Aminolyses of 2,4-Dinitrophenyl and 3,4-Dinitrophenyl 2-Furoates: Effect of *ortho*-Substituent on Reactivity and Mechanism

Ik-Hwan Um^{*} and Kalsoom Akhtar

Division of Nano Sciences and Department of Chemistry, Ewha Womans University, Seoul 120-750, Korea *E-mail: ihum@ewha.ac.kr Received February 2, 2008

Second-order rate constants (k_N) have been measured spectrophotometrically for reactions of 3,4-dintrophenyl 2-furoate (**2**) with a series of secondary alicyclic amines in 80 mol % H₂O/20 mol % dimethyl sulfoxide (DMSO) at 25.0 °C. The Brønsted-type plot exhibits a downward curvature for the aminolysis of **2**, which is similar to that reported for the corresponding reactions of 2,4-dintrophenyl 2-furoate (**1**). Substrate **2** is less reactive than **1** toward all the amines studied but the reactivity difference becomes smaller as the amine basicity increases. Dissection of the second-order rate constants into the microscopic rate constants has revealed that the reaction of **2** results in a smaller k_2/k_{-1} ratio but slightly larger k_1 value than that of **1**. Steric hindrance has been suggested to be responsible for the smaller k_1 value found for the reactions of **1**, since the *ortho*-substituent of **1** would inhibit the attack of amines (*i.e.*, the k_1 process).

Key Words : Aminolysis, Brønsted-type plot, Steric hindrance, Reaction mechanism, ortho-Effect

Introduction

Aminolyses of esters have been intensively investigated including computational studies due to their importance in biological processes as well as in synthetic applications.¹⁻⁹ The reactions have generally been understood to proceed through a zwitterionic tetrahedral intermediate (T^{\pm}). The rate-determining step (RDS) has been suggested to be dependent on the basicity of the attacking amine and the leaving group, *i.e.*, it changes from breakdown of T^{\pm} to its formation as the attacking amine becomes more basic than the leaving group by 4 to 5 pK_a units.¹⁻⁵

Esters with 2,4-dinitrophenoxide as a leaving group (*e.g.*, **1**) have often exhibited a lower reactivity than those with 3,4-dinitrophenoxide (*e.g.*, **2**),^{10,11} although 2,4-dinitrophenoxide is expected to be more nucleofugic than 3,4-dinitrophenoxide on the basis of the fact that the former is less basic than the latter. Since the substituent at the *ortho*-position would cause steric hindrance, Jencks *et al.* have suggested that steric effect is responsible for the decreased reactivity shown by esters with a substituent at the *ortho*-position of the leaving group.¹¹ However, the steric effect has never been investigated in a microscopic rate constant level.

We have recently performed a kinetic study on aminolysis of 2,4-dinitrophenyl 2-furoate (1) and concluded that the reaction proceeds through a zwitterionic tetrahedral intermediate (T^{\pm}) with a change in the RDS on changing the basicity of amines.¹² The kinetic study has now been extend-

ed to reactions of 3,4-dinitrophenyl 2-furoate (**2**) with a series of alicyclic secondary amines as shown in Scheme 1. The kinetic data in the current study have been compared with those reported for the corresponding reactions of **1** to investigate the effect of changing the leaving group from 2,4-dinitrophenoxide to 3,4-dinitrophenoxide on reactivity and reaction mechanism (*i.e.*, an *ortho*-substituent effect) in a microscopic rate constant level.

Results and Discussion

Reactions of **2** with all the amines studied proceeded with quantitative liberation of 3,4-dinitrophenoxide ion. The reactions were followed by monitoring the appearance of the leaving group at 410 nm. Kinetic study was performed under pseudo-first-order conditions, *i.e.*, the concentration of amines was at least 20 times in excess over that of the substrate **2**. All reactions obeyed first-order kinetics. Pseudo-first-order rate constants (k_{obsd}) were determined from the equation, $\ln(A_{\infty} - A_t) = -k_{obsd}t + C$. The plots of k_{obsd} vs. the amine concentration were linear passing through the origin,

