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The vibrational transition probability expressions for the forced Morse oscillator have been derived using the
commutation relations of the anharmonic Boson operators. The formulation is based on the collinear collision
model with the exponential repulsive potential in the framework of semiclassical collision dynamics. The
sample calculation results for H2 + He collision system, where the anharmonicity is large, are in excellent
agreement with those from an exact, numerical quantum mechanical study by Clark and Dickinson, using the
reactance matrix. Our results, however, are markedly different from those of Ree, Kim and Shin's in which they
approximate the commutation operator I0 as unity, the harmonic oscillator limit. We have concluded that the
quantum number dependence in I0 must be retained to get accurate vibrational transition probabilities for the
Morse oscillator.
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 Introduction

The Boson creation and annihilation operators for the
harmonic oscillator are widely used in molecular vibrational
energy transfer studies. This owes to their commutation
relations, which make the interaction between the collision
partners simpler and the Schrödinger equation easier to
solve.1-11 The angular momentum eigenvector problem
encountered in the analysis of vibrational spectra is also one
of the similar commutator algebras using the Boson creation
and annihilation operators.12,20-22

Despite these apparent advantages, the use of Boson crea-
tion and annihilation operators requires that the vibrational
motion of the colliding molecules be harmonic. Therefore,
the Boson operator method can not be applied to molecules
with large anharmonicity and/or with highly excited vibra-
tional energy levels. Furthermore, this anharmonicity is known
to have a significant effect, even on the lower vibrational
energy levels of the polyatomic molecules and van der
Waals molecules, which have shallow potential wells. 

Recently Levine23 derived the commutation relations for
the anharmonic Morse oscillator from the Boson operators
of the harmonic oscillator. The anharmonic Boson operators
and their commutation relations derived by Levine have
been used as the standard algebraic method in the collisional
vibrational energy transfer for the forced Morse oscillator,
and they also have proved very useful as the angular
momentum generator in the coupled Morse oscillators.13-22

Ballhausen24 obtained the quantum mechanical solution of
the forced Morse oscillator using the time-dependent step-up
and step-down operators instead of the usual time-dependent
perturbation theory. On the other hand, Ree et al.25 developed
an approximate method to obtain the perturbed vibrational
states of the forced Morse oscillator, using Levine's anharmonic
creation and annihilation operators and their commutation

relations and derived expressions for vibrational excitation
due to molecular collisions. In their study, however, to make
it easier to obtain the time evolution operator for the wave
function, they neglected the quantum number dependence of
the anharmonicity parameter in describing the basic operators
for Morse oscillator. That is, they approximated the commu-
tator between the anharmonic creation and annihilation
operators as the identity operator, which is true only in the
harmonic oscillator limit. This approximation, however, can
significantly affect the vibrational transition probabilities for
molecules with large anharmonicity, especially when one
deals with high vibrational levels.

In the present study, we incorporate the quantum number
dependence of the anharmonicity parameter into the basic
operators for the Morse oscillator. We have derived expre-
ssions for the final vibrational states and energy transfer
probabilities of the Morse oscillator perturbed by molecular
collisions. We have applied the expressions to a H2 + He
collision system, which has large anharmonicity and test the
validity of the derived expressions by comparing the results
with those of other exact calculation.33 We have also shown
the anharmonicity parameter dependence of the differential
equations for the coefficients of the anharmonic Boson
operators in the time evolution operator.

 Algebraic Method

To handle the vibrational energy transfer problem for the
forced Morse oscillator, it is essential to define the anharmonic
Boson operators. In this section, we briefly summarize
Levine's algebraic operator approach to the Morse oscil-
lator. 

Levine introduced a pair of Boson creation ( ) and
annihilation ( ) operators with the following commuta-
tion relations.11

aυ
+ aN

+,
aυ

− aN
−,
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(1a)

(1b)

Here, υ is the vibrational quantum number and ,
where x0 is the anharmonicity in the Morse oscillator energy
expression

(2)

Levine showed that the basic operators representing the
Morse oscillator could be formed from the harmonic Boson
operators as follows.

(3a)

(3b)

(3c)

(3d)

Here, P and Q are the basic operators for the Morse oscillator,
derived from the harmonic creation and annihilation opera-
tors. The operator I0 approaches the identity operator I only
in the harmonic limit, where the anharmonicity becomes zero.
From these basic operators one can write the Morse oscillator
Hamiltonian as , where ω0 is the vibra-
tional frequency of the Morse oscillator. If we write the harmonic
oscillator Hamiltonian as , then the
position and momentum for the harmonic oscillator become

 and , respectively.
From Eqs. (3), one can obtain the commutation relation as
follows.

