Solid-State ⁵¹V NMR and Infrared Spectroscopic Study of Vanadium Oxide Supported on TiO₂-ZrO₂

Eun Hee Park, Man Ho Lee, and Jong Rack Sohn*

Dept. of Industrial Chemistry, Engineering College, Kyungpook National University, Taegu 702-701, Korea Received May 15, 2000

Vanadium oxide catalyst supported on TiO₂-ZrO₂ has been prepared by adding Ti(OH)₄-Zr(OH)₄ powder to an aqueous solution of ammonium metavanadate followed by drying and calcining at high temperatures. The characterization of the prepared catalysts was performed using solid-state ⁵¹V NMR and FTIR. In the case of calcination temperature at 773 K, vanadium oxide was in a highly dispersed state for the samples containing low loading V₂O₅ below 25 wt %, but for samples containing high loading V₂O₅ equal to or above 25 wt %, vanadium oxide was well crystallized due to the V₂O₅ loading exceeding the formation of monolayer on the surface of TiO₂-ZrO₂. The ZrV₂O₇ compound was formed through the reaction of V₂O₅ and ZrO₂ at 773-973 K, whereas the V₃Ti₆O₁₇ compound was formed through the reaction of V₂O₅ and TiO₂ at 973-1073 K. The V₃Ti₆O₁₇ compound decomposed to V₂O₅ and TiO₂ at 1173 K, which were confirmed by FTIR and ⁵¹V NMR.

Introduction

Vanadium oxides are widely used as catalysts in oxidation reactions, e.g., the oxidation of sulfur dioxide, carbon monoxide, and hydrocarbons.¹⁻⁵ These systems have also been found to be effective catalysts for the oxidation of methanol to methylformate.^{6,7} Vanadia catalysts supported on titaniaalumina mixed oxide and titania modified with alumina were found to exhibit superior activities in selective catalytic reduction of NOx.8-11 Much research has been done to understand the nature of active sites, the surface structure of catalysts and the role played by the promoter of the supported catalysts, using infrared (IR), X-ray diffraction (XRD), electron spin resonance (E.S.R) and Raman spectroscopy.^{7,12-14} Silica, titania, zirconia and alumina¹⁵⁻²² have been commonly employed as vanadium oxide supports, and comparatively few studies have been reported on binary oxide TiO_2 -ZrO₂ as a support for vanadium oxide.

It is well known that the dispersion and structural features of supported species can depend strongly on the support. The promoting effect of a TiO₂ support on the oxidation of o-xylene on V₂O₅ has been ascribed to an increase of the number of surface V=O bonds on the V₂O₅/TiO₂ catalysts and the weakening of these bonds.²³ In many studies concerning the mechanism involved in the catalytic reactions on vanadium oxide, the V=O species have been considered to play a significant role as active sites for the reactions.²⁴ Structure and other physicochemical properties of the supported metal oxides are considered to be in different states compared with bulk metal oxides because of their interaction with the supports. Solid-state nuclear magnetic resonance (NMR) methods represent a novel and promising approach to these systems. Since only the local environment of a nucleus under study is probed by NMR, this method is well suited for the structural analysis of disordered systems such as the two-dimensional surface vanadium oxide phases that is of particular interest in the present study. In addition

to the structural information provided by NMR methods, the direct proportionality of the signal intensity to the number of contributing nuclei makes NMR be useful for quantitative studies. In the present investigation, the techniques of solid-state ⁵¹V NMR and Fourier transform infrared (FTIR) have been utilized to characterize a series of V₂O₅ samples supported on TiO₂-ZrO₂ with various vanadia loadings.

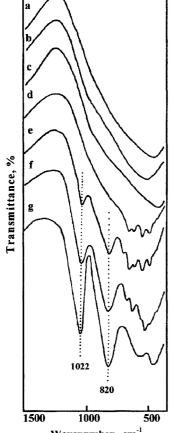
Experimental Section

Catalyst Preparation. The coprecipitate of $Ti(OH)_4$ -Zr(OH)₄ was obtained by adding slowly aqueous ammonia into a mixed aqueous solution of titanium tetrachloride and zirconium oxychloride at room temperature with stirring until the pH of the mother liquor reached about 8. The ratio of titanium tetrachloride to zirconium oxychloride was 1 : 1. The coprecipitate thus obtained was washed thoroughly with distilled water until chloride ion was undetectable, and then dried at 383 K for 12 h. The dried coprecipitate was powdered below 100 mesh.

