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Vibrational properties of ferrocyanide complex ion, [Fe(CN)6]4−, have been studied based on the force
constants obtained from the density functional calculations at B3LYP/6-31G** level by means of the normal
mode analysis using new bond angle and linear angle internal coordinates recently developed. Vibrations of
ferrocyanide were manipulated by twenty-three symmetry force constants. The angled bending deformations
of C-Fe-C, the linear bending deformations of Fe-C≡N and the stretching vibrations of Fe-C have been
quantitatively assigned to the calculated frequencies. The force constants in the internal coordinates employed
in the modified Urey-Bradley type potential were evaluated on the density functional force field applied, and
better interaction force constants in the internal coordinates have been proposed. The valence force constants
in the general quadratic valence force field were also given. The stretch-stretch interaction and stretch-bending
interaction constants are not sensitive to the geometrical displacement in the valence force field.
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Introduction

Vibrational studies of molecules, metal complex ions, and
other chemical systems have been direct methods appro-
aching to understand the interatomic forces. The nature of
metal-carbon bond in the transition metal-cyanide complexes
derives considerable interests including σ-bonding or π-
bonding characters and the force constant itself. Octahedral
hexacyano transition metal complexes have inherent diffi-
culties in assigning the vibrations of metal-carbon stretch-
ing, carbon-metal-carbon angled bending deformations, and
metal-carbon-nitrogen linear bending deformations. Because
it is strongly dependent on the bond strengths or distances of
metal-carbon and carbon-nitrogen, vibrations can vary up to
the centered transition metal atom, its oxidation state, or
surrounding counter-cations. Vibrations of these metal
complexes had been extensively studied by vibrational
spectroscopic methods and normal mode calculations using
the valence force field or the Urey-Bradley force field.1-12

Also, ab initio or other quantum mechanical treatments13,14

for these transition metal complexes of carbonyls as well
cyanides have been performed for the vibrational properties
or the electronic energies.

Applications of density functional theory15 (DFT) to
chemical systems have received much attention recently
because of a faster convergence in time than the traditional
quantum mechanical correlation methods in part, and im-
provements in the prediction of the molecular properties,
i.e., the force field, vibrational frequencies, and dipole
moments. Therefore the force field from DFT calculation
has been utilized with the spectroscopic measurements for
the assignment of observed frequencies and the refinements
of the molecular force field under study. The normal mode
analysis using Wilson’s GF matrix formulation has been

applied to elucidate the molecular systems of chemistry and
biological sciences.16,17 This matrix method has been enforc-
ed with improvements in the setup of internal coordinates,18

the transferable scaling factors for various functional groups,19

or in the computational method for the refinement procedure
of the force field. It is now in progress to expand its
application areas to molecular dynamics studies as well as
structural studies.

In the present study, the vibrational analysis of octahedral
ferrocyanide complex ion, [Fe(CN)6]4−, was performed by
normal mode analysis method using the density functional
force constant matrices to clarify the vibrational structure.
The stretching vibrations of Fe-C, the angled bending defor-
mations of C-Fe-C, and the linear bending deformations of
Fe-C≡N have been quantitatively assigned to the calculated
frequencies. Also we attempted to understand what changes
could be induced in the interaction force constants upon
geometrical displacement, and to obtain the force constants
in the internal coordinates of the general quadratic valence
force field or the modified Urey-Bradley type potential
function applied to the study of ferrocyanide. 

Calculation Methods

Four different geometries of ferrocyanide complex ion,
i.e., geometry A, B, C and Opt are shown in Table 1. The
geometry Opt is a fully optimized structure. The geometry
A, B, and C are a little distorted structures to take the effects
on the force field caused from the geometrical displacement.
The structural feature of ferrocyanide with charge -4 and
spin multiplicity 1 was applied to the Gaussian package20 for
the calculation of force constants matrix and intensities of
Raman and IR bands at a certain geometry using the 6-
31G** basis set under the B3LYP functional level. Calculat-
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ed Cartesian force constants were transformed to a set of
force constants in the symmetry coordinates or in the internal
coordinates. Normal mode frequencies of vibrations were
calculated using the Wilson’s GF matrix method. 

The chemical structure of ferrocyanide complex ion is
shown in Figure 1 with an index number for each atom. The
isotope atomic masses applied were 12.01115 for carbon,
14.00307 for nitrogen, and 55.84700 for Iron(II), respec-
tively. The internal coordinates of ferrocyanide with total 13
atoms consist of twelve stretching internal coordinates (∆r)
numbered R1 to R12, and twenty four deformation internal
coordinates (∆θ) numbered R13 to R36. Half of the defor-
mations are the bond-angle deformations numbered R13 to
R24, and the rest are linear angle deformations numbered
R24 to R36. They are defined based on the atomic number-
ing scheme in Figure 1. New internal coordinate system18 for
the bond-angle deformation was adapted. As an internal
coordinate of the bond-angle deformation, the half distance
between two end points of two bonds connected was em-
ployed as given in Table 2. For a linear angle deformation,
two torsion angles, θu (= 0°) and θw (= 90°), were introduced
as internal coordinates as shown in Table 2 because each

Table 1. Structural parameters, Electronic energies (∆Eelec/kcal/mol) and Summations (∆GT/kcal/mol) of electronic and thermal free energies
of three different geometries A, B, and C relative to Opt, and Optimized structural parameters of Ferrocyanide complex ion at various levels
of theory

 

 Structural Parameters and Energies Calculated at 
B3LYP/6-31G**

Optimized Structural Parameters of [Fe(CN)6]4−

 Geometry B3LYP B3LYP HF MP2 MP2

A  B  C  Opta 6-31+G**  6-31G (3df, 3pd)  6-31G** 6-31G** 6-31+G**

Fe-C  1.900 Å 1.910 Å  1.910 Å 2.009 Å 2.018 Å 2.010 Å 2.325 Å 1.860 Å 1.844 Å
C≡N  1.184 Å 1.184 Å  1.190 Å 1.184 Å 1.187 Å 1.176 Å 1.158 Å 1.204 Å 1.209 Å
∆Eelec  8.0 6.4  6.6  0.0
∆GT  10.0 8.3  9.3  0.0

a fully optimized geometry

Figure 1. Chemical structure of ferrocyanide complex ion with the
indexing numbers.

