Investigation of the Cyclization of *N*-(2-Hydroxyethyl)-*N*'-phenylthioureas: Mitsunobu Conditions *vs* TsCl/NaOH System

Gue-Jae Lee, Jae Nyoung Kim,[†] and Taek Hyeon Kim^{*}

Faculty of Applied Chemistry, Chonnam National University, Kwangju 500-757, Korea [†]Department of Chemistry, Chonnam National University, Kwangju 500-757, Korea Received October 3, 2001

Keywords: N-(2-Hydroxyethyl)-N'-phenylthioureas, Mitsunobu reaction, TsCl/NaOH.

The Mitsunobu reaction is a mild way to convert an alcohol into a wide range of functionality.¹ In general, this method proves efficacious for the acidic component (pKa ~ 8) of the form of amides,² phthalimides,³ N-alkylsulfonamides,⁴*N*-methyltrifluoro methanesulfonamides,⁵ or hydrazoic acid,⁶ providing useful yields under neutral reaction conditions. In the intramolecular Mitsunobu reaction of N-(2hydroxyethyl)amides and N-(2-hydroxyethyl)thioamides having ambident nucleophile, O-cyclized products⁷ and Scyclized product^{7b} are generally obtained in preference to Ncyclized products, respectively. Recently we reported that 2phenylamino-2-oxazolines were prepared by the cyclization of N-(2-hydroxyethyl)-N'-phenylthioureas using TsCl and NaOH.8 This reaction proceeded via cyclodesulfurization to regiocontrolled O-alkylation products. To the best of our knowledge, no Mitsunobu reaction of N-(2-hydroxyethyl)-N'-phenylthioureas has been reported in the literature so far.⁹ Therefore, the behavior of ambident nucleophile in the Mitsunobu-mediated intramolecular cyclization of N-(2hydroxyethyl)thioureas 2 was investigated to compare the results using TsCl and NaOH (Scheme 1). In addition, mechanistic investigation of Mitsunobu conditions and TsCl/NaOH system was also disclosed.

N-(2-hydroxyethyl)thioureas **2** as substrates were readily prepared from reaction of the corresponding 1,2-aminoalcohols with phenyl isothiocyanate in THF at room temperature in good yields.¹⁰ The Mitsunobu reaction was achieved with diisopropyl azodicarboxylate (DIAD) and triphenylphosphine in THF. The reactions were complete within 30 min at room temperature. The intramolecular Mitsunobu reaction of various substrates **2a-2h** was examined. The results are shown in Table 1. The Mitsunobu reaction furnished mainly the mixture of *N*- and *S*-cyclization (entries 1-8). In the case of **2d** and **2e** a small amount of *O*-alkylation products were formed (entries 4-5). On the other hand, using TsCl and NaOH the regioselectivity of cyclization was depending on the *N*-substituted group. That is, **2a-2e**

Scheme 1

Table 1. Cyclization of N-(2-hydroxyethyl)-N'-phenylthioureas 2

Entry	Sub- strate	R1	R2	R3	Product ratios ^a		
						Mitsunobu reaction	TsCl/ NaOH ^b
1	2a	Н	Н	Н	3a/4a/5a	69/31/0	0/0/100
2	2a	Me	Н	Н	3b/4b/5b	72/28/0	0/0/100
3	2c	Et	Н	Н	3c/4c/5c	79/21/0	0/0/100
4	2d	(<i>S</i>)- <i>i</i> -Pr	Н	Н	3d/4d/5d	70/13/17	0/0/100
5	2e	Me	Me	Н	3e/4e/5e	51/32/17	0/0/100
6	2f	Н	Н	Me	3f/4f/5f	80/20/0	57/43/0
7	2g	Н	Н	Et	3g/4g/5g	89/11/0	70/30/0
8	2h	Н	Н	Bn	3h/4h/5h	95/5/0 ^c	69/31/0

