Notes

Molecular Engineering. Part 13. Formation of Hemicarcerand Dimer by Metal Coordination

Yun-Soo Yoon, Hee Soo Park, and Kyungsoo Paek*

Department of Chemistry and CAMDRC, Soongsil University, Seoul 156-743, Korea. *E-mail: kpaek@ssu.ac.kr Received July 26, 2006

Key Words : Hemicarcerand, Metal coordination, Self-assembly, Dimer

Container molecules such as carcerand,¹ hemicarcerand,² and self-assembled molecular capsule³ have been characterized as molecular scavengers, molecular storages, molecular reactors and controlled-releasing systems. Various heterobridged hemicarceplexes in which the fourth bridging unit differs from the other three bridging units were reported by Cram *et al.*⁴ and the fourth bridging unit has been used to adopt an additional binding site^{4d} or to connect with another hemicarcerand to obtain covalently linked dimeric hemicarceplexes.⁵

The characteristics of container molecules can be accumulated when they are assembled to highly ordered supramolecular systems. Dimeric container system could duplex the functions of monomeric container molecule and a wellordered multiple container system would result in a new high density information storage system.⁶

Metal coordination has become an important synthetic strategy for the self-assembly of high-ordered and well-defined supramolecular architectures because it allows well defined geometry, coordination number, and a range of binding strengths.⁷ Recently the interesting guest's size and shape selectivities of cyanohemicarcerand **1** was reported.⁸ But the stability of Pd(II) or Pt(II)-coordinated dimeric assembly **1**-ML₂-**1** was too weak to be observed by ¹H NMR spectrometry.⁸ Here we report on the synthesis of hemicarcerand **4** which has a metal coordinating *p*-pyridylphenyl unit on a pillar and its formation of dimeric self-assemblies **5a** and **5b** by Pd(II) and Pt(II)-coordination, respectively.

Dimeric Assembly 1-ML₂-1

As shown in Scheme 1, diol 2^8 was reacted under the dilution condition with α, α' -dibromo-5-bromo-*m*-xylene in

Scheme 1. Synthesis of Pd(II) or Pt(II)-coordinated dimeric hemicarcerands **5a** and **5b** (R = heptyl).

a mixture of Cs_2CO_3 and DMF at 60 °C to afford bromohemicarcerand **3** in 70% yield after chromatographic purification (hexane : CHCl₃ = 2 : 1) and recrystallization (CH₃OH). The Suzuki coupling reaction between bromohemicarcerand **3** and 4-pyridineboronic acid pinacol cyclic ester gave pyridinohemicarcerand **4** in 20% yield. Hemicarcerands **3** and **4** were characterized by ¹H NMR, FAB+ Mass spectra, and elementary analyses.

Metal-coordinated dimeric container molecular systems **5a** and **5b** were formed using Pd(DMSO)₂Cl₂ or *cis*-

Notes

Figure 1. ¹H NMR spectral variation of Hemicarcerand **4** in CDCl₃ at 25 °C by Metal Complex addition; (a) free **4**, (b) 0.25 eq Pd[(DMSO)₂Cl₂], (c) 0.50 eq Pd[(DMSO)₂Cl₂], (d) 0.25 eq *cis*-Pt[(CH₃CN)₂Cl₂], and (e) 0.50 eq *cis*-Pt[(CH₃CN)₂Cl₂].

Table 1. Summary of the chemical shift changes upon addition of metal complexes, $Pd[(DMSO)_2Cl_2]$ for dimer **5a** and *cis*-Pt[(CH₃CN)₂Cl₂] for dimer **5b**

Eq of	Chemical shift (ppm)							
Metal	Ha		H _b		Hc		H_{d}	
Complex	5a	5b	5a	5b	5a	5b	5a	5b
None	8.65		7.48		7.24		7.82	
0.25 eq	8.83	8.75	7.55	7.63	7.28	7.26	7.87	7.90
	8.59	8.65		7.50	7.26		7.83	7.82
0.5 eq	8.83	8.75	7.58	7.68	7.28	7.31	7.88	7.90
$\Delta\delta$	+0.18	+0.10	+0.10	+0.20	+0.04	+0.07	+0.06	+0.08
$(\delta_5 - \delta_4)$								