The catalysts containing various vanadium oxide content were prepared by adding the Ti(OH)₄-Zr(OH)₄ powder into an aqueous solution of ammonium metavanadate (NH₄VO₃) followed by drying and calcining at high temperatures for 3 h in air. This series of catalysts are denoted by their weight percentage of V₂O₅. For example, 10-V₂O₅/TiO₂-ZrO₂ indicates the catalyst containing 10 wt % V₂O₅.

Characterization. FTIR absorption spectra of V_2O_5/TiO_2 -ZrO₂ powders were measured by the KBr disk method over the range 1200-400 cm⁻¹. The samples for the KBr disk method were prepared by grinding a mixture of the catalyst and KBr powders in an agate mortar and pressing them in the usual way. FTIR spectra of ammonia adsorbed on the catalyst were obtained in a heatable gas cell at room temperature using a Mattson Model GL 6030E spectrophotometer. The self-supporting catalyst wafers contained about 9 mg/ cm². Before obtaining the spectra the samples were heated

under vacuum at 673-773 K for 2 h.


⁵¹V NMR spectra were measured by a Varian Unity Inova 300 spectrometer with a static magnetic field strength of 7.05 T. Larmor frequency was 78.89 MHz. The ordinary single pulse sequence was used in which the pulse width was set at 2.8 s and the acquisition time was 0.026 s. The spectral width was 500 kHz. The number of scans was adjusted from 200 to 15,000, depending on the concentration of vanadium. The signal was acquired from the time point 4 μ s after the end of the pulse. The sample was static, and its temperature was ambient (294 K). The spectra were expressed with the signal of VOCl₃ being 0 ppm, and the higher frequency shift from the standard was positive. Practically, solid NH₄VO₃ (-571.5 ppm) was used as the second external reference.²⁵

Results and Discussion

Infrared Spectra. Figure 1 shows IR spectra of V_2O_5/TiO_2 -ZrO₂ catalysts with various content calcined at 773 K for 3 h. Although with samples below 25 wt % of V_2O_5 the definite peaks were not observed, the absorption bands at 1022 and 820 cm⁻¹ appeared for 25-V₂O₅/TiO₂-ZrO₂, 33-V₂O₅/TiO₂-ZrO₂, and pure V₂O₅ containing high V₂O₅ con-

tent. The band at 1022 cm⁻¹ is assigned to the V=O stretching vibration, whereas the band at 820 cm⁻¹ is attributed to the coupled vibration between V=O and to V-O-V.²⁶ Generally, the IR band of V=O in crystalline V₂O₅ shows at 1020-1025 cm⁻¹ and the Raman band at 995 cm⁻¹.^{2,27} The intensity of the V=O absorption gradually decreased with decreasing V₂O₅ content, although the band position did not change. As shown in Figure 1, the catalysts at vanadia loadings below 25 wt % gave no absorption bands from crystalline V₂O₅. This observation suggests that vanadium oxide below 25 wt % is in a highly dispersed state. It is reported that V₂O₅ loading exceeding the formation of monolayer on the surface of support is well crystallized and observed in the spectra of IR and ⁵¹V solid state NMR.²⁸

As shown in Figure 1, for samples below 25 wt% of V_2O_5 calcined at 773 K the crystalline V_2O_5 was not observed in their IR spectra, suggesting the monolayer dispersion of V_2O_5 on the surface of TiO₂-ZrO₂ as the amorphous phase. However, it is necessary to examine the formation of crystalline V_2O_5 as a function of calcination temperature. Variations of IR spectra against calcination temperature for 10- V_2O_5/TiO_2 -ZrO₂ are shown in Figure 2. For the sample, there are no V=O stretching bands at 1022 cm⁻¹ from the calcination temperature of 673 K to 1073 K, indicating no

