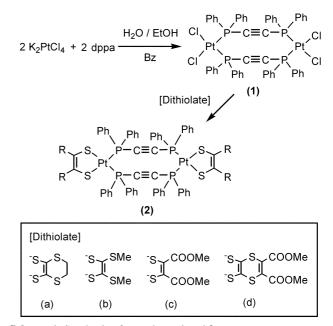

Binuclear Platinum(II) Building-blocks for the Metal-coordinated Self-assembly: (Dithiolate)Pt(μ -dppa)₂Pt(dithiolate) where dppa = Bis(diphenylphosphino)acetylene

Kyong-Soon Shin and Dong-Youn Noh*

Department of Chemistry, Seoul Womens University, Seoul 139-774, Korea Received September 19, 2003

Key Words : Pt(II) dithiolate, Dppa, Cyclic voltammetry, Building-block, ³¹P-/¹⁹⁵Pt-NMR

One of the most important research topics in coordination polymer chemistry in recent times has been the development of new building blocks,¹⁻⁵ able to construct new types of selfassembly exhibiting unique structural, chemical and physical properties. The coordinating ligand of interest is dppa (bis(diphenylphosphino)acetylene), which has a linear geometry with two terminal phosphine moieties and one acetylene moiety able to coordinate to metal ions. One of the potential building blocks using dppa would appear to be $Cl_2Pt(\mu$ -dppa)_2PtCl_2 (1), in which two Pt(II) ions are bridged by two dppa ligands and terminated by two chloride ions.^{2,3} Even though its utility as a building block in new types of self-assembly has not been previously reported, $Cl_2Pt(\mu$ dppa)_2PtCl_2 (1), together with its Pd(II) and Pd(II)/Pt(II) analogues, seems to be highly suitable for such purposes.²⁻⁴



Recently, we reported on a series of mono- and bi-nuclear complexes, having a P_2PtS_2 core (**A** and **B**), and wherein the 1,2-dithiolate ligands contain cyanide, methyl sulfide, 1,4-dithiin ring, and tetrathiafulvalene (TTF) derivatives.⁵ In this paper, we report on a facile synthetic route with a very high yield and the less strained molecular structure of $Cl_2Pt(\mu$ -dppa)_2PtCl₂ (**1**). Moreover, the extension of this bi-nuclear complex by substituting chloride ions with the function-

alized 1,2-dithiolate ligands is achieved and the resultant complexes are characterized by high-resolution MALDI-MS, ³¹P-/¹⁹⁵Pt-NMR and cyclic voltammetry.

Experimental Section

Dithiolate ligands (a-d) were prepared according to the literature procedures.^{5,6} All reactions and recrystallizations involving platinum complexes were carried out under conditions of protection from light and air. Elemental analysis was carried out at the National Center for inter-University Research Facilities in Seoul. The FAB mass spectrum of 1 was taken with a JMS-HX110/110A tandem mass spectrometer (JEOL), and the MALDI mass spectra of 2 were taken with a Voyager-DE STR mass spectrometer (Applied Biosystems). ³¹P and ¹⁹⁵Pt NMR spectra were measured at the Advanced Analysis Center at KIST. Infrared spectra were obtained by the KBr pellet method on a MIDAC FT-IR spectrometer, and the UV-vis spectra were obtained in acetonitrile on a HP 8452A diode array spectrometer. Cyclic voltammetry measurements were carried out at room temperature with a CHI620A Electrochemical Analyzer (CHI Instruments Inc.) in 10 mL CH₂Cl₂ solution containing a 0.01 mM sample, using 0.1 M n-Bu₄N·BF₄ as

Scheme 1. Synthesis of complexes 1 and 2.

^{*}Corresponding author. Phone: +82-2-970-5656; Fax: +82-2-970-5972; e-mail: dynoh@swu.ac.kr

Notes

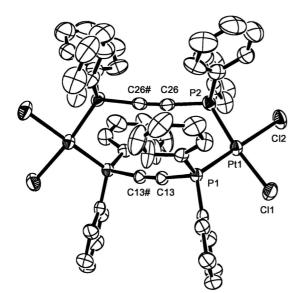
the electrolyte, Ag/Ag^+ as the reference electrode, a Ptbutton working electrode (r = 1 mm), a platinum wire as the counter electrode and with a 0.04 V s⁻¹ scan rate ($E_{1/2} = 0.694$ V for Fc/Fc⁺ couple).

