Vibrational Transition for FMO by Anharmonic Boson Operators Bull. Korean Chem2@at;.\\VVol. 22, No. 7 721

Numerical Calculation of Vibrational Transition Probability for the Forced Morse
Oscillator by Use of the Anharmonic Boson Operators

Chang Soon Leéand Yoo Hang Kim'

"Department of Chemistry, Changwon National University, Changwon 641-773, Korea
"Department of Chemistry and Center for Chemical Dynamics, Inha University, Incheon 402-751, Korea
Received April 19, 2001

The vibrational transition probability expressions for the forced Morse oscillator have been derived using the
commutation relations of the anharmonic Boson operators. The formulation is based on the collinear collision
model with the exponential repulsive potential in the framework of semiclassical collision dynamics. The
sample calculation results for,H He collision system, where the anharmonicity is large, are in excellent
agreement with those from an exact, numerical quantum mechanical study by Clark and Dickinson, using the
reactance matrix. Our results, however, are markedly different from those of Ree, Kim and Shin's in which they
approximate the commutation operaipas unity, the harmonic oscillator limit. We have concluded that the
guantum number dependencddmust be retained to get accurate vibrational transition probabilities for the
Morse oscillator.
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Introduction relations and derived expressions for vibrational excitation
due to molecular collisions. In their study, however, to make
The Boson creation and annihilation operators for thdt easier to obtain the time evolution operator for the wave
harmonic oscillator are widely used in molecular vibrationalfunction, they neglected the quantum number dependence of
energy transfer studies. This owes to their commutationhe anharmonicity parameter in describing the basic operators
relations, which make the interaction between the collisiorfor Morse oscillator. That is, they approximated the commu-
partners simpler and the Schrddinger equation easier t@mtor between the anharmonic creation and annihilation
solvel™ The angular momentum eigenvector problemoperators as the identity operator, which is true only in the
encountered in the analysis of vibrational spectra is also ongarmonic oscillator limit. This approximation, however, can
of the similar commutator algebras using the Boson creatiosignificantly affect the vibrational transition probabilities for
and annihilation operatot$2°-22 molecules with large anharmonicity, especially when one
Despite these apparent advantages, the use of Boson creleals with high vibrational levels.
tion and annihilation operators requires that the vibrational In the present study, we incorporate the quantum number
motion of the colliding molecules be harmonic. Therefore,dependence of the anharmonicity parameter into the basic
the Boson operator method can not be applied to moleculesperators for the Morse oscillator. We have derived expre-
with large anharmonicity and/or with highly excited vibra- ssions for the final vibrational states and energy transfer
tional energy levels. Furthermore, this anharmonicity is knowrprobabilities of the Morse oscillator perturbed by molecular
to have a significant effect, even on the lower vibrationalcollisions. We have applied the expressions to,a He
energy levels of the polyatomic molecules and van decollision system, which has large anharmonicity and test the
Waals molecules, which have shallow potential wells. validity of the derived expressions by comparing the results
Recently Levin& derived the commutation relations for with those of other exact calculati&ive have also shown
the anharmonic Morse oscillator from the Boson operatorshe anharmonicity parameter dependence of the differential
of the harmonic oscillator. The anharmonic Boson operatorequations for the coefficients of the anharmonic Boson
and their commutation relations derived by Levine haveoperators in the time evolution operator.
been used as the standard algebraic method in the collisional

vibrational energy transfer for the forced Morse oscillator, Algebraic Method
and they also have proved very useful as the angular
momentum generator in the coupled Morse oscillafors. To handle the vibrational energy transfer problem for the

Ballhauseff* obtained the quantum mechanical solution offorced Morse oscillator, it is essential to define the anharmonic
the forced Morse oscillator using the time-dependent step-uBoson operators. In this section, we briefly summarize
and step-down operators instead of the usual time-dependdn¢vine's algebraic operator approach to the Morse oscil-
perturbation theory. On the other hand, Biea?® developed  lator.

an approximate method to obtain the perturbed vibrational Levine introduced a pair of Boson creatiaj, @, ) and
states of the forced Morse oscillator, using Levine's anharmoninnihilation @,, ay ) operators with the following commuta-
creation and annihilation operators and their commutationion relations:
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[a,, a)] = [ay,ay] =1 (1a) Vibrational States for the Perturbed Morse Oscillator

[a, a] = [a, a] = 0 (1b) We now write the Hamiltonian for the Morse oscillator per-
Here, u is the vibrational quantum number ahd= %" , turbed by a time-dependent foriéét) due to the interaction
wherex, is the anharmonicity in the Morse oscillator energywith an incident particle in the form
expression

1 1rf
E, = ha)OEJ+§B—hwox0%)+§B (2
or, in terms of the creation and annihilation operators,

Levine showed that the basic operators representing the 1
Morse oscillator could be formed from the harmonic Boson H(t) = thQNA' + 5'05“‘ (h/2Mwy)
operators as follows.

