BULLETIN

OF THE

KOREAN CHEMICAL SOCIETY

ISSN 0253-2964 BKCSDE 24(9)
Volume 24, Number 9 September 20, 2003

Communications

Chiral Pyridinyloxazolidine Ligands for the Pd-Catalyzed Asymmetric Allylic Alkylation

Jin-Koo Yoon, Sang-Joon Lee, Young-Mok Kim, and Myung-Jong Jin*

School of Chemical Science & Engineering, Inha University, Inchon 402-751, Korea Received April 8, 2003

Key Words: Asymmetric catalysis, Allylic alkylation, Pyridinyloxazolidine, Pd complex

Asymmetric carbon-carbon bond-forming reaction is one of the most valuable processes for construction of enantiomerically enriched molecules. Considerable research has been done on Pd-catalyzed asymmetric allylic alkylation. In particular, the search of new chiral ligands is an important chapter in the area and remains an area of intense research. We have previously found that phosphinooxazolidines $\bf 1$ bearing sp^3 nitrogen donor are useful ligands in the asymmetric allylic alkylation. The oxazolidines obtainable by simple synthetic route seem to be potential ligands for the asymmetric catalysis. As part of our continuing interest in oxazolidines, we herein disclose the preparation of new chiral pyridinyloxazolidines and their application in asymmetric allylic alkylation.

The oxazolidines **2-4** were obtained through condensation of commercially available 2-pyridinecarboxaldehyde and optically pure (*S*)-*N*-methylalaninol, (*S*)-*N*-methylvalinol and (1*R*,2*S*)-ephedrine in good yields of 80%, 84%, and 90% respectively. The reaction leads to the formation of new

Table 1. Allylic alkylation of 1,3-diphenyl-2-propenyl acetate with dimethyl malonate a

OAc
$$CH_2(CO_2Me)_2$$

$$CH_2(CO_2Me)_2$$

$$Iigand, BSA, additive 24 h$$

Ligand	Solvent	Additive (MOAc)	Temp. (°C)	Yield (%) ^b	ee (%) ^c
2	CH ₂ Cl ₂	KOAc	10	92	37
3	CH_2Cl_2	KOAc	10	62	8
3	THF	KOAc	10	34	5
4	CH_2Cl_2	LiOAc	10	81	61
4	CH_2Cl_2	NaOAc	10	71	73
4	CH_2Cl_2	KOAc	0	84	75
4	CH_2Cl_2	KOAc	10	97	80
4	CH_2Cl_2	KOAc	10	80	76
4	CH_2Cl_2	KOAc	20	96	75
4	THF	KOAc	10	80	68

^aReactions were carried out with [Pd(π -C₃H₅)Cl]₂ (2.5 mol%), the ligand (10 mol%), BSA (3 equiv.), MOAc (4 mol%) and dimethyl malonate (3 equiv.). ^bMeasured as %-conversion into the product by GC. ^cDetermined by HPLC with a chiralcel OD-H column. Absolute configuration was assigned by the sign of the optical rotation and the elution order from a chiral column.

stereocenter C2 on the oxazolidine ring. Interestingly, each oxazolidine was diastereomerically pure within NMR detection limits. The cis-relative configuration at C2 was assigned on the basis of the ¹H NMR spectral data⁴ and the previous studies.⁵ Reaction of 1,3-diphenyl-2-propenyl acetate with dimethyl malonate/N,O-bis(trimethylsilyl)acetamide (BSA) combined with a small amount of metal acetate (MOAc) was carried out in the presence of a palladium catalyst generated in situ from π -allylpalladium chloride dimer and the ligand. The reaction conditions and results are summarized in Table 1. Ligand 3 having a bulky isopropyl group at C4 gave poor results in terms of enantioselectivity as well as reactivity. The palladium catalyst derived from ligand 3 may be too congested to exert good catalytic activity. Ligand 2 having methyl group provided somewhat higher % ee than 3. The effect of substituent at C5 was again examined with ligand 4 bearing phenyl group at C5. Interestingly, the ee was dramatically improved to 80% ee. Introduction of an additional phenyl group at C5 resulted in a significant increase of enantioselectivity. The substituent seems to assist the stereochemical control of the reaction. When three kinds of acetate salts (Li, Na, K) were employed as an additive, potassium acetate gave the best results in terms of enantioselectivity and reactivity. Reaction temperature had a little influence on the enantioselectivity at temperature between 0 °C and 20 °C. In addition, CH₂Cl₂ as solvent gave better reactivity and enantioselectivity than THF.

