## The Reaction of Ninhydrin with Polymethylbenzenes in the Presence of Acid Catalyst: Formation of 2-Aryl-1,3-indanedione and Indenoindanone Derivatives

Hyun Nam Song, Hong Jung Lee, Tae Yi Kim, and Jae Nyoung Kim\*

Department of Chemistry, Chonnam National University, Kwangju 500-757, Korea Received June 24, 1999

Recently, Friedel-Crafts type reactions of some cyclic ketone systems such as ninhydrin, alloxan, isatin, and parabanic acid have been examined extensively.<sup>1</sup> Diarylated derivatives of these heterocyclic compounds have shown many interesting biological activities such as antibacterial, antiprotozoal, anti-inflammatory, anticonvulsant, anticancer, laxative and diuretic activities.<sup>2</sup>

In these respects, Friedel-Crafts type reaction of ninhydrin with aromatic compounds have been examined recently in our group.<sup>3,4</sup> From the reactions of common aromatic compounds such as benzene, p-xylene, chlorobenzene, anisole, there were obtained 2-monoaryl and 2,2-diaryl derivatives in reasonable combined yields depending on the used arenes.<sup>3a</sup> However, as steric hindrance on the arene moiety increases as in trimethylbenzenes, somewhat unusual reaction products have emerged.<sup>4</sup> They include 2-aryl-1,3-indanediones,<sup>5</sup> isocoumarin derivatives,<sup>6</sup> and indenoindanone derivatives. Thus, we investigated the reaction of ninhydrin and tetra- or pentamethylbenzene and report herein the preliminary results. As shown in Scheme 1 the reaction of ninhydrin and 1,2,4,5-tetramethylbenzene in the presence of sulfuric acid afforded the corresponding 2-aryl-1,3-indanedione derivative 1 as the only isolable product in 11% isolated yield. The same reaction in the presence of aluminum chloride gave indenoindanone derivative 2 in 20% yield.

The reaction showed many spots on tlc and consequently the yields of the obtained products are low. However, the mechanism for the formation of **1-2** seemed quite unusual. The proposed mechanism for these compounds is represented in Scheme 2. Sulfuric acid catalyzed Friedel-Crafts type reaction of ninhydrin and 1,2,4,5-tetramethylbenzene gave **A** *via ipso*-substitution.<sup>7</sup> **A** was reduced to the product **1** in the reaction conditions as already we have proposed in our previous paper.<sup>4</sup> In the case of using aluminum chloride,



intermediate **B** was formed. **B** was transformed into the tetracyclic indenoindanone derivative **2** as shown in Scheme 2 and in our previous report<sup>4</sup> in the reaction conditions.

In the case of pentamethylbenzene with the aid of sulfuric acid, we could isolate the corresponding 2-aryl-1,3-indanedione derivative 3 in 7% yield. As in the case of tetramethylbenzene, indenoindanone derivatives 4 and 5 were isolated in 17% and 34% respectively with aluminum chloride.

The same mechanism for the formation of **3** and **4** could be proposed as shown in Scheme 4. Another compound **5** 



Scheme 1





was obtained in this case from **4** by further reduction in the reaction conditions.<sup>4</sup>

In conclusion in this report, the reaction of ninhydrin with polymethylbenzenes in the presence of sulfuric acid gave 2aryl-1,3-indanedione *via ipso*-substitution, whereas in the presence of aluminum chloride we could obtain tetracyclic indenoindanone derivatives.

The difference in major pathway depending on the acid catalyst, H<sub>2</sub>SO<sub>4</sub> or AlCl<sub>3</sub>, is not clear until now. Further studies on the reaction mechanism are in progress.

