Second Schlogl Model with a Singular Multiplicative Random Force

Some other examples are shown in Figures 6(b) and 6(c).
As shown in the figures, the variation of the probability dis-
tributions by crossing the pitchfork bifurcation line is discon-
tinuous.

Summary

We have compared the stationary probability distributions
for the Schlégl model with the first order phase transition
subjected to a multiplicative random force, which is singular
at the deterministic unstable steady state by using the Ito
and Statonovich methods for the stochastic process. Let us
point out some important results.

(A) The multiplicative noise |x|" &(t) has an attracting (re-
pelling) effect as v>0 (v<0), that is, it attracts (repels) the
probability to (from) the unstable steady state. As | v| in-
creases, the attracting (repelling) force increases. The proper-
ty competes with deterministic term in determining the sto-
chastic properties of the system.

(B) When v>0, the stationary probability distribution be-
comes divergent at x=0. This result is clearly not realistic.
Thus, a more realistic stochastic model should be proposed.

(C) The straight lines v=0 and v=1 give marginal situa-
tion, that is, the fluctuating intermediate undergoes the pit-
chfork bifurcation by cressing the lines and the variation
of probability distributions becomes discontinuous, when the
system undergoes the pitchfork phase transition.

(D) The diffusion coefficient with v induces the saddle-
node bifurcation in the case of 0<v<1l. Below the curve of
the saddle-node bifurcation the coupling between the drift
and noise terms plays the most important role. However,
the multiplicative noise term becomes dominant above the
curve. Thus, it is clear that the variation of probability distri-
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butions in the saddle-node transition is continuous.

(E) Even though the Ito and Stratonovich FPEs are based
on the slight different definitions for the stochastic variabie®?,
some stochastic phenomena obtained from the equations are
physically quite different, as shown in the previous section.
Thus, it should be very careful to apply the Ito or Stratono-
vich FPE with multiplicative noise to an actual system.

In the following paper we shall discuss the stochastic phe-
nomena for the Schlégl model with the second order tran-
sition subjected to the multiplicative noise singular at the
unstable steady state.
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For the Schlogl model with the second order transition under the influence of the multiplicative noise singular at
the unstable steady state, the detailed discussions are presented for various kinds of stochastic phenomena, such
as the effects of parameters on stationary probability distribution, noise-induced phase transitions and escape rate.

Introduction

Recently, two of us' have discussed the stochastic pheno-
mena for the Schlégl model with the first order transition
driven by the multiplicative random force singular at the
unstable steady state. The effects of the singularity on the

stationary probability distribution have been analyzed in de-
tail. Then, the transition rate has been discussed from one
stable steady state to the other stable steady state through
the unstable steady state. We? have also discussed and com-
pared the effects of the parameters on the stationary proba-
bility distributions obtained by the Ito and Stratonovich
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methods.
The Schlogl model exhibiting the second order transition
in chemical reaction is given by>*

A+X<f_‘—?zx, B+x—H &Y

where ks are the rate constants, A and B are the concen-
trations of reactants and C denotes that of product. The rate
equation for X is given by the following equation while con-
centrations of other species being held constant

dX

7‘=—k—1X7+(ky4—kaB)X #)]
Rewriting Eq. (2) in terms of the following scaled variab-
les

t=k_it, =k A—kB) k_,,
it reduces to

dX = —

de X?+8X 3
When B>0, there are two steady states, that is, Xo=f and
Xo=0 corresponding to the stable and unstable states, res-
pectively. In the case of B<O0, there exists only one stable
steady state with X,=0.

In order to discuss stochastic phenomena for the model
let us write a Langevin equation with a singular multiplica-
tive noise (random force)

&K oy px+ XM @
with v being an arbitrary number and the noise &(x) being
Gaussian and white

<E)> =0, <&T)(E)>=2D &(x—1), )

where D is the diffusion coefficient and &(r—<t’) is the Dirac
delta function. The unstable steady state of the stochastic
equation corresponds to that of the deterministic system.
Eq. (4) can be rewritten in terms of x=X—X,=X, which
is the deviation from the unstable steady state due to the
multiplicative noise, as

%s—xuaﬁlxlvc(z) ®)

't

According to the Ito and Stratonovich theories of the sto-
chastic process,” the Langevin equation may be transformed
to different Fokker-Planck equations (FPEs), that is,

2 pe=— (-2 +ROPEVI+D §:7[|x|2vp<x,r)1
(7a)

9 - 9
50 Pe=— o [(=#*+pr) P(r,7)]

2
S i Liarpenl} )

The equations of (7a) and (7b) correspond to the Ito and
Stratonovich results, respectively.

The purpose of the present paper is to discuss various
kinds of stochastic phenomena, such as the effect of the
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exponent v on the probability, noise-induced phase transi-
tions, escape rate and etc., for the Schlégl model subjected
to a mutiplicative random force, which is singular at the
deterministic unstable steady state.