This reaction using ligand 4 gave the (S)-product predominantly. The stereochemical outcome obtained here indicates that the nucleophilic attack to the carbon atom of the π -allyl

moiety takes place preferentially at trans position to the oxazolidine nitrogen in the less sterically-hindered $endo-\pi$ -allylpalladium complex (I). In the case of $exo-\pi$ -allyl complex (II), severe steric repulsion is generated between the phenyl as well as the methyl group on the oxazolidine ring and the phenyl group in the substrate.

In conclusion, a new kinds of pyridine-based oxazolidines could be used as chiral ligands in the asymmeric Pd-catalyzed allylic alkylation. It is noteworthy that the phenyl group in ligand 4 exerts considerable influence on the enantioselectivity. Further synthesis of chiral oxazolidines and their application are underway in our laboratory.

Acknowledgement. We thank the Advanced Bioseparation Technology Center of Inha University for financial support.

References

- For recent reviews: (a) Togni, A.; Venanzi, L. M. Angew. Chem. Int. Ed. Engl. 1994, 33, 497. (b) Trost, B. M.; van Vranken, D. L. Chem. Rev. 1996, 96, 395. (c) Ghosh, A. K.; Mathivanan, P.; Cappiello, J. Tetrahedron: Asymmetry 1998, 9, 1. (d) Helmchen, G.; Pfaltz, A. Acc. Chem. Res. 2000, 33, 336.
- (a) von Matt, P.; Pfaltz, A. . Angew. Chem. Int. Ed. Engl. 1993, 32, 566.
 (b) Sprinz, J.; Helmchen, G. Tetrahedron Lett. 1993, 34, 1769.
 (c) Dawson, G. J.; Frost, C. G.; Williams, J. M. J.; Coote, S. J. Tetrahedron Lett 1993, 34, 3149.
 (d) Steinhagen, H.; Reggelin, M.; Helmchen, G. Angew. Chem. Int. Ed. Engl. 1997, 36, 2108.
 (e) Ahn, K. H.; Cho, C.-W.; Park, J.; Lee, S. Tetrahedron: Asymmetry 1997, 8, 1179.
 (f) Pretot, R.; Pfaltz, A. Angew. Chem. Int. Ed. Engl. 1998, 37, 323.
 (g) Saitoh, A.; Achiwa, K.; Tanaka, K.; Morimoto, T. J. Org. Chem. 2000, 65, 4227.
 (h) Fukuta, T.; Takehara, A.; Iwao, M. Tetrahedron: Asymmetry 2001, 12, 2793.
 (i) Ito, K.; Kashiwagi, R.; Hayashi, S.; Uchida, T.; Katsuki, T. Synlett 2001, 12, 284.
 (j) Fukuda, T.; Takehara, A.; Iwao, M. Tetrahedron: Asymmetry 2001, 12, 2793.
- Jin, M.-J.; Jung, J.-A.; Kim, S.-H. Tetrahedron Lett. 1999, 40, 5197.
- Selected data for 4: yield 90%; MS: m/z 254 (M⁺); ¹H-NMR: (CDCl₃, 250 MHz) 8.62 (d, J 4.8 Hz 1H), 7.81-7.19 (m, 8H), 5.18 (d, J 8.1 Hz 1H), 4.82 (s, 1H), 3.02 (m, 1H), 2.29 (s, 3H) 0.74 (d, J 6.3 Hz, 3H); Anal. Calcd for C₁₆H₁₈N₂O: C, 75.56; H, 7.13; N, 11.01. Found: C, 75.51; H, 7.18; N, 11.09.
- The formation of *cis*-isomer of oxazolidine is favored under kinetic and thermodynamic conditions. (a) Beckett, A. H.; Jones, G. R. *Tetrahedron* 1977, 34, 3313. (b) Mangeney, P.; Alexakis, A.; Normant, J. F. *Tetrahedron* 1984, 40, 1803. (c) Bernardi, A.; Cardani, S.; Pilati, T.; Poli, G.; Scolastico, C.; Villa, R. *J. Org. Chem.* 1988, 53, 1600.