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A Calculation for the Viscosity of Fluid at the Critical Point
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It is very difficult to measure the fluid viscosity at the critical point, there are seldom found experimental values
of fluid viscosity at the critical point. Few theories can explain the critical viscosity quantitatively. A theory of
viscosity previously proposed by authors10 is applied to the fluid at the critical point. This theory can be
simplified as a simple form with no adjustable parameters, allowing for easy calculation. Viscosities at the
critical point for some substances have been calculated, and calculated results are satisfactory when compared
with the observed values. 
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Introduction

Gas phase viscosity is primarily a function of momentum
transfer by translation of the molecules with relatively few
collisions and has been described by kinetic theory of gases.
In dense gases and liquids, however, the monentum transfer
is dominated by collisions and interacting force fields
between the densely packed molecules. The theoritical
description of dense gases and liquids is difficult due to these
intermolecular forces, which consists of short range effects
such as repulsions and hydrogen bonding, wide range effects
such as electrostatic effects and long range effects such as
attractions. Statistical mechanics represents a fundamental
idea about the interaction of molecules in dense gases and
liquids. However in order to predict properties like viscosity,
proper distribuion functions describing the intermolecular
force field or intermolecular potential energy function are
needed. Those distribution function, as for instance, the
Lennard-Jones potential function, require information about
a characteristic collision diameter and a reference intermole-
cular potential of the molecule. This information is not
available a priori and must be obtained by fitting experi-
mental data. The uncertainties contained in the distribuion
function transform the theoretically fundamental statistical
mechanical approach into a semi-empirical method, if used
in practice. The viscosity of the fluids exhibits an anomalous
behavior in the vicinity of the critical point. The explanation
for this phenomenon is not clear Owing to the difficulty of
approaching very close to the critical point, only a few
studies of the viscosity behavior have been reported. At the
present time, the approximate theory of Enskog1 is the most
usable for describing the viscosity of real gases. Several
models for predicting the viscosity for dense gases and
liquids are available in an abundance of literature with
excellent reviews available by Reid et al.,2 Touloukian et
al.,3 Stephan and Lucas,4 and Viswanath & Natarajan,5 and
no theory available can predict the viscosity for both dense
gases and liquids, much less the unusual viscosity behavior
around the crtitical point. Some decoupled theories6 had

been applied to the critical viscosity with little success. As a
results, the only equation available7 for the prediction of the
viscosity near the critical point is empirical in nature. The
empirical equation, however, was not able to provide the
variables involved with a clear explanation of their physical
meanings, and it seemed necessary to poropose a theoretical
model that may be used near the critical point. The present
authors, therefore, came to present in the previous paper8 an
equation that might give a quantitative estimation of the
viscosity around the critical point. It was found that the
equation could also be used to calculate the viscosity right at
the critical point. Recently, it has been suecessfully applied
to the liquid metals9 for the prediction of viscosity , which is
an excellent test for checking the validity of the liquid
theory. This paper will use the phenomenological theory of
viscosity10 previously proposed by authors to present a
viscosity equation that might be used to calculate the
viscosity at the critical point. 

  
Theory

Let a shear stress α  be applied with a shear rate κ  to a
fluid which contains N molecules in a volume V at the
temperature. If the resulting flow is a Newtonian, the shear
viscosity defined by

 (1)

is independent of the shear stress and the shear rate. Since
the viscosity results from the kinetic molecular motions and
the intermolecular interactions in the fluid, the viscosity can
be expressed as

(2)

where ηk and ηi are the viscosities contributed by the kinetic
molecular motions and the intermolecular interactions in the
fluid, respectively. If the fluid is homogeneous with respect
to the external forces, the viscosities ηk and ηi may be
proportional to the corresponding pressure as,

η = α/κ

η ηk= ηi+
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ηK = ζkPk /κ (3)
ηi = ζiPi /k (4)

where Pk, Pi are the kinetic pressure and the internal pressure
of the fluid respectively and ζ is the proportionality factor
which may be related to the external forces. In conjunction
with the shear rate, we assume that the rate is proportional to
the velocity of the molecule as,

κ = ζ Vm /λ (5)

where Vm and λ are the molecular velocity and the mean free
path of molecules. For the Newtonian flow, the propor-
tionality factor ζ in Eqs. (3), (4) and (5) should be the same
to have the viscosity which is independent of the external
force. Therefore we can get a equation of viscosity8 as
follows.

η = (Pk + Pi)/(Vm/λ) (6)

The kinetic and internal pressures are given by,

Pk = T(∂P/∂T)v (7)
Pi = (∂E/∂V)T (8)

where T, P, E and V are the temperature, pressure, internal
energy and volume, respectively. To find out the kinetic
pressure and internal pressure we need an equation of a state
of the fluid. For the dense gas region including the critical
point, however, it is not easy to find the appropriate equation
of state. In this paper we adapt an equation derived from
Roulette liquid theory11 as follows

P = RT/(V−b)−a/Vn (9)

where three parameters a, b and n are estimated from the
critical point and the inversion temperature.12 This equation
also should satisfy the thermodynamic stability criteria at the
critical point, 

(∂P/∂V)Tc = 0 (10)
(∂ 2P/∂V2)Tc = 0 (11)

where Tc is the temperature at the critical point.
If Eq. (9) is used with Eq. (10) and Eq. (11), it is readily

shown that

n = 2Zc + (4Zc
2 +1)1/2 (12)

a = (n+1)PcVc
n/(n−1) (13)

b = (n−1)Vc/(n+1) (14)

where Zc, Pc, and Vc are the compressibility factor, the
critical pressure and the critical volume, respectively. Thus,
with values of critical pressure, volume and temperature for
any material, a, b, and n are easily determined. By using the
equation (9), we have