Table 1. Summary of Second-order Rate Constants $(k_N, M^{-1}s^{-1})$ for Reactions of 3,4-Dinitrophenyl 2-Furoates (2) and 2,4-Dinitrophenyl 2-Furoartes (1) with a Series of Secondary Alicyclic Amines in 20 mol % DMSO at 25.0 ± 0.1 °C^{*a*}

Entry	Amines	pK _a	$k_{\rm N}/~{ m M}^{-1}{ m s}^{-1}$	
			2	1
1.	piperidine	11.02	396	427
2.	3-methylpiperidine	10.80	329	402
3.	piperazine	9.85	175	224
4.	morpholine	8.65	30.2	43.5
5.	1-formylpiperazine	7.98	5.75	12.3
6.	piperazinium ion	5.95	0.383	1.47

^aThe data for the reactions of **1** were taken from ref. 12.

indicating that general base catalysis by a second amine molecule is absent and the contribution of OH⁻ ion from the hydrolysis of amines to k_{obsd} is negligible. Thus, the rate equation can be given as eq. (1). The second-order rate constants (k_N) were determined from the slope of the linear plots of k_{obsd} vs. the amine concentration. Generally five different amine concentrations were used to determine k_N values. It is estimated from replicate runs that the uncertainty in the rate constants is less than 3%. The k_N values determined in this way are summarized in Table 1 together with those reported for the corresponding reactions of **1** for comparison purpose.

rate =
$$k_{\text{obsd}}[2]$$
, where $k_{\text{obsd}} = k_{\text{N}}[\text{amine}]$ (1)

Effect of *ortho*-Substituent on Reactivity and Mechanism. As shown in Table 1, the second-order rate constant for the reaction of **2** decreases as the basicity of amines decreases, *i.e.*, $k_{\rm N}$ decreases from 396 M⁻¹s⁻¹ to 30.2 and 0.383 M⁻¹s⁻¹ as the p $K_{\rm a}$ of amines decreases from 11.02 to 8.65 and 5.95, respectively. A similar result is shown for the

Figure 1. Brønsted-type plots for the reactions of $1 (\bigcirc)$ and $2 (\bullet)$ with secondary alicyclic amines in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C. The identity of points is given in Table 1.

Figure 2. Plot of $\log k_N$ for the reactions of **1** *vs.* $\log k_N$ for the reactions of **2** in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C.

corresponding reactions of 1.

The effect of amine basicity on reactivity is illustrated in Figure 1. The Brønsted-type plot exhibits a downward curvature for the reactions of **1** and **2**, when k_N and pK_a are statistically corrected using *p* and *q* (*i.e.*, *p* = 2 except *p* = 4 for piperazinium ion and *q* = 1 except *q* = 2 for piperazine).¹³ It is also noted that the slope of the Brønsted-type plots is a little larger for the reactions of **2** than for those of **1**.

Figure 1 shows that **2** is less reactive than **1** toward all the amines studied. However, interestingly, the reactivity difference between **1** and **2** becomes smaller as the amine basicity increases. Moreover, **2** would be expected to be more reactive than **1** when the amine basicity increases further (*e.g.*, $pK_a > 11.5$).

A plot of log k_N for the reactions of **1** *vs.* log k_N for the corresponding reactions of **2** has been constructed to investigate the effect of the *ortho*-NO₂ on reaction mechanism. As shown in Figure 2, an excellent linear correlation is obtained (*e.g.*, $\mathbf{R}^2 = 0.9991$) with a slope of 1.21. Such a good linear plot suggests that the reactions of **1** and **2** proceed through the same mechanism. The slope of 1.21 is consistent with the fact that **2** is more sensitive than **1** toward the amine basicity (see Figure 1). Accordingly, one can suggest that shifting the NO₂ group from the *ortho*-position to the *meta*-position can influence the reactivity but not the reaction mechanism.

The reactions of **1** with the current secondary alicyclic amines have been suggested to proceed through T^{\pm} with a change in the RDS at $pK_a = 9.1$, which is *ca*. 5 pK_a units more basic than the leaving 2,4-dinitrophenoxide (*i.e.*, pK_a of 2,4-dinitrophenol = 4.11). Thus, one can suggest that the current reactions of **2** proceed also through T^{\pm} with a change in the RDS as shown in Scheme 1 on the basis of the curved Brønsted-type plot in Figure 1 and the linear plot in Figure 2.

