Synthesis and Biological Evaluation of Isophthalamide Derivatives as T-type Calcium Channel Blockers

Youna Oh,^{†,‡} Yoonjee Kim,[†] Seon Hee Seo,[†] Jae Kyun Lee,[†] Hyewhon Rhim,[†] Ae Nim Pae,[†] Kyu-Sung Jeong,[‡] Hyunah Choo,^{†,*} and Yong Seo Cho^{†,*}

†Life Sciences Division, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130-650, Korea *E-mail: hchoo@kist.re.kr

*Department of Chemistry, College of Science, Yonsei University, Seoul 120-749, Korea. *E-mail: ys4049@kist.re.kr Received July 29, 2008

Key Words: T-type calcium channel blocker, Neuropathic pain, Isophthalamide

Since mibefradil, a selective T-type calcium channel blocker, was withdrawn from the market in 1998 due to drug-drug interaction, there have been efforts to discover novel T-type calcium blockers.^{1,2} Mibefradil had been approved for the treatment of angina pectoris and hypertension by the FDA in 1997. According to accumulation of new findings on T-type calcium channels, it has been reported that T-type calcium channels play crucial roles in the control of pain which are caused by hyperexitable neurons.3 The role of T-type calcium channels in pain has been addressed using specific genetic modulation of T-type calcium channel isoforms. In the case of Ca_V3.1 knockout ($\alpha_{1G}^{-/-}$) mice, it was observed that, after L5 spinal nerve ligation, spontaneous pain responses were reduced and a threshold for paw withdrawal was increased in response to mechanical stimulation.⁴ Ca_V3.2 antisense treatment resulted in major anti-nociceptive and anti-hyperalgesic effect, suggesting that Ca_V3.2 plays a major pronociceptive role in acute and chronic pain states.⁵

Together, the results of these two studies suggest that blocking T-type calcium channels should reduce nociceptive pain and neuropathic pain.

Herein we report design, synthesis and biological evaluation of novel isophthalamide derivatives as T-type calcium channel blockers. Recently, we designed 1,3-dioxoisoindoline-5-carboxamide derivatives with assistance of a pharmacophore model generated and synthesized those compounds, of which the biological results were reported (Figure 1).⁶ Based on the previous SAR (structure-activity relationship) study, new isophthalamide derivatives 2 were designed, synthesized and biologically evaluated (Figure 1).

The isophthalamide derivatives were synthesized in 3 steps starting from isophthalic acid monoester **3** (Scheme 1). Isophthalic acid monoester **3** underwent amide coupling with various benzyl amines by treatment with *N*-(3-dimethylaminopropyl)-*N*'-ethyl-carbodiimide hydrochloride (EDCI) and 1-hydroxybenzotriazole (HOBt) to give compounds **4** in

CI T-type
$$\alpha_{1G}$$
 IC₅₀ 0.93 μ M R^1 = H, m-Cl, p-Cl, m-Me, p-Me R^2 N

Figure 1. Designed isophthalamide derivatives.

Scheme 1. Synthesis of isophthalamide derivatives.

70-82% yields. The compounds **4** were hydrolyzed to give the corresponding benzoic acids **5**, which were transformed into the desired isophthalamide derivatives **2** in 22-68% yields by coupling with various 3-R²-propylamines in the presence of EDCI and HOBt.

Total 26 isophthalamide derivatives 2a-z, thus prepared, were biologically evaluated against α_{1G} (Ca_V3.1) T-type calcium channel in HEK293 cells which stably express both T-type calcium channel Ca_V3.1 and potassium channel Kir2.1.7 All the synthesized compounds were screened by fluorescence-based HTS (high throughput screening) FDSS600 assay,8 and the %-inhibitions of Ca²⁺ current measured at 10 μ M concentration of the isophthalamide derivatives are summarized in Table 1. In general, compounds with m-Cl (2g-2l, Table 1) or p-Cl (2m-2r, Table 1) group as \mathbb{R}^1 showed higher activity than the corresponding compounds with H (2a-2f, Table 1), m-Me (2s-2v, Table 1) and p-Me (2w-2z, Table 1) substituents. Among the compounds tested, compounds with high %-inhibition (2i, 2l, 2m, 2n and 2o, Table 1) were selected for the patch-clamp assay which is more accurate and more sensitive. The patch-clamp assay is