Pk = RT/(V−b) (15)
Pi = a/Vn (16)

In conjunction with the molecule in a gas, we have

λ = V/(21/2π σ2N) (17)
Vm = (8 kT/(πm))1/2 (18)

where σ , k and m are the collision diameter, boltzmann
constant and mass of a molecule, respectively. By intro-
ducing Eqs. (13) through (18) into Eq. (9), we can obtain the
viscosity of the critical point, ηc, as follows

ηc = (n+1)RTc(0.5+Zc/(n−1))/Vm (19)

 Calculation Results and Discussion

To calculate the viscosity at the critical point by using Eq.
(19), we take an approximation for σ as follows

σ = σo(1+1.8 Tb/T)1/2 (20)

which is the same as the Sutherland’s correction13 equation
where Tb is the normal boiling point. The value of σo,, which
depends upon the van der Waals constant b, can be obtained
as follows

σo = (ζ b/N)1/3 (21)

where ζ is a parametric constant. In this calculation we take
ζ as 0.61. The values of Vm, and λ at the critical point are
calculated as 73.29(n−1)Vc/((n+1)σ2) and 145.5(Tc/M)1/2,
respectively, using Eq. (12) through Eq. (16). Therefore, the
equation of viscosity at the critical point can be expressed as
a following form that may be used for easy calculation 

ηc = 78.84(n−1)(MTc)1/2(0.5+Zc/(n−1))/σ2 µ-poise (22)

, in which M is molecular weight in gram, Tc in K, and σ in
Å. 

In Table 1, the calculated results of the critical point
properties for some substances are shown and compared
with the experimental values. 

Experimental values of ηc are seldom available. Besides,
few theories have been developed for the quantitative
prediction of the viscosity at the critical point. Recently, a
new model14 for predicting vapor pressure as a function of
structural composition over wide temperature ranges has
been proposed, but it can not predict the right shape of the
viscosity curves at temperatures greater than about 0.7 times
the critical temperature. Until now, ηc has been estimated in
one of the following ways; (i) if a value of viscosity is
known at a given reduced pressure and temperature,
preferably at condition as near to those of interest as
possible, then ηc = η/ηr, where ηr is reduced viscosity; or (ii)
if only critical P-V-T data are available then ηc by Bird8 may

Table 1. Calculated critical values

 Zc n
ηcalc. 

µ-poise
ηobs. 

µ-poise

Carbon dioxide 0.27 1.69 326 322
Ammonia 0.24 1.60 299 261
Methanol 0.22 1.54 328 284 
Ethanol 0.25 1.61 294 285 
Isopropanol 0.25 1.61 273 282
Isobutanol 0.26 1.64 270 277 
Ethane 0.29 1.72 200 220
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be estimated from

ηc = 61.6(MTc)1/2(Vc)−2/3 (23)

, in which ηc is in micropoises, Tc in K, and Vc in cm3 per
gram mole. The critical viscosities computed by method(i)
has been tabulated by Hougen and Watson,15 and Table 2
reproduces the results and compares them with the values of
viscosity from Eq. (22). Due to the lack of experimental data
for the viscosity at the critical point, exact comparisons with
experiments are difficult to be made. But the agreements
between the theories and experiments turn out to be fairly
good for some substances. If we sustitute 1.65 for n and
0.6Tc for Tb in Eq. (22), we can obtain a simlpe equation as
follows

ηc = 58(MTc)1/2/Vc
2/3 (24)

, in which ηc is in micropoise, Tc in K, and Vc in cm3 per
gram mole.

This value of viscosity is expressed as a simple form
similar to the empirical equation proposed by Bird7 as

ηc = 0.98 ηB (25)

where ηB is the empirical viscosity at the critical point
proposed by Bird.

We had sucessfully explained8 the abnormal behavior of

the viscosity near the critical point by substituting the sound
velocity for the molecular velocity Vm in Eq. (6). To calculate
the viscosities at the critical point, we need the data for heat
capacity ratio γ around the critical point. Since we can not
find the value of γ, we have to use the average speed of gas
from the Maxwell distrbution for the molecular velocity as
in Eq. (18). We may obtain the better results, predicting both
the abnormal behavior near the critical point and the
viscosity at the critical point if we know the exact value of γ.

Conclusion

In spite of its practical and theoritical importance, few
theories have been developed for the prediction of the
viscosity at the critical point. The present study has led to the
following conclusions.

(1) The viscosity theory previously proposed by the
present authors seems to be the only one that can
successfully predict the fluid viscosity at the critical point.

(2) This theory can be simplified in a simple form with no
adjustable parameters, allowing easy calulation of the vis-
cosity at the critical point, similar to the empirical formula
by Bird.

(3) The agreements between the theoretical predictions
and the experimental results are satisfactory.
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Table 2. Comparison of our results with the results of Hougen and
Watson

 
Our Resuts 
(µ-poise) 

Hougen and Watson14 
(µ-poise) 

Experiment 
(µ-poise)

 H2 28 35 −
 He 17 25 −
 Ne 140 156 −
 Ar 248 264 −
 Air 180 193 −
 N2 169 180 −
 O2 226 250 −
 CO 169 190 −
 CO2 326 343 322
 NO 300 258 −
 N2O 325 332 − 
 SO2 396 411 −
 Cl2 402 405 −
 CH4 147 159 −
 C2H6 200 210 220
 Cyclohexane 311 284 −
 C6H6 300 312 −
 CH3Cl 308 333 −
 CHCl3 372 410 −
 CCl4 403 413 −
 CS2 380 404 −


