Efficient Synthesis of (3S,4R)-(+)-3-Methyl-6-hepten-4-olide

Woosun Jun, Yunkyung Jeong, and Ho-Jung Kang*
Department of Chemistry, Kyunghee University, Seoul 130-701, Korea. "E-mail: hjkang@khu.ac.kr Received August 3, 2005

Key Words: Massarilactone A, γ-Butyrolactone, 3-Methyl-6-hepten-4-olide
γ-Butyrolactone functionality possesses great importance in natural product chemistry ${ }^{1}$ and constitutes an essential part of many molecules with pharmacological applications. ${ }^{2}$ The existence of γ-butyrolactone ring as a constitutional unit in many natural products attracted lots of interests on the synthesis and configurational assignments of variously substituted γ-butyrolactones. ${ }^{3,4,5}$ In our synthetic study of massarilactone $\mathrm{A},{ }^{6}$ trans β-methyl- γ-allyl γ-butyrolactone (3-methyl-6-hepten-4-olide) was selected to be a suitable early material. Several routes for racemic synthesis of cis and trans β-methyl- γ-allyl- γ-butyrolactone were known. ${ }^{7}$ At first, synthesis of optically active 3-methyl-6-hepten-4-olide was envisaged to be similar to that of eldanolide. ${ }^{8}$ But some preliminary work led us to realize that more efficient synthetic pathway should be devised for a large quantity of material. Here we wish to report a short and efficient synthesis of $(3 S, 4 R)-(+)$-3-methyl-6-hepten-4-olide (1).
In Scheme 1, commercially available (S)-(+)-3-hydroxy-2-methylpropionate (2) was silylated with TBDMSCl and its ester function was reduced to aldehyde using DIBAH. ${ }^{9}$ Following addition of allylmagnesium bromide to the aldehyde produced a diastereomeric mixture of alcohols 3 and 4 which was easily separated by MPLC (3:4=1: 1.4). ${ }^{10,11}$ Alcohol 3 had a right configuration for our purpose and alcohol 4 needs to be inverted at its hydroxyl site. Alcohol $\mathbf{3}$ was converted to cyanoalcohol $\mathbf{5}$ through a series of reactions including desilylation, selective tosylation and displacement to cyanide. Sequential desilylation, bismesylation and selective displacement of alcohol 4 with NaCN generated cyanomesylate intermediate which was then smoothly inverted to its acetate 6 using CsOAc. ${ }^{12}$ Finally, both cyanoalcohol 5 and acetate 6 were successfully transformed into the target material ($3 S, 4 R$)-(+)-3-methyl-6-hepten-4-olide (1) under hydrolytic condition with $c-\mathrm{HCl}$.

In conclusion, $(3 S, 4 R)-(+)$-3-methyl-6-hepten-4-olide (1) was efficiently synthesized from (S)-(+)-3-hydroxy-2methylpropionate (2) as a staring material by 7 steps in overall yield of 37%. This protocol can also be applied effectively to the synthesis of optically active eldanolide and related compounds.

Experimental Section

1-(tert-Butyldimethylsilanyloxy)-2-methylhex-5-en-3-ol (3 and 4). A mixture of ester $1(15.1 \mathrm{~g}, 128 \mathrm{mmol})$, imidazole ($26.1 \mathrm{~g}, 384 \mathrm{mmol}$), and $\operatorname{TBDMSCl}(23.2 \mathrm{~g}, 154$

Massarilactone A

1

Scheme 1. Synthesis of optically active lactone 1. reagents and conditions: (a) TBDMSCl, Im, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 100 \%$; (b) DIBAH, Toluene, $-95{ }^{\circ} \mathrm{C}$; (c) $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{MgBr}$, THF, 75% (overall 2 steps); (d) $\mathrm{HF}, \mathrm{CH}_{3} \mathrm{CN}, 100 \%$; (e) TsCl, DMAP, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, 81%; (f) NaCN, DMSO, $50{ }^{\circ} \mathrm{C}, 94 \%$; (g) MsCl, Py, 95\%; (h) NaCN , DMSO, $50{ }^{\circ} \mathrm{C}, 60 \%$; (i) CsOAc, $18-\mathrm{Cr}-6$, PhH, reflux, 83%; (j) c-HCl, 83%.
$\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(130 \mathrm{~mL})$ was stirred for 1 h . before it was quenched with $\mathrm{H}_{2} \mathrm{O}$. The resulting mixture was washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL} \times 3)$ and the aqueous layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL} \times 3)$. The combined organic layers were dried over MgSO_{4}, concentrated, and the residue was purified by silica gel chromatography (elution with hexane containing $7.7 \% \mathrm{EtOAc}$) to give a desired silylated ester ($29.7 \mathrm{~g}, 100 \%$).