^{*a*}The ratio of the crude mixtures was determined by ¹H NMR. ^{*b*}For isolated yields, see: Ref. 8. ^{*c*}For procedure for Mitsunobu reaction, see: Ref. 14.

prepared from *N*-unsubstituted aminoalcohols ($\mathbb{R}^3 = \mathbb{H}$) proceeded to the regiocontrolled *O*-cyclization (entries 1-5) and **2f-2h** prepared from *N*-substituted aminoalcohols gave the mixture of *N*- and *S*-cyclization as the Mitsunobu reaction rather than *O*-cyclization (entries 6-8). The significant difference of the reaction pathway of various thioureas **2** was unique to TsCl/NaOH system and was not observed in the Mitsunobu condition.

Mitsunobu of thioureas such as **2** almost might proceed through *N*- or *S*-nucleophilic attack of thiourea upon the oxyphosphonium intermediate to produce the mixture of *N*and *S*-alkylation product as delineated in Scheme 2. A small amount of *O*-alkylation in **2d-2e** might occur through carbodiimide intermediate.⁹ Using TsCl and NaOH the mechanism

Scheme 3

for the formations of O-, N-, and S-cyclized products could be proposed as follows. The reaction might proceed to two directions such as the cyclodesulfurization or the cyclodehydration to be strongly influenced by the R³ group of thioureas (Scheme 2): (i) in the case of 2a-2e (R³=H), the reaction pathway of carbodiimide¹¹ intermediate is leading to oxazoline derivatives 5. (ii) in the case of 2f-2h (R^3 =Me, Et, and Bn), the tosylate is formed and anion delocalized on nitrogen and sulfur can attack the tosylate to provide the mixture of N-cyclized product 3 and S-cyclized product 4. The remarkable O-cyclization selectivity in N-phenylthioureas 2a-2e may be due to a carbodiimide intermediate because a carbodiimide intermediate can be formed only in case of R^3 =H. To confirm the proposed pathway, O-t-butyldiphenylsilyl (TBDPS) protected thiourea 7 was prepared from O-TBDPS protected aminoalcohols 6 and phenyl isothiocvante,12 followed by cyclization using TsCl and NaOH (Scheme 3). In the case of 7a the carbodiimide intermediate was isolated as expected.¹³ With **7h** no reaction such as tosylation occurred and the starting material was recovered. Thus, **7h** prepared from *N*-substituted aminoalcohols did not provide carbodiimide or tosylated thiourea. From these results our proposed reaction mechanism in TsCl and NaOH might be possible.

In conclusion, our study on *N*-(2-hydroxyethyl)-*N'*-phenylthioureas demonstrates the main formation of *N*-cyclized product from thioureas **2** under Mitsunobu conditions. Cyclization of **2a-2e** under TsCl/NaOH results in regiocontrolled 2-amino-2-oxazolines *via* carbodiimide intermediate.

Acknowledgment. This work was supported by the grant No. (2001-1-12300-004-1) from the Basic Research Program of the Korea Science and Engineering Foundation and by the grant from the Brain Korea 21 program of the Ministry of Education.

References

1. For general reviews, see: (a) Mitsunobu, O. Synthesis 1981, 1. (b)

Communications to the Editor

Hughes, D. L. Org. React. 1992, 42, 335.