Wavenumber, cm⁻¹

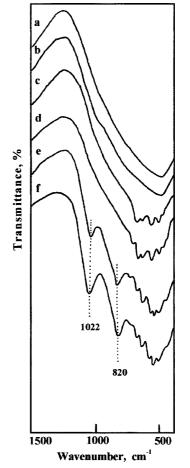
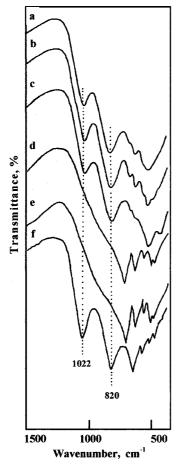



Figure 1. Infrared spectra of catalysts calcined at 773 K: (a) TiO₂-ZrO₂, (b) $5-V_2O_5/TiO_2-ZrO_2$, (c) $10-V_2O_5/TiO_2-ZrO_2$, (d) $15-V_2O_5/TiO_2-ZrO_2$, (e) $25-V_2O_5/TiO_2-ZrO_2$, (f) $33-V_2O_5/TiO_2-ZrO_2$, and (g) V_2O_5 .

Figure 2. Infrared spectra of 10-V₂O₅/TiO₂-ZrO₂ calcined at (a) 673 K, (b) 773 K, (c) 873 K, (d) 973 K, (e) 1073 K, and (f) 1173 K.

formation of crystalline V₂O₅. However, as shown in Figure 2, V=O stretching bands due to crystalline V_2O_5 at 1173 K appeared at 1022 cm⁻¹ together with lattice vibration bands of V_2O_5 and TiO₂-ZrO₂ below 900 cm⁻¹.^{29,30} The formation of crystalline V₂O₅ at 1173 K can be explained in terms of the decomposition of V₃Ti₆O₁₇ compound, which was formed through the reaction of V₂O₅ and TiO₂ at 973-1073 K. In the present work, the triclinic phase of crystalline V₃Ti₆O₁₇ was confirmed by X-ray diffraction. X-ray diffraction patterns showed the triclinic phase of $V_3Ti_6O_{17}$ (2 θ : 27.6, 28.3, 28.4, 36.2, and 41.4°) in the samples calcined at 973-1073 K, and for sample calcined at 1173 K the $V_3Ti_6O_{17}$ phase disappeared due to the decomposition of $V_3Ti_6O_{17}$, leaving the V₂O₅ phase and the rutile phase of TiO₂. These results are in good agreement with those of ⁵¹V solid state NMR described later.

Figure 3 shows IR spectra of 25-V₂O₅/TiO₂-ZrO₂ catalysts calcined at 673-1173 K for 3 h. Unlike 10-V₂O₅/TiO₂-ZrO₂ for 25-V₂O₅/TiO₂-ZrO₂ crystalline V₂O₅ appeared at lower calcination temperature from 673 K to 873 K and consequently V=O stretching band was observed at 1022 cm⁻¹. This is because V₂O₅ loading exceeding the formation of monolayer on the surface of ZrO₂ is well crystallized.²⁸ However, at 973-1073 K all V₂O₅ reacted with ZrO₂ or TiO₂ and changed into ZrV₂O₇ or V₃Ti₆O₁₇ so that V=O stretching

Figure 3. Infrared spectra of 25-V₂O₅/TiO₂-ZrO₂ calcined at (a) 673 K, (b) 773 K, (c) 873 K, (d) 973 K, (e) 1073 K, and (f) 1173 K.

at 1022 cm⁻¹ disappeared completely, as shown in Figure 3. At the calcination temperature of 1173 K some of the $V_3Ti_6O_{17}$ decomposed into V_2O_5 and TiO_2 , and then the V=O stretching band due to the crystalline V_2O_5 was again observed at 1022 cm⁻¹. These results are in good agreement with those of ⁵¹V solid state NMR.