To a toluene solution $(150 \mathrm{~mL})$ of the above silylated ester $(11.6 \mathrm{~g}, 50.0 \mathrm{mmol})$ at $-95^{\circ} \mathrm{C}$ was added DIBAH $(150 \mathrm{~mL}$, $150 \mathrm{mmol}, 1 \mathrm{M}$ in hexane) and the resulting mixture was stirred for 2 h before it was quenched with methanol (10 mL) and warmed to room temperature. An aqueous solution of citric acid $(100 \mathrm{~mL}, 1 \mathrm{M})$ was added and the aqueous
layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL} \times 3)$. Normal work-up gave crude aldehyde which was dissolved in THF (60 mL). Allylmagnesium bromide ($40 \mathrm{~mL}, 40 \mathrm{mmol}, 1 \mathrm{M}$ in $\mathrm{Et}_{2} \mathrm{O}$) was added slowly to the solution at $0^{\circ} \mathrm{C}$ and stirring continued for 1 h . The resulting solution was quenched with aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL}$, saturated) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL} \times 3)$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$, dried over MgSO_{4}, and concentrated to produce crude alcohols 3 and 4 which were purified by MPLC (elution with 7.7% EtOAc in hexane) to yield pure alcohol 3 ($3.52 \mathrm{~g}, 29 \%$) and alcohol 4 ($5.65 \mathrm{~g}, 46 \%$).
3: $[\alpha]_{\mathrm{D}}+16.8^{\circ}$ (c 2.00, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.98-5.87(\mathrm{~m}, 1 \mathrm{H}), 5.14-5.08(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{dd}, J$ $=4.2,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.63-3.57(\mathrm{~m}$, $1 \mathrm{H}), 3.59$ (dd, $J=7.4,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{md}, J=14.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.21(\mathrm{dt}, J=14.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.69(\mathrm{~m}, 1 \mathrm{H}), 0.90$ (s, 9H), $0.87(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H})$.
4: $[\alpha]_{\mathrm{D}}+6.2^{\circ}$ (c 2.00, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.90-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.14-5.06(\mathrm{~m}, 2 \mathrm{H}), 3.89-3.85$ $(\mathrm{m}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=4.0,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=5.2,9.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.03 (br d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.32-2.15 (m, 2H), $1.78-1.70(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H})$, 0.07 ($\mathrm{s}, 6 \mathrm{H}$).
(3S,4R)-(+)-4-Hydroxy-3-methylhept-6-enenitrile (5). To a stirred solution of alcohol $3(2.24 \mathrm{~g}, 9.17 \mathrm{mmol})$ in acetonitrile (20 mL) was added aqueous HF ($30 \mathrm{~mL}, 5 \% \mathrm{v} / \mathrm{v}$ of $48 \% \mathrm{HF} / \mathrm{CH}_{3} \mathrm{CN}$) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 2 h at $0{ }^{\circ} \mathrm{C}$ before being quenched with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ powder (4 g). Filtration and concentration of the resulting mixture gave crude diol which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(170$ $\mathrm{mL})$. Tosyl chloride ($2.45 \mathrm{~g}, 12.8 \mathrm{mmol}$) was added to it and the whole mixture was stirred overnight at room temperature. The reaction mixture was quenched with saturated NaHCO_{3} solution (100 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500$ $\mathrm{mL} \times 3$). The combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}$, dried over MgSO_{4}, and concentrated to give crude tosylate which was purified by silica gel chromatography (elution with $25 \% \mathrm{EtOAc}$ in hexane) to yield pure tosylate ($2.11 \mathrm{~g}, 81 \%$ for overall 2 steps).