(4)

The anharmonic creation (A+) and annihilation (A−) operators
for the Morse oscillator can be obtained by adding or sub-
tracting Eqs. (3a) and (3b).

(5a)

(5b)

From these two operators one can obtain P and Q, 

(6a)

(6b)

and the following commutation relations.

(7a)

(7b)

(7c)

(7d)

Also, in terms of anharmonic operators A+ and A−, the Morse
oscillator Hamiltonian becomes

(8)

Vibrational States for the Perturbed Morse Oscillator

We now write the Hamiltonian for the Morse oscillator per-
turbed by a time-dependent force F(t) due to the interaction
with an incident particle in the form

(9)

or, in terms of the creation and annihilation operators, 

                      ×  (10)

Long before ( ) or long after ( ) collision,
where the perturbation term vanishes23 

(11)

The Morse oscillator state  can be generated from the
vacuum state  as follows.12,23,27

(12)

From these normalized basis states , one can obtain
the eigenvalue equations as follows.23

(13)

(14)

The time-dependent Schrödinger equation for the forced
Morse oscillator can be written as

(15)

where  is the vibrational state of the Morse oscillator
induced by the perturbation term H'(t) , and can be expressed
as a linear combination of the initial states  The
solution to Eq. (15) can be written, in principle, in the form

where U(t, t0) is the time evolution operator, which converts
the initial state  into the perturbed states

 in accordance with the perturbation H'(t). Therefore,
Gj(t) terms in Eq. (16) are the time-dependent functions with
complex values, and  represent the anharmonic
Boson operators ,  and I0. Performing the time
evolution operation  on the initial  state   one obtains

 = 

×  
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+ 

×  (17)

which is a linear combination of all possible Morse oscillator
states produced from the initial state  Here, the sum
above m contains states that are higher than , whereas
the sum over n contains the lower states. Thus, they
represent the excited and de-excited vibrational states of the
Morse oscillator due to the collision, respectively.

 Formulation of Transition Probability

The probability of vibrational transition from the initial
state  to the final state  can be written from Eq.
(17) as

(18)

From Eqs. (17) and (18) one can obtain the excitation
probability

×  

×  (19)

and the de-excitation probability

×  

×  (20)

Because of the presence of the k products containing the
anharmonicity parameter, combining the two probabilities
into one does not seem possible. However, in the harmonic
oscillator limit, where x0 becomes zero, the two expressions
can be combined into the well-known probability expression
for the harmonic oscillator.7,28-30

                   ×  (21)

Here, l is the smaller of υ and f.
To calculate the probabilities, one must evaluate Gj(t)'s in

Eqs. (19) and (20). To do this we express the Hamiltonian in
Eq. (10) in the following form.

(22)

where  are the anharmonic operators A+, A−, A+A− and
I0, and  are their coefficients. To determine Gj(t)'s, we
must therefore find the relationship between the functions

 and . For this purpose, we first differentiate U(t,
t0) with respect to t, 

   ×  (23)

Multiplying U−1 and introducing the Baker-Hausdorff theo-
rem,31 we find

= (24)

From Eq. (22)-(24) we can thus obtain

(25)

This equation leads to the following four differential equa-
tions:

  (26a)

(26b)

(26c)

× (26d)

where
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(27b)

× (27c)

× (27d)

Here f is the vibrational quantum number of the final state
 resulting from the initial state  due to

collisional interaction. Thus, s can be determined by
solving four differential equations subject to the initial
conditions, Gj(t0)=0. These simultaneous differential equations
will be solved numerically. We note that in the limit 
these differential equations reduce to the following well-
known equations for the harmonic oscillator, as they must.32

(28a)

(28b)

(28c)

(28d)

One can calculate the transition probabilities for the har-
monic oscillator from Eqs. (21) and (28). In the next section,
we will use these equations to calculate the vibrational transi-
tion probabilities for the harmonic oscillator and compare them
with those for the Morse oscillator.

Results and Discussion

To test the probability expressions for the Morse oscillator
derived from the commutation relations of the anharmonic
Boson operators, we have chosen the collinear H2 + He collision
as our model system. The reason we have chosen this parti-
cular system is two-fold. The first is that the H2 molecule has
large anharmonicity, and the second is that the exact quantum
mechanical (Clark and Dickinson; Ref. 33) and approximate
semiclassical (Ree, Kim and Shin; Ref. 25) calculations are
already available with which we can compare the results.

The interaction potential between the collision partners is also
the simplest one, i.e., the exponential repulsive potential, which
is the most often used potential for this kind of model calcu-
lations.