⁵¹V Solid State NMR Spectra. Solid state NMR methods represent a novel and promising approach to vanadium oxide catalytic materials. The solid state ⁵¹V NMR spectra of V₂O₅/TiO₂-ZrO₂ catalysts calcined at 773 K are shown in Figure 4. There are three types of signals in the spectra of catalysts, with varying intensities depending on V₂O₅ content. At low loadings or up to 15 wt% V₂O₅ a shoulder at about -260 ppm and the intense peak at -590 ~ -730 ppm are observed. The former is assigned to the surface vanadiumoxygen structures surrounded by a distorted octahedron of oxygen atoms, and the latter is attributed to the tetrahedral vanadium-oxygen structures.³¹⁻³³

However, the surface vanadium oxide structure is remarkably dependent on the metal oxide support material. Vanadium oxide on TiO₂ (anatase) displays the highest tendency to be 6-coordinated at low surface coverages, whereas in the case of γ -Al₂O₃ a tetrahedral surface vanadium species is the favored.³² As shown in Figure 4, at low vanadium loading on TiO₂-ZrO₂ a tetrahedral vanadium species is exclusively dominant compared with a octahedral species. In general, it is known that low surface coverages favor a tetrahedral coordination of vanadium oxide, but at higher surface coverages vanadium oxide becomes increasingly octahedral-coordinated. As shown in Figure 4, the peak shapes for the vana-

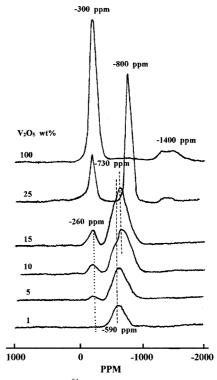


Figure 4. Solid state 51 V NMR spectra of V₂O₅/TiO₂-ZrO₂ catalysts calcined at 773 K.

dium species on TiO₂-ZrO₂ are narrower and more symmetric compared with those of vanadium species on TiO₂ or γ -Al₂O₃ reported in other studies.^{32,33} It seems likely that the different physical and chemical properties of TiO₂-ZrO₂ compared with TiO₂ or γ -Al₂O₃ affect the symmetry of the surface vanadium-oxygen structures.

Increasing the V₂O₅ content on the TiO₂-ZrO₂ surface changes the shape of the spectrum to a rather intense and sharp peak at about -300 ppm (δ_{\perp}) and a broad low-intensity peak at about -1400 ppm(δ_{\parallel}), which are due to the crystalline V₂O₅ of square pyramid coordination.³² These observations of crystalline V₂O₅ for samples containing high V₂O₅ content above 15 wt % are in good agreement with the results of the IR spectra in Figure 1. Namely, this is because V₂O₅ loading exceeding the formation of monolayer on the surface of TiO₂-ZrO₂ is well crystallized.²⁸

However, for 25-V₂O₅/TiO₂-ZrO₂ a sharp peak at -800 ppm due to crystalline ZrV₂O₇ appeared, indicating the formation of a new compound from V₂O₅ and ZrO₂. Other investigators^{22,31} reported the formation ZrV₂O₇ from V₂O₅ and ZrO₂ at the calcination temperature of 873 K for 1.5 h. In this case, since the sample was prepared by calcining for 3 h, it seems likely that the formation of ZrV₂O₇ occurred even at 773 K of calcination temperature. As discussed below, the cubic phase of ZrV₂O₇ was confirmed by X-ray diffraction. Moreover, the increase in V₂O₅ content resulted in the appearance of additional signals with a peak at -730 ppm. The intensity of the signal increases with increase in V₂O₅ loading. Different peak positions normally indicate differences in the spectral parameters and are observed due to different local environments of vanadium nuclei.³²⁻³⁶ Thus,

-300

-260 pp

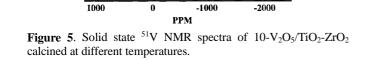
-1400 ppn

Calcination Temp

1173K

1073K

973K


873K

773K

673K

species at -590 ppm and -730 ppm can be attributed to two types of tetrahedral vanadium complexes with different oxygen environments. Namely, the signals at -590 ppm can be attributed to the surface vanadium complexes containing OH groups or water molecules in their coordination sphere,³³ because the evacuation treatment decreases the intensities remarkably. On the other hand, the signals at -730 ppm are due to the surface tetrahedral vanadium complexes, which do not contain OH groups or adsorbed water molecules.