Table 2. Internal Coordinates of Ferrocyanide Complex Ion (R: the
index number of internal coordinates, Atoms: Connections
indicated with the index number shown in Figure 1.) and Molecular
Structural Parameters applied for Geometry B

R Namea Atoms Geometry Parameters

R1 ∆r(Fe-C) 1-2 1.910 Å 1.910 Å
R2 ∆r(Fe-C) 1-4 1.910 Å 1.910 Å
R3 ∆r(Fe-C) 1-6 1.910 Å 1.910 Å
R4 ∆r(Fe-C) 1-8 1.910 Å 1.910 Å
R5 ∆r(Fe-C) 1-10 1.910 Å 1.910 Å
R6 ∆r(Fe-C) 1-12 1.910 Å 1.910 Å
R7 ∆r(C≡N) 2-3 1.184 Å 1.184 Å
R8 ∆r(C≡N) 4-5 1.184 Å 1.184 Å
R9 ∆r(C≡N) 6-7 1.184 Å 1.184 Å
R10 ∆r(C≡N) 8-9 1.184 Å 1.184 Å
R11 ∆r(C≡N) 10-11 1.184 Å 1.184 Å
R12 ∆r(C≡N) 12-13 1.184 Å 1.184 Å
R13 ∆θ(C-Fe-C) 2-1-4 90.0° 1.351 
R14 ∆θ(C-Fe-C) 2-1-6 90.0° 1.351
R15 ∆θ(C-Fe-C) 4-1-6 90.0° 1.351
R16 ∆θ(C-Fe-C) 4-1-8 90.0° 1.351
R17 ∆θ(C-Fe-C) 6-1-8 90.0° 1.351
R18 ∆θ(C-Fe-C) 2-1-10 90.0° 1.351
R19 ∆θ(C-Fe-C) 6-1-10 90.0° 1.351
R20 ∆θ(C-Fe-C) 8-1-10 90.0° 1.351
R21 ∆θ(C-Fe-C) 2-1-12 90.0° 1.351
R22 ∆θ(C-Fe-C) 4-1-12 90.0° 1.351
R23 ∆θ(C-Fe-C) 8-1-12 90.0° 1.351
R24 ∆θ(C-Fe-C) 10-1-12 90.0° 1.351
R25 ∆θ(Fe-C≡N) 1-2-3 180.0° 0°
R26 ∆θ(Fe-C≡N) 1-2-3 180.0° 90°
R27 ∆θ(Fe-C≡N) 1-4-5 180.0° 0°
R28 ∆θ(Fe-C≡N) 1-4-5 180.0° 90°
R29 ∆θ(Fe-C≡N) 1-6-7 180.0° 0°
R30 ∆θ(Fe-C≡N) 1-6-7 180.0° 90°
R31 ∆θ(Fe-C≡N) 1-8-9 180.0° 0°
R32 ∆θ(Fe-C≡N) 1-8-9 180.0° 90°
R33 ∆θ(Fe-C≡N) 1-10-11 180.0° 0°
R34 ∆θ(Fe-C≡N) 1-10-11 180.0° 90°
R35 ∆θ(Fe-C≡N) 1-12-13 180.0° 0°
R36 ∆θ(Fe-C≡N) 1-12-13 180.0° 90°
a∆r: stretching of a bond length, ∆θ: bending of a bond angle.
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linear angle deformation has degrees of freedom of two.
They were defined from an arbitrary reference atom chosen
nearby linearly aligned three atoms.

Symmetry coordinates adapted for ferrocyanide are dis-
played in the non-normalized format in Table 3 with descrip-
tions for the nature of vibrations in terms of the internal
coordinates R defined in Table 2. A complete set of thirty-
three symmetry coordinates numbered 1 to 33 was con-
structed eliminating all the redundant symmetry coordinates
occurred from angled bending deformations. There are six

stretching modes (symbol name: νmc) for the Fe-C stretch-
ings numbered 1 to 6, six stretching modes (symbol name:
νcn) for the C≡N stretchings numbered 7 to 12, nine bond-
angle deformation modes (symbol name: δa) for the angled
C-Fe-C bending numbered 13 to 21, and twelve linear angle
deformation modes (symbol name: δl) for the linear Fe-C≡N
bending numbered 22 to 33. 

The force constants matrix in the Cartesian coordinate
generated through density functional calculation has 780
elements overall which are composed of all the diagonal and
half the off-diagonal elements. When it is transformed to the
symmetry coordinate, it becomes a matrix with 561 elements.
These are too many to account for, so reduced to a compar-
able number of force constants using a boundary value in the
symmetry coordinate. The force constants matrix of 561
elements could be extracted to 60 elements when the
absolute values less than 0.004 of the off-diagonal matrix
elements are eliminated and all the diagonal matrix elements
are included. This boundary value 0.004 was rather arbitrary
chosen because the off-diagonal elements less 0.004 are
presumed to be minimal enough to be neglected for the
structural elucidation. In fact, applying these 60 elements to
calculation gives almost the same results in frequencies and
potential energy distributions as 561 elements are applied.
Because the ferrocyanide complex ion is highly symmetric
belonging to a point group Oh, these 60 elements actually
correspond to 23 elements in the symmetry species coordi-
nate as shown in Table 4 for a fully optimized structure, the
geometry Opt. The force constants for geometry A, B, and
C are displayed in Table 5, which were transformed to the
symmetry coordinate from Cartesian coordinate. The matrix
of these force constants was then transformed back to a
matrix in the Cartesian coordinate, then which was applied
to calculate the frequencies using Wilson’s GF matrix
method. Using these values, the frequencies and potential
energy distributions were obtained and given in Table 6 in
terms of symmetry coordinates defined in Table 3. 