Pt[CH₃CN]₂Cl₂]. Figure 1 and Table 1 show the chemical shifts changes of hemicarcerand **4** in CDCl₃ at 25 °C upon addition of Pd(DMSO)₂Cl₂ or *cis*-Pt[(CH₃CN)₂Cl₂], respectively. The peaks for H_a (8.65 ppm), H_b (7.48 ppm), H_c (7.24 ppm), and H_d (7.82 ppm) of free hemicarcerand **4** tend to split into two sets of peaks by 0.25 eq. metal complex which correspond to those of hemicarcernd **4** and dimer **5** (Fig. 1, (b) and (d)). Those two peaks for each H_a, H_b, H_c, and H_d then became one peaks by 0.50 eq. metal complex (Fig. 1, (c) and (e)), which confirms that hemicarcerand **4** and metal complex bind in 2 : 1 ratio to form a stable dimeric assembly **5**. No further split or shift was observed by more than 0.50 eq. of metal complex.

Table 1 summarizes the chemical shift changes upon addition of metal complexes. The change of chemical shifts upon complexation decrease in order of those of $H_a > H_b > H_d$, and $> H_c$ for dimer **5a** and those of $H_b > H_a > H_d$, and $> H_c$ for dimer **5b** due to the strong metal coordination of pyridyl ligand to metal.

The formation of dimeric hemicarcerand 5 suggests that a

hemicarcerand with four metal-ligands on each four pillars, which is being developed, would form 2-D net-work of container molecules by metal coordination.

Experimental Section

Bromohemicarcerand 3. A mixture of diol 2 (450 mg, 0.21 mmol) and Cs₂CO₃ (409 mg, 1.25 mmol) in degassed DMF was stirred at 60 °C for 20 min under Ar gas and added 1-bromo-3,5-bis(bromomethyl)benzene (93 mg, 0.27 mmol), then stirred at 60 °C fot 2 days. The mixture was cooled to room temperature and filtered through celite. The residue was partitioned in CH₂Cl₂ and 3 N HCl. The organic layer was washed with 3 N HCl twice, water, brine, and then dried over MgSO₄. The solvent was evaporated under vacuum. The residue was purified by silica gel column chromatography with a mixture of $CH_2Cl_2/Hexane(1:1)$ as a mobile phase and the product was recrystallized in MeOH (343 mg, 70%): ¹H NMR (400 MHz, CDCl₃) δ 0.90 (t, 24H, CH₃), 1.26-1.43 (m, 80H, $(CH_2)_5$), 1.90-1.94 (m, 12H, CH2 $(CH_2)_2$ -CH2), 2.18 (m, 16H, ArHCH₂), 3.81 (t, 4H, unsym. OCH₂), 3.91-3.96 (m, 8H, sym. OCH₂), 4.15-4.18 (d, J = 8.0, 8H, inner. OCH₂O), 4.70 (t, J = 4.0, 8H, CH methine), 4.93 (s, 4H, ArCHO), 5.64-5.83 (d, J = 8.0, 8H, outer OCH₂O), 6.76-6.86 (m, 8H, ArH), 7.13 (s, 2H, ArH), 7.66 (s, 1H, ArH); Anal. Calcd for C₁₄₀H₁₈₃BrO₂₄·5MeOH·3Hexane; C, 71.23; H, 8.98. Found; C, 71.15; H, 9.00.

Pyridinohemicarcerand 4. Under Ar atmosphere, hemicarcerand 3 (100 mg, 0.043 mmol), 4-pyridineboronic acid pinacol cyclic ester (22.0 mg, 0.11 mmol) and Pd(PPh₃)₄ were added to a argon-saturated mixture of THF (55.0 mL), 2 M KF (55.0 mL), and EtOH (30.0 mL). The mixture was refluxed for 5 days. After cooling to room temperature and evaporation of solvent, the residue was dissolved in CH₂Cl₂ and water. The organic layer were washed with water and brine, and then dried over MgSO4. After concentration, the residue was purified by silica gel column chromatography with a mixture of EtOAc/Hexane (1:7) as a mobile phase and recrystallized in EtOH (20.0 mg, 20%): FAB+ MS m/z 2326.1 ([M+1]⁺); ¹H NMR (400 MHz, CDCl₃) 0.91 (t, 24H, CH₃), 1.26-1.44 (m, 80H, (CH₂)₅), 1.91 (m, 12H, CH₂-(CH₂)₂CH₂), 2.19 (m, 16H, ArHCH₂), 3.91 (t, 4H, unsym. OCH_2), 3.97 (m, 8H, sym. OCH_2), 4.19 (d, J = 4.0, 8H, inner OCH₂O), 4.71 (t, J = 8.0, 8H, CH methine), 5.06 (s, 4H, ArCHO), 5.68-5.85 (d, J = 8.0, 8H, outer OCH₂O), 6.78-6.83 (m, 8H, ArH), 7.50 (d, J = 4.0, 2H, NCHCH), 7.83 (s, 1H, ArH), 8.68 (d, J = 8.0, 2H, NCH); Anal. Calcd for C145H187NO24·EtOAc·3Hexane·4EtOH; C, 73.52; H, 9.20; N, 0.49. Found; C, 73.38; H, 9.02; N, 0.18.