A solution of tosylate and $\mathrm{NaCN}(1.82 \mathrm{~g}, 37.1 \mathrm{mmol})$ in DMSO (20 mL) was stirred for 4 h at $50^{\circ} \mathrm{C}$ before EtOAc $(200 \mathrm{~mL})$ was added to the reaction mixture. The resulting solution was washed with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL} \times 3)$ and aqueous phases were extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic layers were dried over MgSO_{4} and concentrated to produce a crude product which was purified by silica gel chromatography (elution with $25 \% \mathrm{EtOAc}$ in hexane) to yield cyanide $5(0.972 \mathrm{~g}, 94 \%)$. $\alpha]_{\mathrm{D}}-34.0^{\circ}$ (c $2.00, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.87-5.76(\mathrm{~m}$, $1 \mathrm{H}), 5.23-5.17(\mathrm{~m}, 2 \mathrm{H}), 3.49-3.45(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=4.5$, $16.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=7.4,16.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{md}, J=$ $14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.12$ (dt, $J=14.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.84$ (m, $2 \mathrm{H}), 1.12$ (d, $J=5.2 \mathrm{~Hz}, 3 \mathrm{H})$.
(3S,4R)-(+)-4-Acetoxy-3-methylhept-6-enenitrile (6). To a stirred solution of alcohol $4(3.50 \mathrm{~g}, 14.3 \mathrm{mmol})$ in acetonitrile (20 mL) was added aqueous $\mathrm{HF}(40 \mathrm{~mL}, 5 \% \mathrm{v} / \mathrm{v}$
of $48 \% \mathrm{HF} / \mathrm{CH}_{3} \mathrm{CN}$) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 2 h at $0{ }^{\circ} \mathrm{C}$ before being quenched with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ powder (5 g). Filtration and concentration of the resulting mixture gave crude diol which was dissolved in pyridine (20 mL). Mesyl chloride ($4.93 \mathrm{~g}, 43.0 \mathrm{mmol}$) was added to it and the whole mixture was stirred overnight at room temperature. The reaction mixture was quenched with saturated NaHCO_{3} solution $(50 \mathrm{~mL})$ and extracted with EtOAc (100 $\mathrm{mL} \times 3$). The combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}$, dried over MgSO_{4}, and concentrated to give crude bismesylate (3.89 g) which was used in the next step without further purification. A DMSO solution (30 mL) of crude bismesylate and $\mathrm{NaCN}(3.50 \mathrm{~g}, 71.5 \mathrm{mmol})$ was stirred for 4 h at $50^{\circ} \mathrm{C}$ before EtOAc $(200 \mathrm{~mL})$ was added to the reaction mixture. The resulting solution was washed with $\mathrm{H}_{2} \mathrm{O}(100$ $\mathrm{mL} \times 3$) and aqueous phases were extracted with $\mathrm{EtOAc}(50$ $\mathrm{mL} \times 3$). The combined organic layers were dried over MgSO_{4} and concentrated to produce crude cyanide $(1.77 \mathrm{~g})$ which was dissolved in benzene (20 mL). CsOAc (4.70 g , 24.5 mmol) and 18 -Crown-6 ($1.08 \mathrm{~g}, 4.08 \mathrm{mmol}$) were added to it and the resulting mixture was refluxed for 3 h . Usual work-up with EtOAc gave a crude oil which was purified by silica gel chromatography (elution with 25% EtOAc in hexane) to produce cyanide $6(1.23 \mathrm{~g}, 47 \%$ overall for 4 steps). $[\alpha]_{\mathrm{D}}+58.5^{\circ}$ (c 2.00, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.76-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.13-5.08(\mathrm{~m}, 2 \mathrm{H}), 4.83$ (dt, $J=5.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.68$ (dd, $J=4.9,16.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.47-2.30 (m, 2H), $2.25(\mathrm{dd}, J=8.1,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.08$ $(\mathrm{m}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
(3S,4R)-(+)-3-Methyl-6-hepten-4-olide (1). A solution of cyanide $\mathbf{6}(1.23 \mathrm{~g}, 6.79 \mathrm{mmol})$ in concentrated $\mathrm{HCl}(15 \mathrm{~mL})$ was stirred at room temperature for 4 hr before it was quenched with saturated NaHCO_{3} at $0^{\circ} \mathrm{C}$. When the solution became neutral, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added to it. The aqueous phase was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50$ $\mathrm{mL} \times 3$). The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$, dried over MgSO_{4} and concentrated to produce a crude oil which was purified by silica gel chromatography (elution with 20% EtOAc in hexane) to produce lactone 1 ($0.79 \mathrm{~g}, 83 \%$).