Bis[µ-{(diphenylphosphino)acetylene}] bis(dichloroplatinum). To an ethanol suspension (24 mL) of K₂PtCl₄ (0.84 g, 2 mmol) was added a minimum amount of degassed water prepared by argon bubbling with heating prior to use, until the suspension became clear. A benzene solution (10 mL) of dppa (0.79 g, 2 mmol) was dropped into this solution, which led to the immediate formation of a white precipitate. For the completion of the reaction, the reaction mixture was stirred for 6 hrs. The white precipitate was filtered and washed with distilled water and methanol, and recrystallized from CH2Cl2/MeOH. Yield: 93% (1.23 g).M.p 207-208 °C (dec.). EA: calc for C₅₂H₄₀Cl₄P₄Pt₂ C 47.29, H 3.05; obsd C 47.30, H 3.05. FAB-MS (m/z): 1320.38 (M^++2) . ³¹P NMR (CDCl₃): δ -13.76. ¹⁹⁵Pt NMR (CDCl₃): δ -4431 (t, ${}^{1}J$ (Pt, P) = 3660 Hz). FT-IR (KBr, cm⁻¹): 3054 (Ph C-H str), 1480, 1437 (Ar ip str), 1185, 1161, 1099 (ip CH def), 1026, 998 (P-Ph str), 837, 744 (oop CH def), 689, 545, 515, 494, 442 (oop ring def).

Bis[μ -{(**diphenylphosphino**)acetylene}] **bis**(**platinumdithiolate**). To an ethanol suspension (10 mL) of the 1,3dithiol-2-on precursors of the corresponding dithiolate (2 mmol; 0.44 g (**a**), 0.42 g (**b**), 0.48 g (**c**), 0.65 g (**d**)) was added potassium hydroxide (0.21 g, 4 mmol) with stirring for 30 min under an argon atmosphere. (PtCl₂)₂(μ -dppa)₂ (1 mmol, 1.34 g) dissolved in a minimum amount of methylene chloride (40 mL) was added, followed by stirring at room temperature for 4 h. The precipitate was filtered off and washed with methylene chloride, a small amount of dilute acid and H₂O. The filtrate was dried under reduced pressure and then recrystallized from CH₂Cl₂/MeOH.

For **2a**: Yield: 65% (0.99 g). M.p 179-180 °C (dec.). MALDI-MS (m/z): 1539 (M^++1), 1511 (M^++1 -CH₂CH₂), 1355 (M^++1 -2SCH₂CH₂S). ³¹P NMR (CDCl₃): δ -8.036. ¹⁹⁵Pt NMR (CDCl₃): δ -4742 (t, ¹J (Pt, P) = 2864 Hz). FT-IR (KBr, cm⁻¹): 3053 (Ph C-H str), 2919, 2854 (-CH₂-CH₂-), 2057 (-C=C-), 1626 (-C=C-), 1480, 1436 (Ar ip str), 1161, 1098 (ip CH def), 1026, 999 (P-Ph str), 836, 744 (oop CH def), 691, 537, 514, 497 (oop ring def). UV (CH₃CN, nm): 208s, 228sh, 254sh.

For **2b**: Yield: 60% (0.93 g). M.p 167-168 °C (dec.). MALDI-MS (m/z): 1539 (M^+ -3), 1512 (M^+ -2CH₃), 1354 (M^+ +1-4SCH₃). ³¹P NMR (CDCl₃): δ -8.064. ¹⁹⁵Pt NMR (CDCl₃): δ -4742 (t, ¹J (Pt, P) = 2865 Hz). FT-IR (KBr, cm⁻¹): 3051 (Ph C-H str), 2917, (-CH₃), 2054 (-C=C-), 1654 (-C=C-), 1480, 1436 (Ar ip str), 1185, 1131, 1098 (ip CH def), 1026, 998 (P-Ph str), 834, 744 (oop CH def), 691, 537, 514, 497, 436 (oop ring def). UV (CH₃CN, nm): 212s, 226sh, 254sh.


For **2c**: Yield: 72% (1.15 g). M.p 132-133 °C (dec.). MALDI-MS (m/z): 1590 (M^+), 1560 (M^+ -2CH₃). ³¹P NMR (CDCl₃): δ -8.377. ¹⁹⁵Pt NMR (CDCl₃): δ -4663 (t, ¹J (Pt, P) = 2818 Hz). FT-IR (KBr, cm⁻¹): 3056 (Ph C-H str), 2980, 2945 (-CH₃), 2054 (-C=C-), 1718, 1703 (COO) 1629 (-C=C-), 1480, 1437 (Ar ip str), 1238 (COO), 1097 (ip CH def), 1030, 999 (P-Ph str), 838, 745 (oop CH def), 691, 538, 514, 497, 436 (oop ring def). UV (CH₃CN, nm): 208s, 230sh, 254sh, 346w.