 (29) 

Here z is the distance between He and the nearer H, and D
and a are the steepness and the range parameter, respectively.
Since z = R−γ (d + q) , where R is the distance between the
He atom and the center of mass of the H2 molecule, γ  the mass
ratio γ = mH/(mH + mH) = 1/2, d the equilibrium bond length

of H2, and q the vibrational amplitude of H2, respectively, the
potential can be represented as

V(z) = V(R, q) = D exp(γd/a)exp(−R/a) exp(γq/a) (30)

Expanding the exp(γq/a) term into a power series in the
vibrational amplitude coordinate q, gives

(31)

where . Therefore, the perturbing force
F(t) in Eq. (9) becomes  and q =

Q .
Invoking the well-established semiclassical procedure in

which the translational motion is treated classically, the
collision trajectory is found to be34

exp[−R(t)/a]= sech2[(E/2 µ)1/2 (t/a)] , (32)

where E is the collision energy and µ is the reduced mass of
the collision system. The collision energy is symmetrized
before and after the collision and is related to the total
energy ET as E1/2 = ,
where Eυ,i and Eυ,f  are the initial and final vibrational energies.
The molecular spectroscopic constants are taken from the
standard table 26 and the range parameter a is set at 0.02 nm,
which is the most frequently used value in this type of model
calculations.25,33,34

Our results are in excellent agreement with those from the
exact quantum mechanical numerical calculation of Clark
and Dickinson, using the reactance matrix method.33 To
show this we have grouped together in Table 1 the transition
probabilities for Morse (PMO) and the harmonic oscillator
(PHO), their ratios (PMO/PHO) and harmonic scaling law
( ) for the Morse oscillator at the
collision energy ε =1. For example, for the 
transitions PMO's by Clark and Dickinson are 2.46× 10−4,
1.25× 10−3, 5.29× 10−3, 1.92× 10−2 and 5.97× 10−2 for υ =
0, 1, 2, 3, 4, respectively, whereas those in the present study
are 2.41× 10−4, 1.31× 10−3, 5.09× 10−3, 1.59× 10−2 and
4.58× 10−2, respectively. The small differences can be
attributed to the difference in calculation methods (exact
quantum mechanical vs. semiclassical) and/or difference in
the interaction potential (full exponential repulsive potential
in Clark and Dickinson vs. expanded first order term in q in
this work). Note that the differences between the two
calculations are larger at high υ than at low υ. This is
because the effect of the potential difference is expected to
be more pronounced at higher vibrational levels. The
possibility of multiple quantum transitions is omitted in our
calculation and this omission leads to larger errors at larger υ.
Our results for other quantities PHO, PMO/PHO and 

 are in excellent agreement with those of
Clark and Dickinson.

Figure 1 shows the transition probability ratios PMO/PHO

for various one quantum vibrational transitions against the
reduced collision energy ε =E/ . PMO is the vibrational
transition probability for the Morse oscillator calculated using
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Eq. (19) and PHO is the vibrational transition probability for
the harmonic oscillator calculated using Eq. (21). As can be
seen from Figure 1, the ratio PMO/PHO for the lower
vibrational levels υ = 0-2 when the anharmonicity effect is
small increases slowly as ε increases. For the higher
vibrational levels υ = 3-5, however, the ratio increases rapidly
with ε at low collision energies, reaches maximum, and then
decreases at high collision energies.

This clearly shows that the vibrational transition for the
Morse oscillator is quite different from that for the harmonic
oscillator at higher vibrational levels where the anharmo-
nicity effect becomes increasingly important. For example,
the ratios PMO/PHO for  transition at ε = 0.5, 1.0,
1.5, 2.0 and 3.0 are 0.01, 0.48, 0.85, 1.22 and 1.31, respec-
tively, whereas those for  transitions are 14.2,
15.8, 12.3, 9.65 and 4.75, respectively, at the same ε values.
The effect of anharmonicity on the transition probability becomes
much more pronounced as υ increases.

For the harmonic oscillator, the so-called harmonic scaling
law should hold, . As can be
seen from Table 1, this law holds well for the harmonic
oscillator by both exact quantum mechanical numerical
calculation of Clark and Dickinson and semiclassical
operator algebra calculation in the present study. As υ
increases from 1 to 5 the ratios from the Clark and
Dickinson's results vary from 0.986 to 0.944, whereas those
from our results vary from 0.997 to 0.999.

For the Morse oscillator, however, the law does not hold at
all due to the anharmonicity effect. See the last column of
Table 1 and Figure 2(a). The ratio 
increases rapidly with υ rather than staying close to unity in
both calculations. This fact is in complete disagreement with
the results of Ree et al.'s approximate operator algebraic
calculation.25 Their results at ε = 1.0 are shown in Figure
2(b) and the ratio decreases linearly with υ and is less than
unity at all υ.