The scaling factors are now well recognized to be trans-
ferable for the frequencies of organic functional groups. In
this study, however, we did not apply any scaling factor, e.g.,
0.96, etc., for the frequency calculations even though the
C≡N stretching frequencies are calculated a little higher. The
vibrational frequencies of both stretching and deformations
involving the centered metal atom are calculated well behav-
ing to the experimentally observed ones. Partly because we
believe that the vibrational data for vibrations involving the
transition metal-carbon bonding have not been widely
accumulated from the density functional force field we are
currently utilizing. Table 1 also strongly suggests that the
bond distances are quite dependent on the functional basis
set that is to be selected for calculation. 

Results and Discussion

Geometry and DFT Calculations. It has been experi-
mentally known that the equilibrium distances in the ground
low spin state [Fe(CN)6]4− ion are positioned between 1.90

Table 3. Symmetry Coordinates applied to Ferrocyanide Complex
Ion (S: the index number of symmetry coordinates, R: the index
number of internal coordinates listed in Table 2, Redundant
coordinates of the angled bending deformations are not listed.)

S SymbolaComposition of Symmetry Coordinate Descriptions

1 νmc(A1g) +R1+R2+R3+R4+R5+R6 Fe-C Stretching
2 νmc(Eg) +R2-R3+R5-R6 Fe-C Stretching
3 νmc(Eg) +2R1-R2-R3+2R4-R5-R6 Fe-C Stretching
4 νmc(T1u) +R1R4 Fe-C Stretching
5 νmc(T1u) +R2-R5 Fe-C Stretching
6 νmc(T1u) +R3-R6 Fe-C Stretching
7 νcn(A1g) +R7+R8+R9+R10+R11+R12 C≡N Stretching
8 νcn(Eg) +R8-R9+R11-R12 C≡N Stretching
9 νcn(Eg) +2R7-R8-R9+2R10-R11-R12 C≡N Stretching
10 νcn(T1u) +R7-R10 C≡N Stretching
11 νcn(T1u) +R8-R11 C≡N Stretching
12 νcn(T1u) +R9-R12 C≡N Stretching
13 δa(T2g) -R13+R16+R18-R20 Angled Bending
14 δa(T2g) -R14+R17+R21-R23 Angled Bending
15 δa(T2g) -R15+R19+R22-R24 Angled Bending
16 δa(T1u) -R13-R15-R16+R18+R19+R20-

R22+R24 
Angled Bending

17 δa(T1u) -R13-R14+R16+R17-R18+R20-
R21+R23

Angled Bending

18 δa(T1u) -R14-R15-R17-
R19+R21+R22+R23+R24 

Angled Bending

19 δa(T2u) -R13+R15-R16+R18-R19+R20+R22-
R24

Angled Bending

20 δa(T2u) -R13+R14+R16-R17-R18+R20+R21-
R23 

Angled Bending

21 δa(T2u) -R14+R15-R17+R19+R21-R22+R23-
R24

Angled Bending

22 δl(T1g) +R25+R29-R31-R35 Linear Bending
23 δl(T1g) +R26+R28+R32+R34 Linear Bending
24 δl(T1g) -R27+R30+R33+R36 Linear Bending
25 δl(T2g) +R25-R29-R31+R35 Linear Bending
26 δl(T2g) +R26-R28+R32-R34 Linear Bending
27 δl(T2g) +R27+R30-R33+R36 Linear Bending
28 δl(T1u) +R25+R27+R31+R33 Linear Bending
29 δl(T1u) +R26+R30-R32-R36 Linear Bending
30 δl(T1u) -R28-R29+R34-R35 Linear Bending
31 δl(T2u) +R25-R27+R31-R33 Linear Bending
32 δl(T2u) +R26-R30-R32+R36 Linear Bending
33 δl(T2u) -R28+R29+R34+R35 Linear Bending
aνmc: Fe-C stretching mode, νcn: C≡N stretching mode, δa: angled
bending mode, δl: linear bending mode.
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and 1.98 Å for Fe-C and between 1.12 and 1.19 Å for C≡N
depending on the positively charged counter-cations. Sano et
al21 chose the Fe-C bond distance as 1.925 Å and the C≡N as
1.167 Å to correlate the photoelectron spectrum of
K4[Fe(CN)6] to the molecular orbital calculation results.

Mandix et al.22 took the same bond distances as Sano et al.’s
for the electron density distributions from ab initio HF
calculation. Bolvin23 chose the C≡N bond distance to a fixed
1.17 Å for the calculation of Fe-C distance with the complete
active space (CAS) second-order perturbation function at a

Table 4. Symmetry Force Constants (mdyn/Å, mdyn/rad, mdynÅ/(rad)2) obtained from Density Functional Calculation for fully Optimized
Geometry Opt (Fe-C: 2.009 Å, C≡N: 1.184 Å). (The bold faced symbol S represents the classification of vibrational modes for M(CN)6

x−

type ionic species upon I. Nakagawa and T. Shimanouchi in Reference 1.)