774 Bull. Korean Chem. Soc. 2008, Vol. 29, No. 4

Evaluation of Microscopic Rate Constants. The nonlinear Brønsted-type plot shown in Figure 1 for the aminolysis of **2** has been analyzed using a semiempirical equation (eq. 2)^{11,14} on the basis of the proposed mechanism. The parameters β_1 and β_2 represent the slope of the curved Brønsted plot in Figure 1 for the reactions with strongly basic and weakly basic amines, respectively. Here k_N° refers to the k_N value at pK_a° (*i.e.*, the pK_a at the center of Brønsted curvature where $k_2/k_{-1} = 1$).

$$\log (k_{\rm N}/k_{\rm N}^{\circ}) = \beta_2 (pK_{\rm a} - pK_{\rm a}^{\circ}) - \log (1 + \alpha)/2$$

where
$$\log \alpha = (\beta_2 - \beta_1) (pK_{\rm a} - pK_{\rm a}^{\circ})$$
(2)

The parameters determined from the fitting of eq. (2) to the experimental points are $\beta_1 = 0.33$, $\beta_2 = 0.76$, and $pK_a^{\circ} =$ 10.4 for the reactions of **2**. The β_1 value for the reactions of **2** is the same as that reported for the reactions of **1**, while β_2 is slightly larger for the reactions of **2** ($\beta_2 = 0.76$) than for those of **1** ($\beta_2 = 0.73$). The pK_a° value for the reactions of **2** is 10.4, which is *ca*. 5 pK_a units larger than the pK_a of 3,4-dinitrophenol (*i.e.*, 5.42). Thus, the pK_a° value of 10.4 for the reactions of **2** is consistent with the report that a change in the RDS occurs as the attacking amine becomes more basic than the leaving aryloxide by 4 to 5 pK_a units.

The k_N values for the reactions of **2** have been dissected into their microscopic rate constants as shown below. The apparent second-order rate constant k_N can be expressed as eq. (3) by applying the steady-state conditions to the intermediate on the basis of the proposed mechanism.

$$k_{\rm N} = k_1 k_2 / (k_{-1} + k_2) \tag{3}$$

The k_2/k_{-1} ratios associated with the aminolysis of **2** have been determined using eqs. (4)-(9). Eq. (3) can be simplified to eq. (4) or (5). Then, β_1 and β_2 can be expressed as eqs. (6) and (7), respectively.

$$k_{\rm N} = k_1 k_2 / k_{-1}$$
, when $k_2 << k_{-1}$ (4)

$$k_{\rm N} = k_1$$
, when $k_2 >> k_{-1}$ (5)

$$\beta_1 = d(\log k_1)/d(pK_a) \tag{6}$$

$$\beta_2 = d(\log k_1 k_2 / k_{-1}) / d(pK_a)$$

= $\beta_1 + d(\log k_2 / k_{-1}) / d(pK_a)$ (7)

Eq. (7) can be rearranged as eq. (8). Integral of eq. (8) from pK_a° results in eq. (9). Since $k_2 = k_{-1}$ at pK_a° , the term $(\log k_2/k_{-1})_{pKa^{\circ}}$ is zero. Therefore, one can calculate the k_2/k_{-1} ratios for the aminolysis of **2** from eq. (9) using $pK_a^{\circ} = 10.4$, $\beta_1 = 0.33$, and $\beta_2 = 0.76$. The k_1 values have been determined from eq. (10) using the k_N values in Table 1 and the k_2/k_{-1} ratios calculated above. The k_2/k_{-1} ratios and k_1 values are summarized in Table 2.

$$\beta_2 - \beta_1 = d(\log k_2/k_{-1})/d(pK_a)$$
 (8)

$$(\log k_2/k_{-1})_{pKa} = (\beta_2 - \beta_1)(pK_a - pK_a^{o})$$
(9)

$$k_{\rm N} = k_1 k_2 / (k_{-1} + k_2) = k_1 / (k_{-1} / k_2 + 1) \tag{10}$$

Effect of *ortho*-Substituent on Microscopic Rate Constants. It has been suggested that k_2 is independent of the Ik-Hwan Um and Kalsoom Akhtar

