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Mechanism of Cell Growth Inhibition by Menadione
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Vitamin Kz (menadione) and synthetic vitamin K analogues
have attracted attention because of their significant anti
cancett Recent study has shown that menadione treatmer (A] | - | . -
causes cells to arrest in;,Gand its mechanism of in cell
growth inhibition has been suggested by the generation ¢ (B
superoxid€. However, it was reported that superoxide
dismutase did not antagonize the growth inhibitory effects oFjgure 1. Effects of menadione on expression and phosphory
menadiongand the toxic oxygen species, inducing most oflevel of p53 in SK-hep-1 cells. Human hepatocarcinoma SK-t
the DNA breakages in menadione-treated cells were nccells were grown in RPMI 1640 medium supplemented with
responsible for menadione’s toxicftyn the previous study, heat-inactivated fetal bovine serum and antibiotics (100 uni
we have proposed alternative mechanism p&@est where ~ Penicillin and 100 mg/mL streptomycin) at 37 °C in 5%

. . . humidified incubator. Cells were plated at a density ®f18°/mL
menadione inactivates cdc25A phosphataseyfhydryl- on a culture dish. Cells with or without 1@01 water solubl

dependent prOtein_, which is presumed to promote entry iNtmenadione (Sigma) were washed with PBS and lysed in
S phase by acting on c8kRecently, the binding of buffer (50 mM Tris-HCI, 2 mM EDTA, 100 mM NaCl, 1% Noni

menadione to the active site of the enzyme was also proveP-40, 1 mM phenylmethylsulfony! fluoride, pH 7.5). For Wes
by incubating [methyPH]-menadione with the catalytic blot, protein extracts (100g) were separated on 12% SDS-PA
domain of cdc25A phosphataéblowever it was found that and electrotransferred to the PVDF transfer membrane (Sch

. . . . and Schuell). (A) The blot was incubated with anti-p53 monoc
menadione also inactivated cdc25B and v@hich are most- (Santa Cruz Biotechnology) for 15 h, followed by horser:

ly expressed in &M.° These observations make it unclear peroxidase labeled secondary antibody (Amersham) for 2 |
whether the action of cell growth inhibition at @hase then developed by the enhanced-chemiluminescence (ECL)

simply arises from the inhibition of cdc25A phosphatase ottion kit (Amersham). (B) The lysates were immunoprecipited
oxidative stress. a.nti-p53. antibody followed by Western blotting with phosphott

In previous study, we showed that MKP-1, dual—specificitynlne antibody (Zymed).
phosphatase, which mediates dephosphorylation of MAP,
was inactivated by menadiotfSince MAP kinase is capable our results show that enzymatic redox cycling does not play
of phosphorylating p53 at threonine 73 and''8and a critical role in menadione-induced cell cycle arrest.
activation of p53 through phosphorylation can lead to the To determine whether MAP kinase was activataa
transcriptional upregulation of the cyclin-dependent kinasehyperphosphorylation, the extracts of menadione-treated cells
inhibitor, p21, it was proposed that the inhibitory action of were also immunoprecipitated with anti-MAP kinase anti-
p21 on cdk by MAP kinase activation might result in cell body and anti-phospho-MAP kinase antibody. The results
cycle arrest at Gphasée? shown in Figure 2 (lane 1 and 2) demonstrate that the

To demonstrate this hypothesis, logarithmically growingintensity of phosphorylarion of the MAP kinase was increas-
human hepatocarcinoma SK-Hep-1 cells were first incubated. The activities of MAP kinase were also assayed using
ed with 100uM of menadione for a period of 6, 12, or 24 h. myelin basic protein (MBP) as a substrate. When proteins
Cells were then harvested and soluble extracts were assaye@re resolved by SDS polyacrylamide gel electrophoresis,
for the expression levels of p53 using p53 monoclonathe results presented in Figure 2 (lane 3) show that MAP
antibody. Interestingly, as shown in Figure 1 (lane 1),kinase was activated by treatment of the cell with mena-
Western blotting showed that similar amounts of p53 weralione.
recovered in immunoprecipitates from menadione-treated We next evaluated whether activation of MAP kinase was
and non-treated cells. In conjunction with the earlier obsernecessary for the activation of p53, although menadione was
vation that the amount of p53 protein increases in responggroved to have no effect on p53 induction. To detect the
to a variety of signals including DNA-damaging agentsphosphorylation level of threonine, p53 was immunopreci-
through the production of reactive oxygen species (R®S), pitated with anti-p53 antibody from the cell extracts, and

immunoblotted with anti-phosphothreonine antibody. As

"Corresponding author. phone: +82-2-820-5203; Fax: +82-2-825Shown in Figure 1 (lane 2), the results correlated with the
4736 e-mail: swham@cau.ac.kr hyperphosphorylation status of p53 in menadione-treated

condral & 12 24 hr
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condral & 12 24 hr we tested whether or not menadione affected these enzymes
and found that they were not inactivated by it up tqsD
! AW | - wrrinase (data not shown). Moreover, menadione showed no inacti-
vation of the protein tyrosine phosphatases, such as LAR,
e | < p-MAP kinase PTP1B, and Yersinia PTP (data not shown).

The results reported here show that enzymatic redox
cycling does not play a critical role in menadione-induced

-— MBP cell cycle arrest in cells, while inactivation of dual-specifi-
A city phosphatases is likely to be menadione’s primary mech-
B - p21 anism of action.
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