Table 1. Activity of isophthalamides **2** against α_{IG} (Ca_V3.1) T-type calcium channel

en. compd.		. R¹	\mathbb{R}^2	HTS ^a	patch-
		. к	K	%inh (10 <i>µ</i> M)	clamp ^b IC ₅₀ (μ M)
-				• • •	_c
1	2a	Н	piperidin-1-yl	15.71	
2	2b	Н	2-methylpiperidin-1-yl	12.76	_c
3	2c	Н	2-ethylpiperidin-1-yl	29.61	_c
4	2d	Н	diisopropylamino	0.37	_c
5	2e		octahydroisoquinolin-2(1H)-yl		_c
6	2f	Н	octahydroquinolin-1(2H)-yl	29.35	_c
7	2g	m-Cl	piperidin-1-yl	39.87	_c
8	2h	m-Cl	2-methylpiperidin-1-yl	15.68	_c
9	2i	m-Cl	2-ethylpiperidin-1-yl	72.01	6.77 ± 0.20
10	2j	m-Cl	diisopropylamino	44.45	-c
11	2k	m-Cl	octahydroisoquinolin-2(1H)-yl	44.39	_c
12	21	m-Cl	octahydroquinolin-1(2H)-yl	49.07	2.66 ± 0.12
13	2m	p-C1	piperidin-1-yl	51.90	13.53 ± 0.99
14	2n	p-C1	2-methylpiperidin-1-yl	48.46	11.74 ± 1.22
15	20	p-Cl	2-ethylpiperidin-1-yl	59.21	6.86 ± 0.18
16	2p	p-Cl	diisopropylamino	39.58	_c
17	2q	p-Cl	octahydroisoquinolin-2(1H)-yl	42.35	$-^c$
18	2r	p-Cl	octahydroquinolin-1(2H)-yl	46.09	-c
19	2 s	m-Me	piperidin-1-yl	19.74	-c
20	2t	m-Me	2-methylpiperidin-1-yl	6.84	-c
21	2u	m-Me	2-ethylpiperidin-1-yl	21.10	-c
22	$2\mathbf{v}$	m-Me	diisopropylamino	10.68	_c
23	$2\mathbf{w}$	<i>p</i> -Me	piperidin-1-yl	0.95	_c
24	2x	<i>p</i> -Me	2-methylpiperidin-1-yl	3.76	$-^c$
25	2y	<i>p</i> -Me	2-ethylpiperidin-1-yl	15.83	$-^c$
26	2z	<i>p</i> -Me	diisopropylamino	15.31	_c
27			mibefradil	78.92	1.43 ± 0.49

^aFluorescence-based HTS (high throughput screening) assay. ^bFor the recordings of $\alpha_{\rm IG}$ T-type Ca²⁺ currents, the standard whole-cell patch-clamp method was utilized as previously described. ^cNot determined.

a very time-consuming process because it measures %-inhibition of Ca^{2+} current with a single cell at each concentration with one compound, and thus, only 5 compounds were selected for accurate screening. The selected compounds were found to be active with IC_{50} values between 2.66 μM to 13.53 μM , and among those, compound 21 showed activity against α_{1G} T-type calcium channel with an IC_{50} value of 2.66 μM , which is comparable to that of mibefradil.

Based on the results of the SAR study described above, it is clear that the bulky R² substituent increases the biological activity of the corresponding compound. Thus, compound 21 with octahydroquinolin-1-(2H)-yl group is more active than 2i with 2-ehtylpiperidin-1-yl group. Also, the compound 2o with 2-ehtylpiperidin-1-yl group is more active than the compound 2n with 2-mehtylpiperidin-1-yl group, which, in turn, is more active than the compound 2m with piperidin-1-yl group.