## **Experimental Section**

General procedure for the reaction of ninhydrin and polymethylbenzenes in the presence of sulfuric acid. To a stirred suspension of ninhydrin (1.0 g, 5.6 mmol) in the corresponding polymethylbenzene (10 mL) was added concentrated sulfuric acid (1.2 g, 12.2 mmol) and stirred vigourously at 70-90 °C for 5 h. The reaction mixture was poured into cold water (50 mL) and diluted with ether (100 mL). The organic layer was washed with brine, dried with MgSO<sub>4</sub>, and evaporated to dryness. After flash column chromatography (hexane/ethyl acetate, 9/1), the corresponding products were obtained. Their spectroscopic data are as follows.

1: The structure of **1** was identical in all respects with the compound obtained from the reaction of ninhydrin and 1,2,4-trimethylbenzene (see reference 4).

**3**: <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  2.13 (s, 3H), 2.17 (s, 3H), 2.19 (s, 3H), 2.22 (s, 3H), 4.49 (s, 1H), 6.59 (s, 1H), 7.88-8.09 (m, 4H); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  16.16, 16.67, 17.34, 20.67, 60.05, 123.58, 128.82, 129.07, 132.93, 134.04, 135.23, 135.74, 136.10, 142.25, 199.18; Mass (70 eV) *m*/*z* (rel intensity) 77

(12), 91 (12), 115 (12), 124 (16), 133 (30), 191 (18), 192 (18), 278 (M<sup>+</sup>, 100), 279 (20).

General procedure for the reaction of ninhydrin and polymethylbenzenes in the presence of aluminium chloride. To a stirred suspension of ninhydrin (1.0 g, 5.6 mmol) in corresponding polymethylbenzene (10 mL) was added aluminum chloride (1.65 g, 12.3 mmol) and stirred vigorously at 70-90 °C for 5-24 h. The reaction mixture was poured into cold water (50 mL) and diluted with ether (100 mL). The organic layers were washed with brine, dried with MgSO<sub>4</sub>, and evaporated to dryness. After flash column chromatography (hexane/ethyl acetate, 9/1), the corresponding products were obtained. Their melting points and spectroscopic data are as follows.

**2**: mp. 60-62 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  2.01 (s, 3H), 2.21 (s, 3H), 2.68 (s, 3H), 2.85 (d, J = 17.7 Hz, 1H), 3.00 (d, J = 17.7 Hz, 1H), 6.86 (s, 1H), 7.38-7.75 (m, 4H); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  15.77, 18.06, 19.63, 39.51, 87.30, 88.32, 124.62, 126.61, 129.87, 130.88, 131.56, 132.03, 133.33, 135.29, 136.44, 137.44, 139.74, 152.64, 204.27; Mass (70 eV) m/z (rel intensity) 73 (56), 149 (30), 261 (40), 276 (54), 294 (M<sup>+</sup>, 24).

**4**: mp. 79-80 °C (dec); <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  2.05 (s, 3H), 2.18 (s, 3H), 2.24 (s, 3H), 2.80 (s, 3H), 2.97 (d, J = 17.7 Hz, 1H), 3.13 (d, J = 17.7 Hz, 1H), 3.74 (brs, 1H), 3.84 (brs, 1H), 7.43-7.82 (m, 4H); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  15.97, 16.02, 16.26, 16.86, 40.35, 86.91, 88.38, 124.57, 126.53, 129.76, 130.19, 130.68, 133.20, 135.00, 135.97, 136.41, 136.49, 137.00, 152.74, 204.51; Mass (70 eV) *m*/*z* (rel intensity) 115 (17), 123 (11), 203 (12), 275 (100), 276 (31), 290 (55), 308 (M<sup>+</sup>, 45).

**5**: mp. 215-216 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  2.08 (s, 3H), 2.17 (s, 3H), 2.56 (s, 3H), 2.60 (s, 3H), 3.09 (d, J = 17.7 Hz, 1H), 3.19 (d, J = 17.7 Hz, 1H), 3.20 (brs, 1H), 4.79 (s, 1H), 7.36-7.78 (m, 4H); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  16.06, 16.20, 16.56, 18.87, 43.78, 58.52, 88.21, 124.57, 126.31, 128.19, 129.13, 130.28, 133.36, 134.78, 135.03, 136.17, 136.36, 137.77, 152.34, 205.82; Mass (70 eV) m/z (rel intensity) 107 (16), 115 (16), 220 (14), 259 (100), 274 (35), 292 (M<sup>+</sup>, 47).