Table 2. Summary of Microscopic Rate Constants k_2/k_{-1} Ratios and k_1 values for the Reactions of **2** (and **1**, in parentheses) with a Series of Secondary Alicyclic Amines in 80 mol % H₂O/20 mol % DMSO at 25.0 \pm 0.1°C^{*a*}

Entry	Amine	pK _a	k_2/k_{-1}	$k_1/M^{-1}s^{-1}$
1.	piperidine	11.02	2.44 (7.73)	558 (482)
2.	3-methylpiperidine	10.80	2.00 (6.32)	493 (466)
3.	piperazine	9.85	0.580 (2.00)	477 (336)
4.	morpholine	8.65	0.238 (0.872)	157 (93.4)
5.	1-formylpiperazine	7.98	0.123 (0.470)	52.7 (38.5)
6.	piperazinium ion	5.95	0.022 (0.096)	17.7 (16.8)

^{*a*}The data for the reactions of **1** were taken from ref. 12.

Figure 3. Plots of log k_2/k_{-1} versus p K_a for the reactions of **1** (\bigcirc) and **2** (\bullet) with a series of secondary alicyclic amines in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C.

basicity of amines, since the N atom of the aminium moiety of T[±] cannot exert a push to expel the leaving aryloxide from T[±] due to the lack of an electron pair on its nitrogen atom.^{11,15} However, the k_{-1} value would decrease as the amine basicity increases. Accordingly, one might expect that the k_2/k_{-1} ratio would increase as the amine basicity increases. In fact, Table 2 shows that the k_2/k_{-1} ratio increases as the amine basicity increases for the aminolyses of **1** and **2**.

The effect of amine basicity on the k_2/k_{-1} ratio is illustrated in Figure 3. The plots of log k_2/k_{-1} vs. pK_a are linear for the reactions of **1** and **2**, although the slope of the linear plots is slightly larger for the reactions of **2** (*i.e.*, $\beta_{-1} = 0.43$) than for those of **1** (*i.e.*, $\beta_{-1} = 0.40$). The larger β_{-1} value obtained for the reactions of less reactive **2** appears to be consistent with the so-called reactivity-selectivity principle (RSP).¹⁶

One might expect that the reactions of **2** would result in a smaller k_2 value than those of **1**, since 3,4-dinitrophenoxide is more basic and a poorer leaving group than 2,4-dinitrophenoxide. However, the k_{-1} value would not be influenced by the basicity of the leaving group. Thus, one might expect

Figure 4. Brønsted-type plots for the reactions of k_1 of **1** (\bigcirc) and **2** (\bullet) with a series of secondary alicyclic amines in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C. The identity of points is given in Table 2.

that the k_2/k_{-1} ratio is smaller for the reactions of **2** than for those of **1**. In fact, Figure 3 shows that the k_2/k_{-1} ratio is smaller for the reactions of **2** than for those of **1** for a given amine.

As shown in Figure 4, k_1 increases linearly with increasing amine basicity for the reactions of 1 and 2. However, the k_1 value is slightly larger for the reactions of 2 than for those of 1, although 2 has a more basic leaving group than 1 (see Table 2). Since the *ortho*-NO₂ in substrate 1 would cause steric hindrance in the k_1 process, one can suggest that steric effect is responsible for the fact that the reaction of 1 results in a smaller k_1 value than that of 2 for a given amine.

Conclusions

The current study has allowed us to conclude the following: (1) Aminolyses of **1** and **2** proceed through T^{\pm} with a change in the RDS. (2) Substrate **2** is less reactive than substrate **1** toward all the secondary amines studied. However, the difference in reactivity becomes smaller as the amine basicity increases. (3) Dissection of $k_{\rm N}$ into the microscopic rate constants has revealed that aminolysis of **2** results in smaller k_2/k_{-1} ratio but larger k_1 value than that of **1**. (4) Steric hindrance has been suggested to be responsible for the smaller k_1 value obtained from the reactions of **1**.