In summary, the SAR study of isophthalamides $\mathbf{2}$ with R^1 and R^2 substituents revealed that the bulky R^2 is favored for high biological activity, which provides valuable insights into the design and optimization of novel α_{1G} T-type calcium channel blockers.

Acknowledgments. This work was supported by a grant from Korea Institute of Science and Technology (2E20430).

References

- Doering, D.; Zamponi, G.; Connolly, T. M.; Barrow, J. C.; Triggle, D. J.; Snutch, T. P. In *Voltage-Gated Ion Channels as Drug Targets*; Triggle, D. J., Gopalakrishnan, M., Rampe, D., Zheng, W., Eds.; Wiley-VCH: Weinhiem, 2006; Vol. 29, pp 65-149.
- (a) Park, S. J.; Park, S. J.; Lee, M. J.; Rhim, H.; Kim, Y.; Lee, J.-H.; Chung, B. Y.; Lee, J. Y. *Bioorg. Med. Chem.* 2006, *14*, 3502.
 (b) Furukawa, T.; Yamada, O.; Matsumoto, H.; Yamashita, T. WO2005051402, 2005. (c) Rhim, H.; Lee, Y. S.; Park, S. J.; Chung, B. Y.; Lee, J. Y. *Bioorg. Med. Chem. Lett.* 2005, *13*, 283. (d) McCalmont, W. F.; Heady, T. N.; Patterson, J. R.; Lindenmuth, M. A.; Haverstick, D. M.; Gray, L. S.; MacDonald, T. L. *Bioorg. Med. Chem. Lett.* 2004, *14*, 3691. (e) Jung, H. K.; Doddareddy, M. R.; Cha, J. H.; Rhim, H.; Cho, Y. S.; Koh, H. Y.; Jung, B. Y.; Pae, A. N. *Bioorg. Med. Chem.* 2004, *12*, 3965. (f) Kumar, P. P.; Stotz, S. C.; Paramashivappa, R.; Beedle, A. M.; Zamponi, G. W.; Rao, A. S. *Mol. Pharmacol.* 2002, *61*, 649.
- 3. Flatters, S. J. L. Drugs of Future 2005, 30, 573.
- Na, H. S.; Choi, S.; Kim, J.; Park, J.; Shin, H.-S. Mol. Cells 2008, 25, 242.
- Bourinet, E.; Alloui, A.; Monteil, A.; Barrère, C.; Couette, B.; Poirot, O.; Pages, A.; McRory, J.; Snutch, T. P.; Eschalier, A.; Nargeot, J. EMBO J. 2005, 24, 315.
- Kim, H. S.; Kim, Y.; Doddareddy, M. R.; Seo, S. H.; Rhim, H.; Tae, J.; Pae, A. N.; Choo, H.; Cho, Y. S. *Bioorg. Med. Chem. Lett.* 2007, 17, 476.
- 7. Kim, T.; Choi, J.; Kim, S.; Kwon, O.; Nah, S. Y.; Han, Y. S.; Rhim, H. *Biochem. Biophys. Res. Commun.* **2004**, *324*, 401.
- 8. (a) Kim, Y.; Seo, S.; Kim, D.; Rhim, H. The 11th Annual Conference & Exhibition, Geneva, Switzerland, Sep 1115 2005; Society for Biomolecular Screening: Danbury, CT, 2005; P07016. (b) Jo, M. N.; Seo, H. J.; Kim, Y.; Seo, S. H.; Rhim, H.; Cho, Y. S.; Cha, J. H.; Koh, H. Y.; Choo, H.; Pae, A. N. *Bioorg. Med. Chem.* 2007, 15, 365.
- Rhim, H.; Lee, Y. S.; Park, S. J.; Chung, B. Y.; Lee, J. Y. Bioorg. Med. Chem. Lett. 2005, 15, 283.