For 2d: Yield: 63% (1.11 g). M.p 163-164 °C (dec.). MALDI-MS (m/z): 1767 (M^++1). ³¹P NMR (CDCl₃): δ -8.753. ¹⁹⁵Pt NMR (CDCl₃): δ -4506 (t, ¹J (Pt, P) = 2825 Hz). FT-IR (KBr, cm⁻¹): 3054 (Ph C-H str), 2948 (-CH₃), 2054 (-C=C-), 1722 (COO) 1626 (-C=C-), 1480, 1436 (Ar ip str), 1245 (COO), 1097 (ip CH def), 1021 (P-Ph str), 836, 745 (oop CH def), 691, 537, 514, 497, 453 (oop ring def). UV (CH₃CN, nm): 212s 226sh.

X-ray crystal structure analysis. A white single crystal with dimensions of $0.40 \times 0.28 \times 0.25$ mm was selected for the x-ray diffraction experiment and the reflection data were collected on an Enraf-Nonius CAD4 automatic diffractometer with graphite-monochromated Mo K α radiation (λ = 0.71071 Å) at 293(2) K. The structure solution and refinement of the data were handled with the SHELXS-97 and SHELXL-97 programs.⁷ Crystal data for C₅₂H₄₀Cl₄P₄Pt₂ $(CH_2Cl_2)_2$; Orthorhombic, Pbcn, a = 14.201(3) Å, b =17.643(4) Å, c = 21.836(8) Å, V = 5471(2) Å³, Z = 4, Dc =1.810 mg/m³; 5108 reflections collected, 3449 independent reflections, final $R_1 = 0.0336$, $wR_2 = 0.0800$. Crystallographic data for $(PtCl_2)_2(\mu$ -dppa)_2·(CH_2Cl_2)_2 have been deposited with the Cambridge Crystallographic Data Centre (Deposition No. CCDC-216410). The data can be obtained free of charge via http://www.ccdc.cam.ac.uk/perl/catreq/catreq.cgi (or from the CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK; fax: +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk).

Results and Discussion

Complex 1 was synthesized using equimolar amounts of K₂PtCl₄ and dppa in a mixed-solvent (ethanol/water/ benzene) without exposure to air and light (Scheme 1).⁵ This can be regarded as a facile synthetic route to complex 1, because the reaction is carried out at room temperature, simply by stirring the reaction mixture, and it gives a very high yield (93%) after recrystallization. Moreover, the same product can be obtained even when the reactant ratio (K₂PtCl₄ over dppa) varies from 0.5 to 2.0. Four kinds of 1,2-dithiolate ligands (a-d) were treated with complex 1 to vield complexes 2 (60-72%), which in each case were washed with a small amount of dilute acid to eliminate any possibility of the potassium ion coordinated to the acetylenic triple bond. Since the stretching vibration of a symmetrical alkyne is infrared inactive,⁸ no v(C=C) vibrations were observed in the IR spectra of either dppa or complex 1. Complex 2 has the same dithiolate ligand at each end and therefore seems to have a symmetrical structure. However, all of these complexes show a small IR band at around 2054 cm^{-1} , which is attributed to an v (C=C) vibration. From these observations, it is believed that the various functional groups, such as ethylene, methyl sulfide and methyl ester, attached to the dithiolate ligand, must be disordered and, therefore, complex 2 is totally unsymmetrical in the solid state.

Figure 1. ORTEP drawing of Cl₂Pt(μ -dppa)₂PtCl₂ with the atomic numbering scheme. Hydrogen atoms and solvated CH₂Cl₂ molecules are omitted for clarity. Selected bond distances (Å) and angles (°): Pt1-Cl1 2.322(2), Pt1-Cl2 2.343(2), Pt1-P1 2.2382(19), Pt1-P2 2.239(2), C13-C13# 1.175(13), C26-C26# 1.182(14), P1-Pt1-P2 96.04(7), P1-Pt1-Cl1 91.46(7), P2-Pt1-Cl2 85.53(8), C11-Pt1-Cl2 87.06(8), C13#-C13-P1 173.2(3), C26#-C26-P2 171.3(9) (#: -x+1, y, -z+3/2).

A single crystal of complex 1 suitable for X-ray structure analysis was obtained by the diffusion process involving CH₂Cl₂ and MeOH. The molecular structure along with the selected atomic numbering scheme is shown in Figure 1. The P₂PtCl₂ core has a distorted square planar geometry with angles of $96.04(7)^{\circ}$ for P1-Pt1-P2 and $87.06(8)^{\circ}$ for Cl1-Pt1-Cl2. The Cl3=Cl3# and C26=C26# bond distances are 1.175(13) Å and 1.182(14) Å, respectively, which are comparable to those in PtPdCl₄(dppa)₂ (1.195(9) Å),⁴ $Pd_2Cl_4(dppa)_2$ (1.199(4) Å)³ and $Pt_2Cl_4(dppa)_2$ (1.16(2) Å and $1.22(2) \text{ Å})^3$. The angles P1-C13-C13# (173.2(3)°) and P2-C26-C26# $(171.3(9)^\circ)$ of complex 1 deviate from those of the linear conformation. These observations indicate that this complex has a distorted conformation especially around the Pt ion, but the distortion is not as big as was previously reported.³ This distorted conformation probably influences the formation of complex 2: The 1,2-dithiolate ligands with the six-membered 1,4-dithiin ring (a and d) or the open