Experimental Section

Materials. Substrate **2** was readily prepared from the reaction of 3,4-dinitrophenol and 2-furoyl chloride in the presence of triethylamine in anhydrous ether. The purity was confirmed by its melting point and ¹H NMR spectrum.^{5h}

Amines and other chemicals were of the highest quality available and were generally recrystallized or distilled before use. Due to the low solubility of **2** in pure H₂O, 20 mol % DMSO/80 mol % H₂O was used as the reaction medium. Doubly glass distilled water was further boiled and cooled under nitrogen just before use.

Kinetics. The kinetic studies were performed at 25.0 ± 0.1 °C with a Scinco S-3100 UV-Vis spectrophotometer equipped with a constant temperature circulating bath for slow reactions (*e.g.*, $t_{1/2} \ge 10$ s) or with a stopped-flow spectrophotometer for fast reactions (*e.g.*, $t_{1/2} < 10$ s). The reactions were followed by monitoring the appearance of 3,4-dinitrophenoxide ion at 410 nm. All the reactions were carried out under pseudo-first-order conditions in which the amine concentration was at least 20 times greater than that of the substrate.

Products Analysis. 3,4-Dinitrophenoxide ion was liberated quantitatively and identified as one of the reaction products by comparison of the UV-vis spectra after the completion of the reactions with those of the authentic samples under the same reaction conditions.

Acknowledgments. This work was supported by a grant from Korea Research Foundation (KRF-2005-015-C00256). K. Akhtar is also grateful to Korea Research Foundation for the Predominant Foreign Student Scholarship (KRF-2007-211-C00021).

References

- (a) Johnson, S. L. Adv. Phys. Org. Chem. 1967, 5, 237-270. (b) Kirby, A. J. In Organic Reaction Mechanisms; Knipe, A. C.; Watts, W. E., Eds.; Wiley and Sons: New York, 1980. (c) Page, M. I.; Williams, A. Organic and Bio-organic Mechanisms; Longman: Harlow, U.K., 1997; Chapter 7. (d) Bennett, A. J.; Brown, R. S. In Physical Organic Chemistry of Acyl Transfer Reactions, Comprehensive Biological Catalysis; Academic Press: New York, 1998; vol. 1.
- (a) Jencks, W. P.; Gilchrist, M. J. Am. Chem. Soc. 1968, 90, 2622-2637.
 (b) Jencks, W. P. Chem. Soc. Rev. 1981, 10, 345-375.
 (c) Williams, A. Adv. Phys. Org. Chem. 1992, 27, 2-55.
 (d) Menger, F. M.; Smith, J. H. J. Am. Chem. Soc. 1972, 94, 3824-3829.
 (e) Tsang, W. Y.; Ahmed, N.; Page, M. I. Org. Biomol. Chem. 2007, 5, 485-493.
- (a) Castro, E. A. Chem. Rev. 1999, 99, 3505-3524. (b) Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G J. Org. Chem. 2005, 70, 7788-7791. (c) Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G J. Org. Chem. 2005, 70, 3530-3536. (d) Castro, E. A.; Aliaga, M.; Santos, J. G J. Org. Chem. 2005, 70, 2679-2685. (e) Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G J. Phys. Org. Chem. 2006, 19, 555-561. (c) Castro, E. A.; Echevarria, G. R.; Opazo, A.; Robert, P.; Santos, J. G J. Phys. Org. Chem. 2006, 19, 129-135.
- (a) Oh, H. K.; Park, J. E.; Sung, D. D.; Lee, I. J. Org. Chem. 2004, 69, 3150-3153. (b) Oh, H. K.; Oh, J. Y.; Sung, D. D.; Lee, I. J. Org. Chem. 2005, 70, 5624-5629. (c) Oh, H. K.; Jin, Y. C.; Sung, D. D.; Lee, I. Org. Biomol. Chem. 2005, 3, 1240-1244. (d) Sung, D. D.; Koo, I. S.; Yang, K. Y.; Lee, I. Chem. Phys. Lett. 2006, 432, 426-430. (e) Sung, D. D.; Koo, I. S.; Yang, K. Y.; Lee, I. Chem. Phys. Lett. 2006, 426, 280-284. (f) Sung, D. D.; Kang, S. S.; Lee, J. P.; Jung, D. I.; Ryu, Z. H.; Lee, I. Bull. Korean Chem. Soc. 2007, 28, 1670-1674. (g) Hoque, M. E. U.; Dey, N. K.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Bull. Korean Chem. Soc. 2007,

28, 1797-1802. (h) Kim, C. K.; Kim, D. J.; Zhang, H.; Hsieh, Y. H.; Lee, B. S.; Lee, H. W.; Kim, C. K. *Bull. Korean Chem. Soc.* **2007**, *28*, 1031-1034. (i) Ehtesham, M. H. U.; Lee, H. W. *Bull. Korean Chem. Soc.* **2007**, *28*, 936-940.