In the next section, the effects of the parameters on the
stationary probability distribution obtained from the Ito me-
thod is discussed in detail. The escape rate for the system
near the stable steady state is obtained in the following sec-
tion. Finally, we point out some important results of the pre-
sent work.

The Stationary Probabllity Distribution

We consider the Fokker-Planck equation obtained from
Ito’s theory first. Stratonovich’s theory will be discussed la-
ter. The probability distribution of Eq. (7a) is given by the
following expression:

Prx)=A exp{—V&)/D} ®

where the subscript I means that the probability distribution
is obtained from the Ito method, A is the normalization cons-
tant and

L a5 B reny 29D Inlxl

3—2v 2(1—v)
for v#1 and 1.5,
V@)=| x|+ 2D+ ) Inlx| for v=1, )
(1+3D) Injx| B for v=15.
L |2}

In Eq. (9) the upper and lower signs of ¥ and + represent
the cases of x>0 and x<0, respectively. When v=1, the pro-
bability diverges as x approaches to 0 negatively. In the
case of B>2D (B<2D) it vanishes (becomes infinite) as x—>+
0. If v=15, the probability becomes divergent (zero), as x
——0 (+0). The extrema of the probability in the cases of
v#1 and v+#15 may be obtained by solving the following
algebraic equation

|x13~2F Blx|2-¥+2vD=0. (10)

Let us discuss two situations based on Egs. (9) and (10).
(A) When D<1 and v<0, the maximal peak of P{x) appears
at

ZimaxP(1—~2vDR? %) for x>0,
2uD \1/2—2)
s =%)
1 ]
X|1— —| for x<0, (11)
S R

For x>0, the multiplicative noise shifts the maximum peak
of the probability farther away from the unstable state and
a new maximum peak is created in the region of x<0 due
to the coupling between the noise and the drift term. The
probability for v<O0 looks like a double Gaussian probability
with peaks at Ximg and X, that is,

P~B exp{ - [%(x —xl,.,.,,)z]}
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Figure 1. The stationary probability distribution for the case
v<0 taking D=0.1 and p=1. The solid, dotted, and heavy solid
curves denote v=-—15, ~0.5, and —0.1, respectively.
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Figure 2. The stationary probability distribution for the case
v>0 taking D=0.1 and B=1. The solid and dotted curves indi-
cate v=0.5 and 0.25, respectively.

+B' exp{— [%{x—xm)z]}, (12)

where B and B’ are the normalization constants. As v ap-
proaches to 0, the probability near the unstable steady state
varies sharply near x=0 due to the multiplicative noise. As
v becomes negatively larger, the probability becomes farther
away from the unstable steady state. Some examples are
shown in Figure 1.

(B) If D<1 and 0<v<1, the maximal and minimal peaks
appear at

Lz~ P(1—2vD B3

oo :( 2_;2)1/(2—%)

for x>0,

1
B—2v)—28(1—v)

X[l— e | for 220, 13)
(%)

For x>0 the multiplicative noise attracts the probability to-
ward the unstable steady state and a new minimum peak
is produced due to the coupling between the noise and drift
terms. As x approaches to 0, the probability behaves as 1/x>?
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Figure 3. The phase diagram between v and diffusion coeffi-
cient by taking B=1.

and becomes divergent at x=0. For x<0 the probability sim-
ply increases as |x|decreases and is proportional to 1/|x|>P
approximately for |x|<€1 (See Figure 2). The divergence is
caused by the multiplicative noise and is independent of the
deterministic term. The main interesting phenomena occurs
in the region x>0. Thus, from now on we shall restrict our-
selves to this region. The stochastic phenomena are comple-
tely different from the previous case, since the noise induces
phase transitions. At the critical point V(x) and its first deri-
vative with respect to x become zero. Thus, the critical values
of x are

2pA=v) 14)

%=0, 3—2v,

The first case is trivial and let us neglect it. Then, the rela-
tion between the critical values of diffusion coefficient and
v is
- L<_L>H“‘ o)
D. v, \ 3—2v. (2—2v) (15)

The bifurcation phase diagram in the v—D plane is shown
in Figure 3. The straight lines v=0 and v=1 show the pitch-
fork bifurcation different from the saddle-node bifurcation
obtained from Eq. (15). The line v=0 is solely due to the
multiplicative noise, while the v=1 line is due to the coup-
ling between the noise and the linear part of deterministic
term. The variation of the probability distributions by cros-
sing the straight lines are shown in Figures 4(a) and 4(b).
As shown in the figures, the variation of the probability dis-
tribution is discontinuous. Let us discuss the probability dis-
tributions by the saddle-node bifurcation. We change the va-
lue of diffusion coefficient first by keeping v=v,=0.5. The
critical value of diffusion coefficient is D=0.25. Below the
critical value the coupling between the noise and determini-
stic terms is very important. Thus, the probability distribu-
tion has a maximal and minimal peaks satisfying the condi-
tion in Eq. (13). Of course, at x=0 the divergence occurs
due to the noise term. As the value of D increases, the effect
of the coupling decreases and the noise itself becomes more
important. Above the critical value the effect of the coupling
may be neglected compared with the noise effect. An exam-
ple is given in Figure 5(a). The probability distributions in