Acknowledgment. We wish to thank the Chonnam National University Research Foundation for financial support of this work. The support of the Korea Basic Science Institute (Kwangju branch) is also acknowledged.

## References

- (a) Klumpp, D. A.; Fredrick, S.; Lau, S.; Jin, K. K.; Bau, R.; Prakash, G. K. S.; Olah, G. A. J. Org. Chem. 1999, 64, 5152. (b) Klumpp, D. A.; Yeung, K. Y.; Prakash, G. K. S.; Olah, G. A. J. Org. Chem. 1998, 63, 4481. (c) Klumpp, D. A.; Yeung, K. Y.; Prakash, G. K. S.; Olah, G. A. Synlett 1998, 918. (d) Moubasher, R. J. Am. Chem. Soc. 1951, 73, 3245. (e) Schmitt, G.; An, N. D.; Poupelin, J. P.; Vebrel, J.; Laude, B. Synthesis 1979, 758. (f) Black, D. St. C.; Bowyer, M. C.; Condie, G. C.; Craig, D. C.; Kumar, N. Tetrahedron 1994, 50, 10983. (g) Bullington, J. L.; Dodd, J. H. J. Org. Chem. 1993, 58, 4833.
- (a) Garrido, F.; Ibanez, J.; Gonalons, E.; Giraldez, A. Eur. J. Med. Chem. 1975, 10, 143. (b) Poupelin, J. P.; Saint-

Ruf, G.; Perche, J. C.; Roussey, J. C.; Laude, B.; Narcisse, G.; Bakri-Logeais, F.; Hubert, F. *Eur. J. Med. Chem.* **1980**, *15*, 253. (c) Poupelin, J. P.; Saint-Ruf, G.; Perche, J. C.; Lacroix, R.; Uchida-Ernouf, G.; Narcisse, G.; Hubert, F. *Eur. J. Med. Chem.* **1979**, *14*, 171. (d) Shoichet, B. K.; Stroud, R. M.; Santi, D. V.; Kuntz, I. D.; Perry, K. M. *Science* **1993**, *259*, 1445.

 (a) Song, H. N.; Seong, M. R.; Son, J. S.; Kim, J. N. Synth. Commun. 1998, 28, 1865. (b) Song, H. N.; Seong, M. R.; Lee, H. J.; Kim, J. N. Synth. Commun. 1999, 29, 2759. (c) Song, H. N.; Lee, H. J.; Kim, H. R.; Ryu, E. K.; Kim, J. N. "Friedel-Crafts Type Reactions of Some Activated Cyclic Ketones with Phenol Derivatives", Synth. Commun. 1999, in print.

- Song, H. N.; Lee, H. J.; Seong, M. R.; Jung, K. S.; Kim, J. N. "The Reaction of Ninhydrin with Trimethylbenzenes under Friedel-Crafts Reaction Conditions", *Synth. Commun.* 1999, in print.
- Rosenfeld, M. J.; Shankar, B. K. R.; Shechter, H. J. Org. Chem. 1988, 53, 2699.
- (a) Napolitano, E. OPPI Briefs 1997, 29, 631. (b) Shishido, K.; Hiroya, K.; Yamashita, A.; Tokunaga, Y.; Fukumoto, K. *Heterocycles* 1990, *30*, 253.
- (a) March, J. Advanced Organic Chemistry; John Wiley & Sons: 1992; pp 512-513. (b) Harwood, L. M. Polar Rearrangements; Oxford Chemistry Primers: pp 69-73.