It is necessary to examine the effect of calcination temperature on the surface vanadium oxide structure. The spectra of 10-V2O5/TiO2-ZrO2 containing lower vanadium oxide content and calcined at various temperatures are shown in Figure 5. The shape of the spectrum is very different depending on the calcination temperature. For the sample calcined at lower temperatures (673-773 K), there are two peaks at about -260 ppm and -590 ~ -730 ppm, a result of the octahedral and tetrahedral vanadium-oxygen structures, indicating the monolayer dispersion of V₂O₅ on the ZrO₂ surface, which are in good agreement with the results of IR spectra of Figure 2. However, for samples calcined at 873 K, only a sharp peak at -800 ppm, due to crystalline ZrV_2O_7 , appeared, indicating that most of V₂O₅ on the surface of TiO_2 -ZrO₂ was consumed to form the ZrV₂O₇ compound. For sample calcined at 873 K, X-ray diffraction patterns for the cubic phase of ZrV_2O_7 (2 θ : 20.0, 33.9, 46.3, 52.8, and 54.5°) were observed. At 973-1073 K calcination temperatures, we also observed only a sharp peak at -800 ppm. For samples calcined at 973-1073 K, X-ray diffraction patterns of V₃Ti₆O₁₇ were observed. In previous work²² it was known

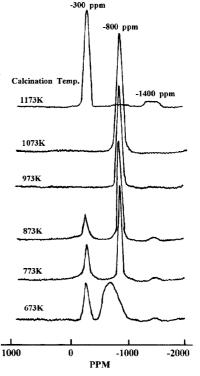


Figure 6. Solid state 51 V NMR spectra of 25-V₂O₅/TiO₂-ZrO₂ calcined at different temperatures.

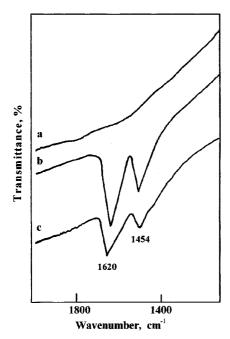


Figure 7. Infrared spectra of NH_3 adsorbed on $10-V_2O_5/TiO_2$ - ZrO_2 calcined at 973 K.: (a) background of $10-V_2O_5/TiO_2$ - ZrO_2 evacuated at 673 K for 1 h, (b) NH_3 (20 torr) adsorbed on (a), and (c) b sample evacuated at 503 K for 0.5 h.

that the ZrV₂O₇ compound decomposed completely to V₂O₅ and ZrO₂ at 1073 K. Therefore, on the basis of previous work and the present result it is clear that a sharp peak at -800 ppm for 10-V₂O₅/TiO₂-ZrO₂ calcined at 1073 K is due to the crystalline V₃Ti₆O₁₇ phase formed by the reaction between V₂O₅ and TiO₂. However, at 1173 K of calcination temperature we observed only the peaks of crystalline V₂O₅ at -300 ppm and about -1400 ppm, indicating the decomposition of V₃Ti₆O₁₇. These results are in good agreement with those of IR spectra in Figure 2.

The spectra of 25-V₂O₅/TiO₂-ZrO₂ containing higher vanadium oxide content than monolayer loading and calcined at various temperatures are shown in Figure 6. Unlike 10-V₂O₅/TiO₂-ZrO₂, for 25-V₂O₅/TiO₂-ZrO₂ calcined even at the lower temperature of 673 K a sharp peak due to crystalline V₂O₅ appeared at -300 ppm and -1400 ppm together with a peak at $-590 \sim -730$ ppm due to the tetrahedral surface species. However, the for sample calcined at 773 K, in addition to a peak at -300 ppm due to crystalline V₂O₅, a sharp peak at -800 ppm due to ZrV₂O₇ compound appeared. As shown in Figure 6, the peak intensity of ZrV₂O₇ increased with an increase in calcination temperature, consuming the content of crystalline V2O5. Consequently, at 973 K of calcination temperature only a peak due to the ZrV₂O₇ and V₃Ti₆O₁₇ phases appeared at -800 ppm. As mentioned above, since at 1073 K the ZrV₂O₇ decomposes completely to V₂O₅ and ZrO₂, a sharp peak at -800 ppm for 25-V₂O₅/TiO₂-ZrO₂ calcined at 1073 K is due to the crystalline V₃Ti₆O₁₇ phase. At the calcination temperature of 1173 K a sharp peak of crystalline V₂O₅ at -300 ppm due to the decomposition of V₃Ti₆O₁₇ was again observed.