634 Bull. Korean Chem. Soc. 1994, Vol. 15, No. 8

0.015

0.014 / \
A
/«

0.005 / \

probabllity

.
-
o
ey

0.03

probabiiity

0.01+

X

(b)
Figure 4. (a) The variation of the probability when the system
crosses the line v=0 along the line D=0.1 by taking B=1. The
dotted and solid curves express v=—05 and 0.5, respectively;
(b) The variation of the probability when the system undergoes
the pitchfork bifurcation by crossing the line v=1 along the line
D=0.6 by taking B=1. The dotted, heavy solid, and solid curves
show v=12, 1, and 0.8, respectively.

the case of the constant D and changing v are shown in
Figure 5(b). In this case the critical values of D and v are
0.5 and approximately 0.172, respectively. The phenomena
of this case is the same as the previous example. Thus, the
variation of the probability distributions by the saddle-node
bifurcation is continuous.

Now, let us turn to the stationary probability distribution
with the aid of the FPE based on the Stratonovich theory.
The probability distribution can be easily obtained from Eq.
(7b).

Psx)=A exp| —V(x)/D} (16)

where the subscript S denotes the Stratonovich probability
distribution and

i lx|3 72+ —@——lez‘zv-i'vD Inlx|

3—2v 2(1—v)
for v£1 and 15,
V)= [x] + DF B) Inlx| for v=1, an
<1+ Q) Inlxl+ B_ for v=15.
L 2 x|
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Figure 5. (a) The variation of the probability when the system
undergoes saddle-node bifurcation along the line v=0.5 by taking
B=1. The dotted, heavy solid, and solid curves indicate D=0.5,
0.25, and 0.1, respectively; (b) The variation of the probability
when the system undergoes saddle-node bifurcation along the
line D=0.5 by taking B=1. The dotted, heavy solid, and solid
curves indicate v=0.1, 0.3, and 0.172, respectively.

The above result corresponds to the result obtained by
replacing 2vD in Eq. (9) by vD. In the previous paper’ we
have compared the effects of the parameters on the probabi-
lity distributions obtained by the Ito and Stratonovich me-
thods for the Schlogl model with the first order transition
in detail. We may directly apply the results to the present
case and thus refer the detailed discussion to the previous
paper.

Escape Rate

Let us discuss the dynamic behaviors of the system which
is governed by the Langevin equation given in Eq. (6). The
multiplicative random force may have great influence on the
dynamic behaviors as well as the stationary behaviors. Un-
fortunately. The explicit time-dependent solution of the FPE
with nonlinear drift and nonconstant diffusion terms is not
available. When diffusion coefficient is very small, the dyna-
mic behaviors are approximately expressed by the stationary
state. The escape rate is one of the examples. Introducing
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a new variable y as

x| for x>0,
y—[ —lx|7Y for x<0, (1s)
the Langevin equation reduces to
L )+ 1-vE© a9
where
fO)=1—v)(ByF y& ), (20)

The upper and lower signs in the above expression corres-
pond to the cases y>0 and y<0, respectively. When v<1,
y goes to zero as x—0. In the case that v>1, ¥y becomes
infinity as x goes to zero. The value v=1 is also very impor-
tant in the dynamic phenomena, as shown later. The corres-
ponding FPE is

a 2
T Po0=— 5 FOPGDI+ A-VD S5 PO

S
== 3,500 @1

where S(y,t) is the probability current.

Let us consider the fluctuating intermediate near the point
Ymin=PB*?, which is the stable steady state of the original
system. Then, the system escapes from the state by crossing
the unstable steady state, which is the top of the potential
barrier. Let us assume that as soon as the system crosses
the top, it escapes from the state. Thus, we may consider
only the case x>0, approximately. The escape rate is defined
as the probability current from the stable steady state to
the unstable steady state per the probability near the stable
steady state, that is,

r,=(1— V)ZD[ j z exp{ - (l—l‘/%)zf}dy

X fo_sexp{ (1—‘_/(:)—2D}dy ] . 1, (22)

Imin

where y, and y, are the values of y near y,.,, 8 is an infinite-
simally small number and V(y) is

vor=" s @ @3)

Using the method of the steepest descent, the escape rate
1ab
is

3-2v } 24)

2
rox = (1=v)"p exp{‘ 2D(3—2v)(1—v)