A1g Eg T1u A1g Eg T1u T2g T1u T2u T1g T2g T1u T2u

Fe-C
Stretching

C≡N 
Stretching

C-Fe-C 
Angled Bending

Fe-C≡N 
Linear Bending

S2 S4 S7 S1 S3 S6 S11 S9 S13 S5 S10 S8 S12

νmc(A1g) S2 1.2599
νmc(Eg) S4 1.2126
νmc(T1u) S7  0.7796
νcn(A1g) S1 0.3053 17.4992
νcn(Eg) S3 0.2220 17.0028
νcn(T1u) S6  0.2134 17.0499
δa(T2g) S11  0.6010
δa(T1u) S9 -0.1154  0.1168  0.9292
δa(T2u) S13  0.7420
δl(T1g) S5 0.3196
δl(T2g) S10 -0.0282 0.4006
δl(T1u) S8 0.0418  0.0328 -0.1017 0.4311
δl(T2u) S12 -0.1340 0.4036

Table 5. Symmetry Force Constants (mdyn/Å or equivalents) from Density Functional Calculations for Geometry A, B, and C, and Refined
Force Constants of Geometry B through Non-linear least-square fitting

Symmetry
Species

Si,Sj

Geometry A
Fe-C: 1.90 Å
C≡N: 1.184 Å

Geometry B
Fe-C: 1.91 Å
C≡N: 1.184 Å

Geometry C
Fe-C: 1.91 Å
C≡N: 1.190 Å

Refined Force Constants 
of Geometry B

A1g S1,S1  17.5531  17.5479  16.8620 16.840
S1,S2  0.3575  0.3531  0.3506 0.725
S2,S2  2.3709  2.2437  2.2397 2.424

Eg S3,S3  16.9657  16.9700  16.2922 16.270
S3,S4  0.3708  0.3563  0.3550 0.660
S4,S4  2.3582  2.2298  2.2261 2.184

T1g S5,S5  0.3335  0.3329  0.3944 0.333
T1u S6,S6  16.9945  17.0000  16.3190 16.000

S6,S7  0.3612  0.3465  0.3452 0.523
S6,S8  0.0382  0.0371  0.0378 0.038
S6,S9  0.1701  0.1645  0.1637 0.165
S7,S7  1.6340  1.5371  1.5313 1.640
S7,S8  0.0437  0.0435  0.0431 0.038
S7,S9  - 0.1110  - 0.1117  - 0.1130  - 0.118
S8,S8  0.4813  0.4765  0.6000 0.448
S8,S9 - 0.1626 - 0.1568 - 0.0668  -0.129
S9,S9  0.8296  0.8429  0.9070 0.835

T2g S10,S10  0.4457  0.4416  0.5653 0.407
S10,S11 - 0.0727 - 0.0683 - 0.0042  -0.105
S11,S11  0.5822  0.5862  0.6166 0.553

T2u S12,S12  0.4455  0.4417  0.5648 0.442
S12,S13 - 0.1881 - 0.1829 - 0.0938  -0.183
S13,S13  0.5723  0.5941  0.6561 0.594
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single or double zeta basis set with/without polarization set.
Calculated metal-ligand distances were ranging in 1.81 to
1.99 Å for low spin 1A1g state of ferrocyanide depending on
the function method and basis set chosen. Pierloot et al.24

took the Fe-C bond distance as 1.91 Å or 1.93 Å and the
C≡N as 1.17 Å for the calculation of ligand field splitting
energies. Therefore the Fe-C bond distance in the ferro-
cyanide complex ion is recognized to have about 1.90 Å.

Structural parameters of ferrocyanide optimized at differ-
ent force fields are shown in Table 1. At Hartree-Fock level
with the 6-31G** basis set, the Fe-C bond distance comes
too long, and the C≡N very tight. The results from MP2/6-
31G** or 6-31+G** basis set are shorter in Fe-C and too
long in C≡N. At B3LYP level with the 6-31G(3df, 3pd) basis
set, the bond Fe-C distance becomes much closer than at HF
level, and that the C≡N is rather longer. With the 6-31+G**
basis set, the bond distances of two become a little longer.
With the 6-31G** basis set, the bond distances of them
become a little closer. Isolated cyanide anion C≡N− shows a
bond distance, 1.184 Å when optimized with the functional,
B3LYP/6-31G**. This shows that an optimized C≡N distance
in the ferrocyanide is almost the same as calculated in the
isolated C≡N− anion. So, we retained to utilize the functional
B3LYP/6-31G** for the ferrocyanide system. Because this
calculated bond distance for Fe-C is rather extended over the
usual metal-carbon distance in the metal hexacyano complex
ions, we have chosen more realistic bond length, 1.90 or
1.91 Å for Fe-C. The calculated C≡N bond distance, 1.184 Å
is rather longer than 1.17 Å taken in the previous works. 

The electronic energies (∆Eelec) and the summations (∆GT)
of electronic and thermal free energy for geometries A, B,
and C relative to the global minimum energy of fully
optimized geometry Opt (2.009 Å for Fe-C, and 1.184 Å for
C≡N) at B3LYP/6-31G** level are shown in Table 1. The
geometry of A, B, and C adapted for calculation is off about

0.1 Å in Fe-C distances from optimized bond distance,
therefore their free energies of formation are about 9 kcal/
mol higher than optimized. Actually, our force constant
calculation has been performed on the downhill side in the
potential well, up by about 9 kcal/mol in the free energy
from the minimum. This can cause a bit of off-symmetry in
the force constant matrix, but it was small enough to be
managed to handle. So, some of the force constants were
averaged, but deviations were small enough less 1% and
overall not significant.

Normal Mode Calculations. The symmetry force constants
matrix for the geometry Opt is displayed in Table 4 in the
matrix format of symmetry species coordinate. Table 4 shows
only 13 diagonal and 10 off-diagonal elements in the matrix
format, and other off-diagonal terms are ignored because
they are near zero less than 0.004. There are three blocks of
off-diagonal terms, i.e., 3 positive elements of stretching-
stretching interactions, 4 (one negative and three positive)
elements of stretching-bending interactions, and 3 negative
elements of angled bending-linear bending interactions. These
elements in the matrix have exactly the same arrangement
corresponding to the results of I. Nakagawa and T. Shima-
ouchi.1 The notations by them for symmetry coordinates are
added to the column and row in the bold faced S for the
convenience. The symmetry force constants of geometry A,
B and C are given in Table 5. Calculated frequencies are
shown for geometry A, B, C and Opt in Table 6 along with
potential energy distributions. 