Acidic Properties. Infrared spectroscopic studies of ammonia adsorbed on solid surfaces have made it possible to distinguish Brönsted acid sites from Lewis acid sites.^{22,37} Figure 7 shows the IR spectra of ammonia adsorbed on 10- V_2O_5/TiO_2 -ZrO₂ calcined at 973 K and evacuated at 673 K for 1 h. For 10- V_2O_5/TiO_2 -ZrO₂ the bands at 1454 cm⁻¹ are the characteristic peaks of ammonium ion, which are formed on the Brönsted acid sites and the bands at 1620 cm⁻¹ are contributed by ammonia coordinately bonded to Lewis acid sites,^{22,37} indicating the presence of both Brönsted and Lewis acid sites. Other samples having different vanadium content also showed the presence of both Lewis and Brönsted acids. Therefore, these V_2O_5/TiO_2 -ZrO₂ samples can be used as catalysts for Lewis or Brönsted acid catalysis.

Conclusions

This paper shows that a combination of FTIR and ⁵¹V solid-state NMR can be used to perform the characterization of V₂O₅ catalysts supported on TiO₂-ZrO₂. On the basis of results of FTIR and solid state ⁵¹V NMR, at low calcination temperature of 773 K up to 15 wt% of vanadium oxide was well dispersed on the surface of TiO₂-ZrO₂. However, high V₂O₅ loading (equal to or above 25 wt%) exceeding the formation of monolayer on the surface of TiO2-ZrO2 was well crystallized. The ZrV₂O₇ compound was formed through the reaction of V₂O₅ and ZrO₂ at 773-973 K, whereas the V₃Ti₆O₁₇ compound was formed through the reaction of V_2O_5 and TiO₂ at 973-1073 K. The $V_3Ti_6O_{17}$ decomposed to V₂O₅ and TiO₂ at 1173 K, which were confirmed by FTIR and ⁵¹V NMR. Infrared spectroscopic studies of ammonia adsorbed on V₂O₅/TiO₂-ZrO₂ catalysts showed the presence of both Lewis and Brönsted acids.

Acknowledgment. This work was supported by the grant of Post-Doc. Program, Kyungpook National University (1999).

References

- 1. Nakagawa, Y.; Ono, T.; Miyata, H.; Kubokawa, Y. J. Chem. Soc., Faraday Trans. 1 1983, 79, 2929.
- Miyata, H.; Kohno, M.; Ono, T.; Ohno, T.; Hatayama, F. J. Chem. Soc. Faraday Trans. 1 1989, 85, 3663.
- Reddy, B. M.; Ganesh, I.; Chowdhury, B. Catal. Today 1999, 49, 115.
- Lakshmi, L. J.; Ju, Z.; Alyea, E. C. Langmuir 1999, 15, 3521.
- 5. Doh, I. J.; Pae, Y. I.; Sohn, J. R. J. Ind. Eng. Chem. 1999, 5, 161.
- 6. Forzatti, P.; Tronoconi, E.; Busca, G.; Titarellp, P. Catal. Today **1987**, *1*, 209.
- 7. Busca, G.; Elmi, A. S.; Forzatti, P. J. Phys. Chem. 1987, 91, 5263.
- Centi, G.; Militerno, S.; Perathoner, S.; Riva, A.; Barambilla, G. J. Chem. Soc., Chem. Commun. 1991, 88.
- Centi, G.; Perathoner, S.; Kartheuser, B.; Rohan, D.; Hoidnett, B. K. Appl. Catal. B 1992, 1, 129.
- 10. Matralis, H. M.; Ciardelli, M.; Ruwet, M.; Grange, P. J.

918 Bull. Korean Chem. Soc. 2000, Vol. 21, No. 9

Catal. 1995, 157, 368.