Cyanide 5 was also subjected to the same hydrolysis procedure and lactone 1 was produced in the same yield. $[\alpha]_{\mathrm{D}}+58.5^{\circ}\left(c 2.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 5.82 (ddt, $J=17.1,10.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.19-5.13(\mathrm{~m}, 1 \mathrm{H})$, 4.08 (dt, $J=5.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=7.9,17.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.51-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.34-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{dd}, J=9.3$, $17.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.

Acknowledgement. The authors are grateful to Kyunghee University for its financial support (University Research Fund 2003) for this work.

References

1. Nakanishi, K.; Goto, T.; Ito, S.; Nozoe, S. Natural Products Chemistry; Kodansha Ltd.: Tokyo, 1974.
2. Levine, F. A.; Ferrendelli, F. A.; Corey, P. F. J. Med. Chem. 1986,

29, 1996.
3. For reviews on γ-butyrolactone syntheses, see (a) Kano, S.; Shibuya, S.; Ebata, T. Heterocycles 1980, 14, 661. (b) Boyd, G. V. In The Chemistry of Acid Derivatives, Suppl. B, Part 1; Patai, S., Ed.; John Wiley: New York, 1979; Chapter 8, p 491. (c) Grieco, P. A. Synthesis 1975, 65. (d) Rao, Y. S. Chem. Rev. 1976, 76, 625.
4. (a) Koch, S. S. C.; Chamberlin, A. R. J. Org. Chem. 1993, 58, 2725. (b) Ortuño, R. M.; Ariza, J.; Font, J. Tetrahedron Lett. 1991, 1979. (c) Naji, S.; Reichlin, D.; Kurth, M. J. J. Org. Chem. 1990, 55, 6241. (d) Vekemans, J. A. J. M.; Franken, G. A. M.; Chittenden, G. J. F.; Godefroi, E. F. Tetrahedron Lett. 1987, 2299. (e) Wood, W. W.; Rashid, A. Tetrahedron Lett. 1987, 1933. (f) Kang, S.-G.; Shin, D.-S.; Lee, J.-O.; Goh, H.-G. Bull. Korean Chem. Soc. 1986, 7, 144. (g) Kang, H.-Y.; Ji, Y.; Yu, Y.K.; Yu, J.-Y.; Lee, Y.; Lee, S.-J. Bull. Korean Chem. Soc. 2003, 24, 1819.
5. (a) Davies, S. G.; Polywka, R.; Warner, P. Tetrahedron 1990, 46, 4847. (b) Jaine, C.; Ortuño, R. M.; Font, J. J. Org. Chem. 1986, 51, 3946. (c) Hussain, S. M. A. T.; Ollis, W. D.; Smith, D.; Stoddart, J. F. J. C. S. Perkin I 1975, 1480.
6. Oh, H.; Swenson, D. C.; Gloer, J. B.; Shearer, C. A. Tetrahedron Lett. 2001, 975.
7. (a) Yadav, J. S.; Gadgil, V. R. J. Chem. Soc., Chem. Commun. 1989, 1824. (b) Ueno, Y.; Moriya, O.; Chino, K.; Watanabe, M.; Okawara, M. J. Chem. Soc., Perkin Trans. I 1986, 1351. (c) Janowitz, A.; Kunz, T.; Handke, G.; Reissig, H.-U. Synlett 1989, 24. (d) Kunz, T.; Reissig, H.-U. Angew. Chem. 1988, 100, 297.
8. Mori, K. In The Total Synthesis of Natural Products; ApSimon, J., Ed.; John Wiley: New York, 1992; Vol 9, p 491.
9. Aissa, C.; Riveiros, R.; Ragot, J.; Furstner, A. J. Am. Chem. Soc. 2003, 125, 15512.
10. (a) Buszek, K. R.; Sato, N.; Jeong, Y. Tetrahedron Lett. 2002, 43, 181. (b) Roush, W. R.; Grover, P. T. J. Org. Chem. 1995, 60, 3806. (c) Roush, W. R.; Hoong, L. K.; Palmer, M. A. J.; Straub, J. A.; Palkowitz, A. D. J. Org. Chem. 1990, 55, 4117.
11. Stereochemistry of $\mathbf{3}$ and $\mathbf{4}$ was determined as follows.

12. Shimizu, T.; Hiranuma, S.; Nakata, T. Tetrahedron Lett. 1996, 6145.