Acknowledgments. This work was supported by Soongsil University (2005). H. S. Park thanks to the Seoul R&BD Program.

References

1. (a) Cram, D. J.; Cram, J. M. Container Molecules and Their

Notes

Guests, Monographs in Supramolecular Chemistry; Stoddart, J. F., Ed.; The Royal Society of Chemistry: Cambridge, UK, 1994; vol. 4, Chap. 7. (b) Jasat, A.; Sherman, J. C. *Chem. Rev.* **1999**, *99*, 931.

- (a) Warmuth, R.; Yoon, J. Acc. Chem. Res. 2001, 34, 95. (b) Cram, D. J.; Tanner, M. E.; Thomas, R. Angew. Chem. Int. Ed. Engl. 1991, 30, 1024. (c) Cram, D. J.; Tanner, M. E.; Knobler, C. B. J. Am. Chem. Soc. 1991, 113, 7717. (d) Cram, D. J.; Blanda, M. T.; Pake, K.; Knobler, C. B. J. Am. Chem. Soc. 1992, 114, 7765. (e) Helgeson, R. C.; Paek, K.; Knobler, C. B.; Maverick, E. F.; Cram, D. J. J. Am. Chem. Soc. 1996, 118, 5590.
- (a) Heinz, T.; Rudkevich, D. M.; Rebek, J. *Nature* 1998, *394*, 764.
 (b) Chapman, R. G.; Olovsson, G.; Trotter, J.; Sherman, J. C. J. *Am. Chem. Soc.* 1998, *120*, 6252. (c) Choi, H.-J.; Park, Y. S.; Cho, C. S.; Koh, K.; Kim, S.-H.; Paek, K. *Org. Lett.* 2004, *6*, 4431. (d) Rebek, J. *Angew. Chem. Int. Ed.* 2005, *44*, 2068. (e) Palmer, L. C.;

Rebek, J. Org. Lett. 2005, 7, 787.

- (a) Yoon, J.; Knobler, C. B.; Maverick, E. F.; Cram, D. J. Chem. Commun. 1997, 1303. (b) Yoon, J.; Cram, D. J. Chem. Commun. 1997, 1505. (c) Yoon, J.; Sheu, C.; Houk, K. N.; Knobler, C. B.; Cram, D. J. J. Org. Chem. 1996, 61, 9323. (d) Kurdistani, S. K.; Helgeson, R. C.; Cram, D. J. J. Am. Chem. Soc. 1995, 117, 1659.
- 5. Yoon, J.; Cram, D. J. Chem. Commun. 1997, 2065.
- Ihm, C.; Jo, E.; Kim, J.; Paek, K. Angew. Chem. Int. Ed. 2006, 45, 2056.
- (a) Holliday, B. J.; Mirkin, C. A. Angew. Chem. Int. Ed. 2001, 40, 2022. (b) Leinnger, S.; Olenyuk, B.; Stang, P. J. Chem. Rev. 2000, 100, 853. (c) Yoshizawa, M.; Ono, K.; Kumazawa, K.; Kato, T.; Fujita, M. J. Am. Chem. Soc. 2005, 127, 10800. (d) Ihm, C.; Kim, J.; Paek, K. Bull. Korean Chem. Soc. 2005, 26, 805.
- 8. Ye, B.; Paek, K. Bull. Korean Chem. Soc. 2006, 27, 305.