, 1517. (g) Kang, Y. J.; Chung, H. A; Kim, J. J.; Yoon, Y. J. Synthesis 2002, 733. (h) Park, Y. D.; Kim, J. J.; Chung, H. A; Kweon, D. H.; Cho, S. D.; Lee, S. G.; Yoon, Y. J. Synthesis 2003, 560. (i) Kweon, D. H.; Kim, H. K.; Kim, J. J.; Chung, H. A; Lee, W. S.; Kim, S. K.; Yoon, Y. H. J. J. Heterocyclic Chem. 2002, 39, 203. (j) Chung, H. A.; Kweon, D. H.; Kang, Y. J.; Park, J. W.; Yoon, Y. J. J. Heterocyclic Chem. 1999, 36, 905.
- Kim, J. J.; Park, Y. D.; Kweon, D. H.; Kang, Y. J.; Kim, H. K.; Lee, S. G; Cho, S. D.; Lee, W. S.; Yoon, Y. J. *Bull. Kor. Chem. Soc.* 2004, 25, 501.
- Won, J. E.; Kim, H. K.; Kim, J. J.; Yim, H. S.; Kim, M. J.; Kang, S. B.; Chung, H. A; Lee, S. G.; Yoon, Y. J. *Tetrahedron* 2007, *63*, 12720.
- (a) Pence, E. L.; Langley, G. J.; Bugg, T. D. H. J. Am. Chem. Soc. 1996, 118, 8336. (b) Horaguchi, T.; Hosokawa, N. J. Heterocyclic Chem. 2002, 39, 61.
- 22. Aldrich Hand Book of Fine Chemical; Sigma-Aldrich: 2007-2008; p 1879.