Three frequencies of C≡N stretching vibrations arise near
2100 cm−1 region, and highly localized as shown at the
vibration numbers ν1, ν3, and ν6. The vibration ν5 with T1g

symmetry of the linear bending deformations is also highly
localized because it is a sole symmetry in this system, but it
is inactive in IR or Raman. Two of the Fe-C stretching
modes, νmc(A1g) and νmc(Eg), are heavily localized at the

Table 6. Observed and Calculated Vibrational Frequencies in cm-1 and Potential Energy Distributions for Geometry A, B, C and Opt using
the Force Constants shown in Table 4 and 5

Vib.
No.

Obs.a
 Geometry A  Geometry B  Geometry C  Geometry Opt

 Calc.
 PED

 (greater than 5 %)
Calc.

 PED 
(greater than 5 %)

Calc.
 PED 

(greater than 5 %)
Calc.

PED
 (greater than 5 %)

ν1 2098 2165.7  98 νcn(A1g) 2163.4  98 νcn(A1g) 2121.5  98 νcn(A1g) 2145.7 100 νcn(A1g)
ν3 2062 2128.7  98 νcn(Eg) 2127.6  98 νcn(Eg) 2085.4  98 νcn(Eg) 2121.2  99 νcn(Eg)
ν6 2044 2117.8  99 νcn(T1u) 2117.3 100 νcn(T1u) 2074.7 100 νcn(T1u) 2115.4 100 νcn(T1u)
ν7 583  604.0  43 δl(T1u), 30 δa(T1u),

16 νmc(T1u)
597.4  44 δl(T1u), 31 

δa(T1u),14 νmc(T1u)
606.2  55 δl(T1u), 31 δa(T1u), 

12 νmc(T1u)
538.7  51 δl(T1u), 37 δa(T1u)

ν10 510  514.5  57 δl(T2g), 31 δa(T2g) 510.3  56 δl(T2g), 31 δa(T2g) 526.8  69 δl(T2g), 30 δa(T2g) 467.1  60 δl(T2g), 34 δa(T2g)
ν12  499.9  61 δl(T2u), 16 δa(T2u) 497.2  61 δl(T2u), 16 δa(T2u) 515.1  73 δl(T2u), 16 δa(T2u) 466.5  62 δl(T2u), 21 δa(T2u)
ν8 416  417.8  81 νmc(T1u), 13 δl(T1u) 407.0  83 νmc(T1u), 12 δl(T1u) 411.9  84 νmc(T1u), 12 δl(T1u) 300.3  91 νmc(T1u), 7 δl(T1u)
ν2 396  389.2  96 νmc(A1g) 379.0  97 νmc(A1g) 378.5  96 νmc(A1g) 285.8  98 νmc(A1g)
ν4 376  388.2  96 νmc(Eg) 377.8  96 νmc(Eg) 377.3  96 νmc(Eg) 280.0  98 νmc(Eg)
ν5  342.7  98 δl(T1g) 341.8 100 δl(T1g) 370.7 100 δl(T1g) 330.2 100 δl(T1g)
ν9  125.2  79 δa(T1u), 52 δl(T1u) 126.2  77 δa(T1u), 51 δl(T1u) 145.8  70 δa(T1u), 34 δl(T1u) 130.3  64 δa(T1u), 45 δl(T1u)
ν11 105  114.0  71 δa(T2g), 45 δl(T2g) 114.4  70 δa(T2g), 45 δl(T2g) 129.0  69 δa(T2g), 29 δl(T2g) 115.4  66 δa(T2g), 40 δl(T2g)
ν13  77.1  99 δa(T2u), 55 δl(T2u) 78.8  98 δa(T2u), 53 δl(T2u) 95.1  86 δa(T2u), 29 δl(T2u) 88.5  85 δa(T2u), 44 δl(T2u)

aIR from reference 2 and Raman from reference 8.
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vibration ν2 and ν4, but the vibration ν8 with T1u symmetry is
attributed mostly to νmc(T1u) and partly about 10% to δ l(T1u)
of linear bending deformations, as well. The region near 500
cm−1 to 600 cm−1 is contributed mainly with linear bending
deformations and partly with angled bending deformations.
Only the vibration ν7 is containing a contribution from νmc

(T1u) about 10%. The low frequency region below 150 cm−1

is mainly from angled and linear bending deformations. The
angled bending deformations contribute much more than the
linear bending, however. In fact, except T1g symmetry all the
same symmetry species interacts more or less. Six terms out
of total ten off-diagonal interaction constants are induced
from interactions between T1u symmetries, as can be seen in
Table 4.

Extending of the Fe-C bond distance from 1.90 Å to 1.91
Å turns out to reduce the stretching frequencies of Fe-C, as
expected. The stretching frequencies of C≡N bonds are
unchanged basically considering that three modes of C≡N
stretching have the same symmetry with Fe-C stretching and
they can interact weakly 2 or 3% in potential energy dis-
tributions. But, it shows a mixed effect on two different
deformations, i.e., weakening linear bending deformations
and strengthening angled bending deformations. But, these
effects are not much noticeable. Lengthening the C≡N bond
distance from 1.184 Å to 1.190 Å, the bands attributed to Fe-
C stretching vibrations are unchanged almost. But, all defor-
mations including angled and linear bending vibrations
become stronger. 

Viewing the PED values of geometry A and B on Table 6,
the Fe-C bond distance does not give much impact on the
potential energy distributions. However, extending the C≡N
bond distance intensifies the separation of the linear bending
and the angled bending deformations as seen in the cases of
geometry B and C. 