- 2. Comins, D. L.; Gao, J. Tetrahedron Lett. 1994, 35, 2819.
- 3. Walker, M. A. J. Org. Chem. 1995, 60, 5352
- Edwards, M. L.; Stemerick, D. M.; McCarthy, J. R. *Tetrahedron Lett.* **1990**, *31*, 3417.
- Fukuyama, T.; Jow, C. K.; Cheung, M. *Tetrahedron Lett.* 1995, *36*, 6373.
- Fabiano, E.; Golding, B. T.; Sadeghi, M. M. Synthesis 1987, 190.
- (a) Roush, D. M.; Patel, M. M. Synth. Commun. 1985, 15, 675. (b) Galeotti, N.; Montagne, C.; Poncet, J.; Jouin, P. Tetrahedron Lett. 1992, 33, 2807. (c) Wipf, P.; Miller, C. P. Tetrahedron Lett. 1992, 33, 6267.
- Kim, T. H.; Lee, N.; Lee, G.-J.; Kim, J. N. Tetrahedron 2001, 57, 7137.
- For simple thiourea under Mitsunobu reaction to carbodiimide, see: (a) Mitsunobu, O.; Kato, K.; Kakese, F. *Tetrahedron Lett.* 1969, 2473. (b) Mitsunobu, O.; Kato, K.; Tomari, M. *Tetrahedron* 1970, 26, 5731.
- 10. Kim, T. H.; Min, J. K.; Lee, G.-J. Bull. Korean Chem. Soc. 2000, 21, 919.
- For the preparation of carbodiimides from thioureas with MsCl/ Et₃N/DMAP, see: Fell, J. B.; Coppola, G. M. Synth. Commun. 1995, 25, 43.
- Preparation of *N*-(*t*-butyldiphenylsilanyloxyethyl)thiourea **7a**. To a stirred solution of 2-(*t*-butyldimethylsilanyloxy)ethylamine **6a** (0.21 g, 0.63 mmol) in THF (5 mL) under nitrogen at room temperature was added and triethylamine (0.11 mL, 0.76 mmol) and phenyl isothiocyanate (0.08 mL, 0.76 mmol). The reaction mixture was stirred for 5 min and evaporated. The crude product was purified by column chromatography to give the requisite product **7a**. Yield 90%; *R_f* = 0.5 (ethyl acetate/hexane 1 : 4); ¹H NMR (300 MHz, CDCl₃) δ 8.02 (1H, bs, PhNH), 7.54-7.25 (15H, m, 3Ph), 6.67 (1H, bs, NH), 3.82-3.76 (4H, m, C₂H₄), 0.92 (9H, s, (CH₃)₃); ¹³C NMR (75 MHz, CDCl₃) δ 180.4, 136.0, 135.3, 130.2, 129.9, 127.8, 127.3, 125.3, 62.0, 47.5, 26.6, 19.0.
- 13. Phenyl t-buthyldiphenylsilanyloxyethylcarbodiimide 8a. To a stirred solution of thiourea 7a (0.10 g, 0.23 mmol) in THF (5 mL) at room temperature was added a solution of NaOH (0.02 g, 0.55 mmol) in water (1 mL) and TsCl (0.05 g, 0.28 mmol) in THF (2 mL) dropwise for 5 min with a syringe. The reaction mixture was stirred for 1 h at room temperature, quenched with water (20 mL), and extracted with ether ($20 \text{ mL} \times 3$). The organic layer was dried, filtered, evaporated, and purified by flash column chromatography to give the carbodiimide product 8a. Yield 70%; $R_f = 0.8$ (ethyl acetate/hexane 1 : 4); IR (CDCl₃, cm⁻¹ 2142 (N=C=N); ¹H NMR (300 MHz, CDCl₃) δ 7.68-7.65 (4H, m, 2Ph), 7.42-7.32 (6H, m, 2Ph), 7.28-7.22 (2H, m, Ph), 7.13-7.08 (3H, m, Ph), 3.84 (2H, t, OCH₂, J = 5.4 Hz), 3.48 (2H, t, CH₂N, J = 5.4 Hz), 1.02 (9H, s, (CH₃)₃); ¹³C NMR (75 MHz, CDCl₃) δ 140.5, 136.9, 135.6, 133.3, 129.7, 129.2, 127.7, 124.5, 123.8, 63.8, 49.0, 26.7, 19.1.
- 14. Kim, T. H.; Lee, N.; Kim, J. N. Bull. Korean Chem. Soc. 2001, 22, 761.