This apparently opposite trend can be attributed to the differ-
ence in operator I0, one of the basic operators for the Morse oscil-
lator. This operator reduces to the identity operator only in
the harmonic limit. That is, 

 We have already defined this operator in Eqs. (3c)
and (14). When I0 is inserted in Eq. (25), 2x0f terms appear in
the differential equations (26). These terms are responsible
for the rapid increase in probabilities with increasing υ .

In carrying out the time-evolution operation Ree et al., how-
ever, approximated G as 

 In addition to this approximation, they
then took the harmonic oscillator limit for I0, i.e., they approxi-
mated I0 as unity,  for ease of calculation,
which is correct only when x0 approaches zero. Therefore,
G1,2(t) was approximated as 

 And also, the term in the exponent (I0 ±
x0) was replaced by ( ), which has no quantum number
(f) dependence. These approximations cause the ratio

 to decrease with increasing υ.
Of course, when we replace the operator I0 with identity

operator I in our formulation, our results also reduce to the
results by Ree et al., as they must. Specifically, when we
replace I0 with I in carrying out Ωk(A+, A−, A+A−, I0)
operations in Eq. (25), the following Ki's are obtained
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Table 1. Vibrational transition probabilities of H2 + He for the harmonic oscillator (H.O.) and Morse oscillator (M.O.) and the harmonic
scaling relation Pυç υ+1/(υ+1)P0ç 1 for Morse oscillator at collision energy ε =1

Vibrational
Transition

 H.O. M.O. PMO/PHO Pυ→υ+1/(υ+1)P0→1

PCD
a PT

b PCD PT PCD PT PCD PT

0ç 1 7.20(-4)c 7.07(-4) 2.46(-4) 2.41(-4) 0.34 0.34 1.0 1.0
1ç 2 1.42(-3) 1.41(-3) 1.25(-3) 1.31(-3) 0.88 0.93 2.5 2.7
2ç 3 2.10(-3) 2.12(-3) 5.29(-3) 5.09(-3) 2.52 2.40 7.2 7.0
3ç 4 2.76(-3) 2.82(-3) 1.92(-2) 1.59(-2) 6.96 5.64 19.5 16.5
4ç 5 3.40(-3) 3.53(-3) 5.97(-2) 4.58(-2) 17.6 12.8 48.5 38.0
5ç 6 − 4.23(-3) − 1.15(-1) − 27.2 − 79.5

aExact numerical calculation results by Clark and Dickinson (Ref. 33). bThis work. cParentheses include power of ten. 

Figure 1. The ratios PMO/PHO for one quantum vibrational transi-
tions as a function of the reduced collision energy ε  = E/h− ω0.  
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+ (33b)

(33c)

(33d)

in which all the 2x0f terms in Eq. (27) have vanished. The
 ratios calculated with these new Ki's

are shown in Fig. (2c), and we can see that the results
reproduce exactly those of Ree et al. in Fig. (2b).

Conclusion

We have derived vibrational transition probability expre-
ssions for the Morse oscillator, using anharmonic creation
and annihilation operator algebra. The collinear collision model
and the exponential repulsive potential were employed in the
formulation.

Our model can be extended to other types of interaction
potentials, even to the ab initio numerical potentials. However,
they must first be converted into a form that has functional
dependency on the vibrational displacement coordinate.

Sample calculation results for H2 + He collision system in
which the anharmonicity effect is large are in excellent agree-
ment with those obtained from exact numerical quantum
mechanical calculations by Clark and Dickinson.33 Our
results, however, are markedly different from those of Ree et
al.,25 who performed essentially the same calculation but re-
placed the quantum number dependent commutation operator
I0 with the unit operator I. Our results show that the integrity
of the I0 operator must be kept and its operation is essential
in the anharmonic vibrational transitions, especially for high

energy levels.
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K2 G1 t( )– x0 3 2x0–( )G1
2 t( )G2 t( ) –=

2x0
2 1 x0–( )G1

3G2
2 t( )

K3 1 2x0+( )G2 t( ) 2x0 1 x0+( )G1 t( )G2
2 t( )+=

K4 G1 t( )G2 t( )– x0 1 x0–( )G1
2 t( )G2

2 t( )–=

Pυ υ 1+→ υ 1+( )P0 1→⁄

Figure 2. Dependence of Pυçυ+1/(υ+1)P0ç1 on vibrational quantum
number υ. (a) This work (b) The result from Eq. (33) (c) The result
by Ree et al.25