172

H(t) = ‘hwo(P +Q) + (M) “F()Q  (9)

172

x F()(A"+A) =H’+H'(t). (10)
Q = (2N)"*(ajay + anay) (3a) »
_ o N_ 'j B Long before { = —o ) or long aftert (= +o ) collision,
P = i(2N) “(a,ay—ana,) (3b)  where the perturbation term vanisHes
l, = N (anan—asa, 3
0 (anav—a,,) (3¢) HIN, 0= heay (0 —xU?)N, v (11)
E, = N''(aja, + ayay) (3d)

The Morse oscillator stat@l, 1 can be generated from the

Here,P andQ are the basic operators for the Morse OSC'"ator’vacuum statdol]  as follotd232”

derived from the harmonic creation and annihilation opera-

tors. The operatdp approaches the identity operakanly IN, 0= [ul(N—0v)]™%@&%) (an)" oD (12)

in the harmonic limit, where the anharmonicity becomes zero.

From these basic operators one can write the Morse oscillatbirom these normalized basis stafdsul]l , one can obtain
Hamiltonian asH = ha,(P* + Q%)/2 , wherey is the vibra-  the eigenvalue equations as follofts.

tional frequency of the Morse oscillator. If we write the harmonic -

oscillator Hamiltonian a$1 = (p° + M*whq’)/2M , then the BolN, v0= N, v0 (13)
position and momentum for the harmonlc oscnlator become I,IN, v0= (1-2%,0)|N, v (14)

q= h/(Mwo) ’Q and p = (tho) P, respectively.
From Egs. (3), one can obtain the commutation relation ag
follows.

The time-dependent Schrédinger equation for the forced
orse oscillator can be written as

[Q.P] = il, @ in22 00 e s e 1w as)

The anharmonic creatioA) and annihilationA") operators
for the Morse oscillator can be obtained by adding or sub-
tracting Egs. (3a) and (3b).

where|¥(t)0 is the vibrational state of the Morse oscillator
induced by the perturbation tei#(t) , and can be expressed
as a linear combination of the initial statid vl The
. _ . o+ - solution to Eqg. (15) can be written, in principle, in the form
A" = 27VHQ-iP) = N¥%aa, (5a) g. (15) p p

A = 2V%Q+iP) = N"’aa, (5b)

From these two operators one can obaandQ,

(0= mee’(”“}l%toﬁe Ut It (16)

2, e whereU(t, to) is the time evolution operator, which converts
Q=2""(A+A) (6a) the initial state|¥(t,)00= |N, v0 into the perturbed states
P=2"iA-A) (6b)  |¥(t)0in accordance with the perturbatibt{t). Therefore,
Gi(t) terms in Eg. (16) are the time-dependent functions with
complex values, and2;(t)’'s represent the anharmonic
[l P] = 2ix,Q (7a)  Boson operator&\’, A" A'A" arg Performing the time
evolution operation on the initial stafdl, 0  one obtains

and the following commutation relations.

[l Q] = —2ix,P (7b)
[AA] = 1, (7c)  |¥()U= exp{Gs(t)[1-xo(v—-1)]u} exp{ G,(t)(1-2xU)}
[lo, A] = F2xA" (7d) G 0 vt (u+m)! 7

Also, in terms of anharmonic operatéfsandA~, the Morse * LI, UD+Z Dl_l (1K) % u! J IN,o-+mC

oscillator Hamiltonian becomes
il Gz(t)

D|-| (1- k)@)”@ﬁ} IN, u—n[]

n=1 —ul

a1
= thHAA +§'°Er @)
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2 GI(HG(Y) 12 : GiGi
+ ————==[yl(v—n+ m)! : . - 21
mZ:m;m!n!(u—n)![ ( '] ,Zo Moo=t + P =i (21)
5 D u-n 1/2[|j—n+m—l 1/2D )
0 |‘| (1—kxo)” T |‘| (1-kxo)" O Here,l is the smaller ob andf.
b} (D =uon O To calculate the probabilities, one must eval@('s in
x IN, u—n+m}, (17) Egs. (19) and (20). To do this we express the Hamiltonian in