- Mastikhin, V. M.; Terskikh, V. V.; Lapina, O. B.; Filiminova, S. V.; Seidl, M.; Knovinger, H. J. Catal. 1995, 156, 1.
- 12. Elmi, A. S.; Tronoconi, E.; Cristiani, C.; Martin, J. P. G.; Forzatti, P. *Ind. Eng. Chem. Res.* **1989**, *84*, 237.
- Miyata, H.; Fujii, K.; Ono, T.; Kubokawa, Y.; Ohno, T.; Hatayama, F. J. Chem. Soc., Faraday Trans. 1 1987, 83, 675.
- 14. Cavani, F.; Centi, G.; Foresti, E.; Trifiro, F. J. Chem. Soc., *Faraday Trans.* 1 **1988**, 84, 237.
- 15. Hayata, F.; Ohno, T.; Maruoka, T.; Miyata, H. J. Chem. Soc., Faraday Trans. **1991**, 87, 2629.
- del Arco, M.; Holgado, M. J.; Martin, C.; Rives, V. *Lang-miur* 1990, 6, 801.
- Centi, G.; Pinelli, D.; Trifiro, F.; Ghoussoub, D.; Guelton, M.; Gengembre, L. J. Catal. 1991, 130, 238.
- Inomata, M.; Mori, K.; Miyamoto, A.; Murakami, Y. J. Phys. Chem. 1983, 87, 761.
- 19. Scharf, U.; Schraml-Marth, M.; Wokaun, A.; Baiker, A. J. *Chem. Soc., Faraday Trans.* **1991**, 87, 3299.
- 20. Miyata, H.; Kohno, M.; Ono, T.; Ohno, T.; Hatayama, F. J. *Mol. Catal.* **1990**, *63*, 181.
- 21. Sohn, J. R.; Park, M. Y.; Pae, Y. I. Bull. Korean Chem. Soc. **1996**, *17*, 274.
- 22. Sohn, J. R.; Lee, M. H.; Doh, I. J.; Pae, Y. I. Bull. Korean Chem. Soc. **1998**, *19*, 856.
- 23. Kera, Y.; Hirota, K. J. Phys. Chem. 1969, 73, 3937.
- 24. Cole, D. J.; Cullis, C. F.; Hucknall, D. J. J. Chem. Faraday

Tran. 1 1976, 72, 2185.

- 25. Hayashi, S.; Hayamizu, K. Bull. Chem. Soc. Jpn. 1990, 63, 961.
- Mori, K.; Miyamoto, A.; Murakami, Y. J. Chem. Soc., Faraday Trans. 1987, 83, 3303.
- Bjorklund, R. B.; Odenbrand, C. U. I.; Brandin, J. G. M.; Anderson, L. A. H.; Liedberg, B. J. Catal. **1989**, *119*, 187.
- Sohn, J. R.; Cho, S. G.; Pae, Y. I.; Hayashi, S. J. Catal. 1996, 159, 170.
- 29. Inomata, M.; Miyamoto, A.; Marakami, Y. J. Catal. **1980**, 62, 140.
- 30. Highfield, J. G.; Moffat, J. B. J. Catal. 1984, 88, 177.
- Roozeboom, F.; Mittelmelijer-Hazeleger, M. C.; Moulijn, J. A.; Medema, J.; de Beer, U. H. J.; Gelling, P. J. J. Phys. Chem. 1980, 84, 2783.
- 32. Eckert, H.; Wachs, I. E. J. Phys. Chem. 1989, 93, 6796.
- Reddy, B. M.; Reddy, E. P.; Srinivas, S. T.; Mastikhim, V. M.; Nosov, N. V.; Lapina, O. B. *J. Phys. Chem.* **1992**, *96*, 7076.
- Le Costumer, L. R.; Taouk, B.; Le Meur, M.; Payen, E.; Guelton, M.; Grimblot, J. J. Phys. Chem. 1988, 92, 1230.
- 35. Narsimha, K.; Reddy, B. M.; Rao, P. K.; Mastikhin, V. M. *J. Phys. Chem.* **1990**, *94*, 7336.
- Sobalik, Z.; Lapina, O. B.; Novgorodova, O. N.; Mastikhin, V. M. Appl. Catal. 1990, 63, 191.
- Satsuma, A.; Hattori, A.; Mizutani, K.; Furuta, A.; Miyamoto, A.; Hattor, T.; Murakami, Y. *J. Phys. Chem.* **1988**, *92*, 6052.