- (a) Um, I. H.; Jeon, S. E.; Seok, J. A. Chem. Eur. J. 2006, 12, 1237-1243. (b) Um, I. H.; Hwang, S. J.; Baek, M. H.; Park, E. J. J. Org. Chem. 2006, 71, 9191-9197. (c) Um, I. H.; Lee, J. Y.; Ko, S. H.; Bae, S. K. J. Org. Chem. 2006, 71, 5800-5803. (d) Um, I. H.; Kim, E. Y.; Park, H. R.; Jeon, S. E. J. Org. Chem. 2006, 71, 2302-2306. (e) Um, I. H.; Lee, J. Y.; Fujio, M.; Tsuno, Y. Org. Biomol. Chem. 2006, 4, 2979-2985. (f) Um, I. H.; Min, S. W.; Dust, J. M. J. Org. Chem. 2007, 72, 8797-8803. (g) Um, I. H.; Park, Y. M.; Fujio, M.; Mishima, M.; Tsuno, Y. J. Org. Chem. 2007, 72, 4816-4821. (h) Um, I. H.; Akhtar, K.; Park, Y. M.; Khan, S. B. Bull. Korean Chem. Soc. 2007, 28, 1353-1357.
- (a) Guthrie, R. D. Pure Appl. Chem. 1989, 61, 23-56. (b) Guthrie, J. P. J. Am. Chem. Soc. 1991, 113, 3941-3949.
- (a) Oie, T.; Loew, G. H.; Burt, S. K.; Binkley, J. S.; Mcelroy, R. D. J. Am. Chem. Soc. **1982**, 104, 6169-6174. (b) Zipse, H.; Wang, L.; Houk, K. N. Liebigs Ann. **1996**, 1511-1522.
- (a) Lee, H. W.; Guha, A. K.; Kim, C. K.; Lee, I. J. Org. Chem. 2002, 67, 2215-2222. (b) Lee, I.; Sung, D. D. Curr. Org. Chem.

Ik-Hwan Um and Kalsoom Akhtar

2004, *8*, 557-567. (c) Lee, I.; Lee, H. W.; Lee, B. C.; Choi, J. H. Bull. Korean Chem. Soc. **2002**, *23*, 201-204.

- (a) Yang, W.; Drueckhammer, D. G. Org. Lett. 2000, 2, 4133-4136. (b) Ilieva, S.; Galabov, B.; Musaev, D. G.; Morokuma, K.; Schaefer, H. F. III. J. Org. Chem. 2003, 68, 1496-1502.
- (a) Um, I. H.; Shin, Y. H.; Han, J. Y.; Mishima, M. J. Org. Chem. 2006, 71, 7715-7720.
- (a) Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6963-6970. (b) Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6970-6980.
- Um, I. H.; Chun, S. M.; Akhtar, K. Bull. Korean Chem. Soc. 2007, 28, 220-224.
- Bell, R. P. *The Proton in Chemistry*; Methuen: London, 1959; p 159.
- Castro, E. A.; Moodie, R. B. J. Chem. Soc., Chem. Commun. 1973, 828–829.
- (a) Castro, E. A.; Santander, C. L. J. Org. Chem. 1985, 50, 3595-3600. (b) Castro, E. A.; Valdivia, J. L. J. Org. Chem. 1986, 51, 1668-1672. (c) Castro, E. A.; Steinfort, G. B. J. Chem. Soc., Perkin Trans. 2 1983, 453-457.
- Pross, A. Advances in Physical Organic Chemistry; Academic Press: London, 1977; vol. 14, pp 69-132.

⁷⁷⁶ Bull. Korean Chem. Soc. 2008, Vol. 29, No. 4