Eq. (10) in the following form.

which is a linear combination of all possible Morse oscillator 4

states produced from the initial stghé& ol Here, the sum H(t) = Z A1) Qy, (22)
abovem contains states that are higher tifdpo0  , whereas k=1

the sum overn contains the lower states. Thus, they , . Coaeae
represent the excited and de-excited vibrational states of tqvghere Qs are the anharmonic operalbisA’, A'A” and

Morse oscillator due to the collision, respectivel o andA’s are their coefficients. To determi@g)'s, we
- 1esp y- must therefore find the relationship between the functions
A(t) and G;(t) . For this purpose, we first differenticig,

Formulation of Transition Probability to) with respect ta

The probability of vibrational transition from the initial dU(Lt) _ 2 dG (1)

state|N, v to the final stat@l, f 0 can be written from Eg. - Z
(17) as S dt
i-1 4
P, ¢ = limIN, f|¥(t)T2 (18) x [n exp[Gj(t)Qj]} Qi[n exp[Gj(t)Qj]}. (23)
toe j=1 j=i
From Egs. (17) and (18) one can obtain the excitatio

rMultiplying U™ and introducing the Baker-Hausdorff theo-

probability rem?! we find

P, = UG Yexp{ 2G,;[1—x(v—1)] v}

f-1 } [hexp[Gj(t)Qj]}Qi[ﬁexp[—Gj(t)Qj]}

x exp 2G,(1 - 2x,v)] |[v! (f—u)!]'l[n (1—kxo)"?

K=wv

= 3 a0 (24)

3] 1,000 om0

From Eq. (22)-(24) we can thus obtain

2

GiG)

(19) . 4 4
N (f— o +n)l (0—n)! - 4GV, 1o,
o ) kzl)\k(t)gk iZlkZl at ai(t) (25)
and the de-excitation probability
This equation leads to the following four differential equa-
P, ¢ = UfIGS "exp{ 2G;[1—Xo(v—1)] U} tions:
f
x expl B,(1-2x,0)] [ﬂ(u—f)!]“[ M (1—kxo)”2} 960 - xeim Y + w?
k=uv-1 1
[ fom -1 - 2xoel(t)% - rl—]F(t) (26a)
+ z{ M (ka@”}{ M (1—kxo)”"’}
mEiee o 9G:) _ 58 4 206,032 Y _ Lrwy  (260)
mom 2 dt K, dt h
e f Gle| ! (20) dGs(t) Wy
m! (f —u + m)l (v—m)! 2ol %
( )!( ) g Tk (26¢)
Because of the presence of theroducts containing the dG4(t)
anharmonicity parameter, combining the two probabilities d+4t = i[1+ 2%,G,(1) — 2X%,G1 (1) Gy(1)] ™
into one does not seem possible. However, in the harmonic KGy(t) +K, 1 1
oscillator limit, wherex, becomes zero, the two expressions x [wo%‘— Sl = —F(t)} (26d)
can be combined into the well-known probability expression 1 h
for the harmonic oscillatdr?®-2° where

P, . = UIGY "exp( 20G;)exp( 2G,) Ky = 1+ 2¢,G, (1) G,(t) + 2%,G5 (1) G5(t) (27a)



724  Bull. Korean Chem. So2001 Vol. 22, No. 7 Chang Soon Lee and Yoo Hang Kim

Ko = (2%f — 1) Gy(t) — Xo(3 — 2%, — 6%,f) G1(1) Gy(t) of H,, andg the vibrational amplitude of Hrespectively, the
— 2X(1—xg— 2x) (1) G(1) 27b) potential can be represented as
K = (1+ 2%5—2%,f) G,(t) + 2%o(1 + Xy — 2X%,f ) V(@) =V(R, g =D exp(d/a)exp(R/d expfa/a)  (30)
2 Expanding the exp@/a) term into a power series in the
x G(HG(Y (27c) vibrational amplitude coordinatg gives
Ka = (2Xof = 1) G4 (1) Ga(t) — Xo(1 —Xo — 2X,f )
x G(t)GX(t) (27d) V(R g = D'exp(-R/a) + (D'y/a)exp(-R/a)q + ...,