Le

-

us define the escape rate at v=0 as 7,. The ratio is

e expt - %[ Bzv(s—zlv)u—v) _%]} @5

We may easily discuss the effect of multiplicative noise on
the escape rate from the ratio. Figures 6(a) and 6(b) show
the effects of the parameters on the ratio. It is obvious that
the ratio increases in v<0 and decreases in 0<v<1, when
the diffusion coefficient at a constant p increases. At a fixed
diffusion coefficient the ratio for small values B is similiar
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Figure 6. (a) Dependence of the escape rate on the diffusion

coefficient when B=1. The solid, dotted, and heavy solid curves

denote D=0.1, 0.3, and 0.5, respectively; (b) Dependence of the

escape rate on P when D=0.1. The solid, dotted, and heavy

solid curves indicate B=1, 2, and 4, respectively.

to the case of the variation of the diffusion coefficients. How-
ever, as P increases the ratio becomes quite different from
that for small B since the exponential function has a mini-
mum value for the large . The most important case is that
the escape rate vanishes as v approaches to 1. That is, it
is impossible that the system escapes the potential barrier
of v21. This means that v=1 is a critical dynamic exponent.
This can be easily confirmed by the relaxation time?

Conclusion and Discussion

We have discussed some stochastic phenomena for the
Schlégl model subjected to a multiplicative random force,
which is singular at the deterministic unstable steady state.
Let us point out some important results including the pre-
vious results.!?

(A) The multiplicative noise |x|" £(t) has an attracting (re-
pelling) effect as v>0 (v<0), that is, it attracts (repels) the
probability toward (away from) the unstable steady state. As
Ivl increases, the attracting (repelling) force increases. The
property competes with deterministic term in determining
the stochastic properties of the system.
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(B) When v>0, the stationary probability distribution be-
comes divergent at x=0. This result is clearly not realistic.
Thus, a more realistic stochastic model should be proposed.

(C) In the region x>0 the straight lines v=0 and v=1
give marginal situation, that is, the fluctuating intermediate
undergoes the pitchfork bifurcation by crossing the lines and
thus the variation of probability distributions becomes dis-
continuous, when the system undergoes the pitchfork phase
transition.

(D) When a system has the same multiplicative noise and
linear part of deterministic term, the same pitchfork bifurca-
tions occur.?*” The reason is that v=0 and v=1 lines are
due to the noise and coupling between noise and linear part,
respectively.

(E) The diffusion coefficient with v induces the saddle-
node bifurcation in the case of x>0 and 0<v<1. Below the
curve of the saddle-node bifurcation the coupling between
the drift and noise terms plays the most important role.
However, the multiplicative noise term becomes dominant
above the curve. Thus, it is clear that the variation of proba-
bility distributions is continuous.

(E) It should be very careful to apply the Ito or Stratono-
vich FPE to an actual system.?

(F) v=1 is the critical dynamic exponent. At v2>1 it is
impossible that the intermediate for the Schlogl model with
the second order transition near the stable steady state esca-
pes over the unstable steady state of the potential barrier.
For the model with the first order transition the transition
rate from one stable steady state to the other stable state
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through the unstable state become zero,! if v>1. Also, the
relaxation time for the models becomes infinite when v=1.!

Some of the above results are unrealistic. Maybe the mul-
tiplicative noise should be expressed by a polynomial of the
concentration of the intermediate instead of [x|*. The reason
is that starting from the master equation for the Schlogl
model, the diffusion term in the FPE is expressed in terms
of a polynomial of concentration.® Investigation on this aspect
is in progress in our group.
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The nonstoichiometric perovskite solid solutions of the Nd; ,Sr,FeO;-, system for the compositions of x=0.00, 0.25,
0.50, 0.75, and 1.00 have been prepared at 1150C in the air pressure. The compound of x=0.00, NdFeQs,, contains
only Fe*" ion in octahedral site and the others involves the mixed valence state between Fe’* and Fe** ions. The
mole ratio of Fe'” ion or the t-value increases steadily with the x-value and then is maximized at the composition
of x=1.00. The nonstoichiometric chemical formulas of the system are formulated from the x, t, and y values. From
the Mdssbauer spectroscopy, the isomer shift of Fe®* ion decreases with the increasing x-value, which is induced
by the electron transfer between the Fe®* and Fe'" ions. The transfer is made possible by the indirect interaction
between Fe®* and Fe** ions via the oxygen ion. The ¢, electrons of the Fe’* ions are delocalized over all the Fe
ions. Due to the electron transfer, the activation energy of electrical conductivity is decrease with the increasing

amount of Fe** ion.

Introduction

In the perovskite-type ABO; compound, the transition me-

tal placed in B-site is able to have higher valence state which
is generally stabilized with a large A-site ion. The perovskite-
type compounds have been studied extensively because of