Table 4 and Table 5 display all effects on the force con-
stants caused from geometrical displacements of the bond
distance in Fe-C or C≡N. Every diagonal term depends on its
bond distance. Among three blocks of off-diagonal terms, 3
positive terms of stretching-stretching interactions, and 3
negative terms of angled bending-linear bending interactions
are dependent upon the bond distance. When the stretching-
bending interaction terms, 4 (one negative and three positive)
elements are less sensitive to the displacement of the bond
distance. They all belong to T1u symmetry, i.e., (S6,S8),
(S6,S9), (S7,S8) and (S7,S9) shown in Table 5. 

Viewing PED of the geometry Opt shown in Table 6, the
stretching modes of Fe-C and C≡N are highly localized
compared to other geometries because the Fe-C bond dis-
tance is much longer than others. It turns out much less
interaction force constants between two stretching modes
and between angled and linear bending modes as can be seen
in Table 4. Lengthening of the Fe-C bond distance has
increased the angled bending force constants and decreased
the linear bending force constants. These effects are repre-
sented in Table 6 as the frequency down-shifts for the
vibration number ν5, ν7, ν10 and ν12 in great extents and as
the frequency up-shifts for the vibration number ν9, ν11 and

ν13 in minor amounts.
Non-Linear Least Square Fitting. The least square fitting

was carried out to minimize the square of differences of
experimentally observed frequencies from calculated ones
through refining the force constants. The minimization was
done by the conjugate gradient method with a cube inter-
polation. The fitted frequencies and potential energy distri-
butions for geometry B are given in Table 7. The PED values
are very similar to those of Geometry B unfitted. But, the
refined force constants in the symmetry coordinates shown
in Table 5 are representing some singularities compared to
the unfitted geometry B. The interaction terms between Fe-C
stretching and C≡N stretching vibrations are increased nearly
two times. Other interaction force constants are changed
slightly. 

Finding Internal Force Constants in the Modified Urey-
Bradley Force Field. The modified Urey-Bradley type
potential function employed by I. Nakagawa and T.
Shimanouchi for M(CN)6x− type octahedral metal cyanide
species was represented as

2 V = ∑ K1 (∆ri)2 + ∑ K2 (∆ri')2 + ∑ H1 ro
2(∆αjk)2 

+ ∑ H2r0r0'(∆βi)2 + ∑ F (∆qjk)2 + (linear terms) 
+ 2 ∑ p1 (∆rj) (∆rl) + 2 ∑ p2 (∆ri ) (∆ri')

where, ri and ri' are Fe-C and C≡N bond lengths with
equilibrium distances, r0 and r0'; αjk C-Fe-C angled bond
angles; βi Fe-C=N linear bond angles; qjk distances between
non-bonded carbon atoms. The constants K1 and K2 are Fe-C
and C≡N bond stretching force constants, H1 and H2 C-Fe-C
and Fe-C≡N bending force constants, F the repulsive force
constant, and p1 and p2 the interaction force constants bet-
ween two Fe-C bonds on the same diagonal and between
adjacent Fe-C and C≡N bonds, respectively. The last two
interaction terms are added to the ordinary Urey-Bradley
potential functions. 

To obtain the force constants employed in the modified

Table 7. Observed and Calculated Vibrational Frequencies in cm-1

and Potential Energy Distributions through Non-linear least-square
fitting Refinement for Geometry B

Vib. 
No.

Obs.a  Calc. PED (greater than 5 %) Vibration

 ν1 2098  2098.0  100 νcn(A1g) Raman
 ν3 2062  2062.0  100 νcn(Eg) Raman
 ν6 2044  2044.0  100 νcn(T1u) IR
ν7  583  583.0  41 δl(T1u)  32 δa(T1u) 20 νmc(T1u) IR

 ν10  510  510.0  53 δl(T2g)  30 δa(T2g) Raman
 ν12  497.2  61 δl(T2u)  16 δa(T2u) inactive
 ν8  416  416.0  76 νmc(T1u)  15 δl(T1u) IR
 ν2  396  395.6  97 νmc(A1g) Raman
 ν4  376  375.7  97 νmc(Eg) Raman
 ν5   341.8 100 δl(T1g) inactive
 ν9  127.4  74 δa(T1u)  49 δl(T1u) IR
 ν11  105  105.0  72 δa(T2g)  50 δl(T2g) Raman
 ν13  78.8  98 δa(T2u)  53 δl(T2u) inactive

aIR from reference 2 and Raman from reference 8. 
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Urey-Bradley type potential function, the input file for
generating the symmetry coordinates in Table 3 was partly
modified. The stretching coordinates of Fe-C and C≡N
bonds and the linear bending coordinates of Fe-C≡N bond
are set to their internal coordinates (R) because the number
of symmetry coordinates is the same as that of internal coor-
dinate, and they are independent. However, the symmetry
coordinates for the angled bending coordinates were used as
displayed in Table 3 because the internal coordinates of the
angled bending deformations are not linearly independent.
Therefore, the force constants, H1, of the angled bending
deformations cannot be evaluated independently in the internal
coordinates due to the redundancy. Applying this modified
input coordinate file, the values of K1, K2, and H2 can be
obtained on the diagonal terms of the force constant matrix
directly. These are listed in Table 8. 

Values for the interaction terms can be calculated using
equations of Fij elements shown in Table 5. The F value was
obtained using the (S7,S9) interaction term in the symmetry
coordinates which was defined to 0.9roF. The (S7,S9) term is
generated from an interaction between the Fe-C stretching
vibration and the C-Fe-C angled bending deformation with
T1u symmetries. The Fe-C stretching vibration with T1u

symmetry is that two carbon atoms on a certain 4-fold
rotational axis move forward and the centered metal atom
backward on the axis, and others are fixed. The C-Fe-C
angled bending deformation with T1u symmetry is that four
carbon atoms perpendicular to a certain 4-fold rotational axis
move backward parallel to that axis, the centered metal atom
forward on that axis. Combining both of symmetry coordi-
nates results in a vibrational motion of only six carbon atoms
holding a centered metal atom and six nitrogen atoms at
fixed positions. Two carbon atoms on the same diagonal
move forward and other four carbon atoms backward, or
vice versa. This motion could be regarded as an interaction
of non-bonded carbon atoms. 