Table 1. Cyclic voltammetry parameters for the complexes (in Volts)*

Complex	$E_{\mathrm{pa}}{}^1$	$E_{ m pc}{}^1$	$\Delta E_{\rm p}^{-1}$	$E_{1/2}{}^1$	$E_{\mathrm{pa}}{}^2$
1	1.344	1.028	_	-	_
2a	0.854	0.718	0.136	0.786	1.420
2b	0.858	0.712	0.146	0.785	1.420
2c	0.884	0.606	0.278	0.745	1.442
2d	1.072	0.948	0.124	1.010	1.506

*0.04 V s⁻¹ scan rate, 0.01 mM samples in CH₂Cl₂ at 298 K, Pt disk electrode (3.14 mm²), supporting electrolyte: n-Bu₄N·BF₄ 0.1 M, reference electrode: Ag/Ag⁺.

structure (**b** and **c**) successfully react with complex **1** to produce the well-characterized complex **2**. From our preliminary synthetic result, however, we were not able to produce complex **2** with the 1,3-dithiol-2-thione-4,5dithiolate (dmit) ligand, which contains the more constrained five-membered 1,3-dithiol-2-thione ring. It is likely

that the possible tension around the Pt ion prohibits the

formation of complex 2 with the dmit ligand. Cyclic voltammograms (CV) of complexes 1 and 2 were measured between 0 V and 1.6 V using a Pt disk electrode, and the electrochemical parameters for these complexes are summarized in Table 1. Complex 1 exhibits one irreversible redox peak at $E_{pa} = 1.344$ V and $E_{pc} = 1.028$ V. The complexes 2 show almost identical CV patterns with one reversible peak $(E_{1/2}^{1})$, attributable to the redox process of the dithiolate ligands, and one oxidation peak (E_{pa}^{2}) , attributable to that of the $(dppa)_2Pt_2$ moiety. Complexes **2a** and **2b** exhibit almost the same $E_{1/2}^1$ and E_{pa}^2 values, suggesting that the presence of the 1,4-dithiin ring in ligand **a** does not cause the redox potential to differ significantly from that of ligand **b**. On the other hand, ligands **c** and **d**, which have two methyl ester terminal groups, have different redox potentials. The redox potential of complex 2c is close to those of complexes 2a and 2b, possibly because ligand c has an open structure similar to that of ligand b. In the case of complex 2d, however, ligand d has an additional 1,4dithiin ring, which may increase the $E_{1/2}^{1}$ and E_{pa}^{2} values, due to electron delocalization over the ligand d. The ligands **b**, **c** and **d** all have potential secondary coordinating groups, such as sulfide and ester moieties. These terminal groups can accommodate some transition metal ions, so that the corresponding complex 2 can be used as a new building block for the construction of the self-assembly.

Acknowledgement. This work was supported by Seoul Womens University (2003 Special Research Grant).

References

- (a) Fujita, M. In Molecular Self-assembly Organic versus Inorganic Approaches; Fujita, M., Ed.; Springer: Berlin, 2000. (b) Sun, S. S.; Anspach, J. A.; Lees, A. J.; Zavalij, P. Y. Organometallics 2002, 21, 685.
- 2. Carty, A. J.; Efraty, A. Inorg. Nucl. Chem. Letters 1968, 4, 427.
- Oberhauser, W.; Bachmann, C.; Stampfl, T.; Bruggeller, P. Inorg. Chim. Acta 1997, 256, 223.
- Clark, H.; Ferguson, G.; Kapoor, P. N.; Parvez, M. Inorg. Chem. 1985, 24, 3924.
- (a) Noh, D. Y.; Seo, E. M.; Lee, H. J.; Jang, H. Y.; Choi, M. G.; Kim, H. Y.; Hong, J. *Polyhedron* **2001**, *20*, 1939. (b) Shin, K. S.; Han, Y. K.; Noh, D. Y. *Bull. Korean Chem. Soc.* **2003**, *24*, 235.
- (a) Varma, K. S.; Bury, A.; Harris, N. J.; Underhill, A. E. Synthesis 1987, 837. (b) Svenstrup, N.; Becker, J. Synthesis 1995, 215.
- Sheldrick, G. M. SHELXS-97 and SHELXL-97: A Program for Structure Determination and Refinement; University of Göttingen: Germany, 1997.
- Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. Spectroscopic Identification of Organic Compounds; Wiley: Singapore, 1991; pp 107-108.