The interaction constants, p2 between adjacent Fe-C and
C≡N stretching are present in terms of (S1,S2), (S3,S4) and
(S6,S7) interactions crossed in the same symmetry block in

Table 4. As these values are quite similar to each other, so
averaged to give p2. The effect of this p2 interaction constant
is marginal to the Fe-C or C≡N stretching vibrations. Coupl-
ing of these two modes is not significant, usually negligible
even though its value is near 0.35.

The interaction constants, p1 are embedded in (S2,S2),
(S4,S4), and (S7,S7) as indicated in Table 5. It was defined as
an interaction between two Fe-C stretching vibrations on a
4-fold rotational axis in the octahedral geometry. The sym-
metry coordinate of νmc(A1g) in Table 3 was represented as
+R1+R2+R3+R4+R5+R6, and νmc(Eg) as +2R1-R2-R3+
2R4-R5-R6. Mixing of two coordinates with different
symmetries could end to R1+R4. It is an extending motion
of only two Fe-C bonds, and any other atoms remaining
unchanged in position. The values of p1 were obtained for
two symmetry species, i.e., A1g and Eg, respectively. Then,
the p1 of Eg symmetry was subtracted from the p1 of A1g

symmetry to get as the true value of p1. This value was
signed negative because this motion is unfavorable to
symmetry.

The force constants, H1 of C-Fe-C angled bending defor-
mations are also embedded in (S9,S9) of T1u, (S11,S11) of T2g

and (S13,S13) of T2u symmetry in the symmetry coordinates.
For three symmetries, values of H1 were calculated using F
previously obtained, and listed in Table 8. Because the
internal coordinates of angled bending deformations have 3
redundant coordinates, it is not possible to get the force
constant in the internal coordinates. Therefore the H1 values
for three symmetry coordinates were obtained, instead. The
force constants of angled bending deformations were obtain-
ed about 3 to 5 times higher dependent on the symmetry than
the value by I. Nakagawa and T. Shimanouchi. In other
study6 of ferricyanide, [Fe(CN)6]3−, by I. Nakagawa and T.
Shimanouchi, H2 value was reported 0.8 which is very close
to our value of angled bending deformation with T1g symmetry.
(Table 4 The interaction constant F for non-bonded carbon
atoms is about half comparing to their value. The values of
the interaction constants, p1 and p2 obtained in this work are
similar to those. 

Table 8. Force Constants (mdyn/Å or equivalents) in the Internal Coordinates of the Modified Urey-Bradley Force Field for Geometry A, B,
C and Opt, and the Values in Reference 1

Internal Coordinates
in the Modified 
UB Force Field

 Geometry A
Fe-C: 1.90 Å
C≡N: 1.184 Å

 Geometry B
Fe-C: 1.91 Å
C≡N: 1.184 Å

 Geometry C
Fe-C: 1.91 Å
C≡N: 1.190 Å

Geometry Opt
Fe-C: 2.009 Å
C≡N: 1.184 Å

Force Constants employed
in the Modified 
UB Force Field

∆r(Fe-C)  1.9983  1.8857  1.8810  1.004 K1 = 2.4828b

∆r(C≡N)  17.0780  17.0807  16.4005 17.1164 K2 = 15.1b

∆α(C-Fe-C)a  0.1941 (T1u)
 0.1256 (T2g)
 0.1228 (T2u)

 0.1953 (T1u)
 0.1250 (T2g)
 0.1271 (T2u)

 0.2125 (T1u)
 0.1329 (T2g)
 0.1437 (T2u)

 0.2653 (T1u)
 0.1840 (T2g)
 0.2189 (T2u)

H1 = 0.039c

∆β(Fe-C≡N)  0.1896  0.1871  0.2337  0.1731 H2 = 0.172b

∆q(C ··· C) -0.0649 -0.0650 -0.0657 -0.0638 F = 0.111c

∆r(Fe-C, Fe-C) -0.2015 -0.2005 -0.2033 -0.2579 p1 = -0.172c

∆r(Fe-C, C≡N)  0.3632  0.3520  0.3503  0.2469 p2 = 0.4c

aBecause the internal coordinates of the angled bending deformations are not linearly independent, values converted to hold the same unit in the
symmetry coordinate are shown instead. badjusted values for the calculated frequencies to fit to the observed frequencies. cfixed to predetermined
values.
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Finding Valence Force Constants in the General Quad-
ratic Valence Force Field. The force constants in the internal
coordinates are more informative than symmetry force con-
stants because of their transferability. The valence force
constants in the general quadratic valence force field were
obtained and given in Table 9 as done for the same sym-
metry species,12 Cr(CO)6. Considering the geometry A, B, C
and Opt in Table 9, one can notice that the Fe-C bond
distance gives much milder impacts on the force constants of
all, but the C≡N bond distance does stronger on the selected
force constants. 

The interaction constants between stretching and stretching
are not much subject to change upon geometrical displace-
ment as can be seen in Table 9. The cis interactions,
F c

C≡N,C'≡N', F c
Fe-C,Fe-C', and F c

Fe-C,C'≡N', are small or essentially
zero. In the study12 of Cr(CO)6, F c

C≡O,C'≡O' was obtained about
0.2 mdyn/Å which is nearly twice of ferrocyanide. Other
two cis interactions were also closely negligible in Cr(CO)6.
Among the trans interactions, the constant F t

Fe-C,Fe-C' has a
significant value of about 0.35 mdyn/Å, but other two trans
constants F t

C=N,C'=N' and F t
Fe-C,C'=N', are relatively small. The

FFe-C,C=N is about 0.35 mdyn/Å for three geometries, but
through the least-squares refinement to experimental frequ-

encies it results in 0.602 mdyn/Å as can be seen in the right-
most column in Table 9, which is not far from 0.68 mdyn/Å
of Cr(CO)6.

When weakening the C≡N bond order from geometry B to
C, the force constants of angled bending (Fα) and linear
bending (Fβ) deformations are getting significantly increased.
Therefore the angled bending or linear bending deformations
are strongly dependent on the C≡N bond distance as can be
conformed from calculated frequencies in Table 6. The
interaction force constants (Fαβ' and Fαβ'') between angled
bending and linear bending deformations are small enough,
and they are also dependent on the distance of C≡N as much.
The interaction force constants between stretch (Fe-C or
C≡N) and bending (angled or linear) are all small, and very
insensitive to the geometrical displacement. The stretch-
angled bending interactions (FC≡N,α'-FC≡N,α'' and FFe-C,α'-
FFe-C,α'') are larger than the stretch-linear bending inter-
actions (FC≡N,β' and FFe-C,β'). This is in the same manner with
the case12 of Cr(CO)6. 

Refined force constants of geometry B through least-square
fitting procedure using experimentally observed frequencies
shown in Table 7 are similar to valence force constants of
geometry B except several force constants. The constants
FFe-C and FC≡N are calculated to 1.952 and 16.230 mdyn/Å,
respectively. Reported values10 previously for ferrocyanide
ion were 1.99 and 15.52, respectively, which were obtained
using 10-parameter potential function in the valence force
field. The value of FC≡N is a little lower than usual, partly
because we have chosen a bit longer bond distance for C≡N,
1.184 Å. The linear bending force constants (Fβ, Fββ', Fββ'',
and Fββ''') and the interaction constants (Ft

C≡N,C'≡N' and
F c

C≡N,C'≡N') are comparable to the values reported.10 The
interaction constants, F t

C≡N,C'≡N' and FFe-C,C≡N for ferricyanide
ion,11(b) [Fe(CN)6]3−, were evaluated to 0.2 and 0.2 mdyn/Å,
respectively. In this study of ferrocyanide, these interaction
constants come out to 0.230 and 0.602 mdyn/Å, respec-
tively. 

Conclusions

Vibrational properties of ferrocyanide complex ion,
[Fe(CN)6]4−, have been studied based on the force constants
obtained from the density functional calculations at B3LYP/
6-31G** level. This study was conducted by means of the
normal mode analysis through Wilson’s GF matrix method
using new bond angle and linear angle internal coordinates
recently developed. Three different geometries with mode-
rate bond distances have been adapted to obtain the effects
of geometrical displacements. The density functional calcu-
lations at this level reproduced vibrational frequencies of
ferrocyanide adequately. The refined force constants in the
symmetry coordinate as well in the internal coordinate were
also attempted to retrieve using experimentally observed
frequencies by non-linear least-square fitting method. 

The internal force constants were evaluated in the general
quadratic valence force field and the modified Urey-Bradley
force field. In the modified Urey-Bradley force field, the

Table 9. Valence Force Constants (mdyn/Å or equivalents) in the
General Quadratic Valence Force Field for Geometry A, B, C and
Opt and Refined Valence Force Constants of Geometry B

Symmetry
F Matrix
Elementsa

Geometry
A

Geometry
B

Geometry
C

Geometry
Opt

Refined 
Constants of 
Geometry B

FFe-C 1.9982  1.8858 1.8810 1.0040 1.952
FC≡N 17.0780 17.0813 16.4006 17.1091 16.230
F cC≡N,C'≡N' 0.0979  0.0963 0.0950 0.0827 0.095
F tC=N,C'≡N' 0.0835  0.0813 0.0816 0.0592 0.230
F cFe-C,Fe-C' 0.0021  0.0023 0.0023 0.0079 0.040
F tFe-C,Fe-C' 0.3642  0.3487 0.3497 0.2244 0.312
FFe-C,C≡N 0.3638  0.3509 0.3494 0.2316 0.602
F cFe-C,C'≡N' -0.0022  -0.0005 -0.0007 0.0139 0.011
F tFe-C,C'≡N' 0.0026  0.0044 0.0042 0.0182 0.079
Fα  - Fαα'' 0.7010  0.7185 0.7816 0.8356 0.715
Fαα'  - Fαα''' 0.0643  0.0622 0.0627 0.0468 0.060
Fα  - Fαα'''' 0.6416  0.6523 0.6991  0.7183 0.634
Fβ 0.4265  0.4232 0.5311 0.3887 0.407
Fββ' 0.0369  0.0359 0.0513 0.0286 0.038
Fββ'' 0.0280  0.0272 0.0427 0.0203 0.018
Fββ''' 0.0089  0.0087 0.0088 0.0069 0.002
Fαβ' -0.0802 -0.0772 -0.0294 -0.0487 -0.081
Fαβ'' -0.0438 -0.0430 -0.0273 -0.0346 -0.029
Fαβ''' 0.0045  0.0046 0.0048 0.0057 0.010
FC≡N, β'  0.0135  0.0131  0.0134 0.0116 0.013
FC≡N,α'  - 
FC≡N,α''

0.0850  0.0822 0.0819 0.0584 0.082

FFe-C,β'  0.0155  0.0154  0.0152 0.0148 0.013
FFe-C,α' - 
FFe-C,α''

-0.0555 -0.0559 -0.0565 -0.0577 -0.059

afrom Reference 12.
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angled bending force constants previously reported were
about five times underestimated, but the interaction constant
for non-bonded carbon atoms is about two times over-
estimated. The values of the interaction constants, p1 and p2

obtained from density functional force field are similar to
those employed previously. In the valence force field, the
stretch-stretch interaction and stretch-bending interaction
constants are not sensitive to the geometrical displacement
in the valence force field. Most of interaction force constants
of ferrocyanide are comparable to those of Cr(CO)6 well
studied, and could be regarded to be transferable appro-
priately to other hexacyano transition metal complexes.
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