(31)

Heref is the vibrational quantum number of the final statewhere D' = Dexp(yd/ a) . Therefore, the perturbing force
IN, f O resulting from the initial stateN, v due to F(t) in Eg. (9) becomegD'y/a)exp(-R/a) and=
collisional interaction. ThusG;" s can be determined by(h/ Ma)o)1 2Q.

solving four differential equations subject to the initial Invoking the well-established semiclassical procedure in
conditions G;(t))=0. These simultaneous differential equationswhich the translational motion is treated classically, the
will be solved numerically. We note that in the lirrjt — O collision trajectory is found to Bé

these differential equations reduce to the following well-

— 1/2
known equations for the harmonic oscillator, as they fust. exp[-R(t/al= sech{(E/2 1) (V)] , (32)
dG,(1) whereE is the collision energy andis the reduced mass of
d_lt = —ia)OGl(t)—ihle(t) (28a)  the collision system. The collision energy is symmetrized
before and after the collision and is related to the total
dG,(t) _ . - energy Er as EY2 = 1/2[(E;—E,;)"?+ (Er—E, "7,
dt HanGo(t) —ih F(1) (28b) where E,i andE,; are the initial and final vibrational energies.
dG,(1) The molecular spectroscopic constants are taken from the
d_st = —iw (28c)  standard tablé and the range parameteis set at 0.02 nm,
which is the most frequently used value in this type of model
dG,(t) _ 1. _— calculationg?>33:34
dt _ZIwO_Ih F(O) (28d) Our results are in excellent agreement with those from the

One can calculate the transition probabilities for the hars xact quantum mechanical numerical calculation of Clark

. . .~"and Dickinson, using the reactance matrix meffoto
monic oscillator from Egs. (21) and (28). In the next section . : .
; ! N show this we have grouped together in Table 1 the transition
we will use these equations to calculate the vibrational transi- oo ; .
robabilities for Morse Ruo) and the harmonic oscillator

tion probabilities for the harmonic oscillator and compare the Pro), their ratios Puo/Puo) and harmonic scaling law

with those for the Morse oscillator. (P,_,+1/(+1)P,_,) for the Morse oscillator at the
collision energye =1. For example, for they -~ v+1
transitionsPyo's by Clark and Dickinson are 2.4@.07,
- . . 1.25x 1073, 5.29x 1073, 1.92x 102 and 5.9% 102 for v =
To test the probability expressions for the Morse oscillator . .
. . : -0, 1, 2, 3, 4, respectively, whereas those in the present study
derived from the commutation relations of the anharmonic 4 3 3 2
. L are 2.41x 10", 1.31x10° 5.09x 10, 1.59x10“ and
Boson operators, we have chosen the collingartté collision

5 : \
as our model system. The reason we have chosen this par i'-58>< 107, respectively. The small differences can be

cular system is two-fold. The first is that therHolecule has attributed to the_ dlfferencc_e n (_:alculatlon mgthods (e>_<act
. . uantum mechanicals. semiclassical) and/or difference in
large anharmonicity, and the second is that the exact quantu

mechanical (Clark and Dickinson; Ref. 33) and approximatehe Interaction pot ential (full exponer_1t|al repulsive po_tentlal
X in Clark and Dickinsowvs expanded first order term qin

this work). Note that the differences between the two

calculations are larger at high than at lowwu. This is

The interaction potential between the collision partners is alsBecause the effect of the potential difference is expected to
the simplest oneg., the exponential repulsive potential, which be more pronounced at higher vibrational levels. The

is the most often used potential for this kind of model calcu- . : " . . ;
lations. possibility of multiple quantum transitions is omitted in our

calculation and this omission leads to larger errors at larger
_ Our results for other quantiti€%io, Pwo/Pro and P, .1

V(2) = D exp(-z/a). (29) /(u+1)P, ., are in excellent agreement with those of
Herezis the distance between He and the nearer H, and Blark and Dickinson.
anda are the steepness and the range parameter, respectivelyrigure 1 shows the transition probability ratgo/Pro
Sincez=R-Y(d + q) , whereR is the distance between the for various one quantum vibrational transitions against the
He atom and the center of mass of theridleculey the mass reduced collision energy =E/hc, . Puo is the vibrational
ratio y= mu/(my + my) = 1/2,d the equilibrium bond length  transition probability for the Morse oscillator calculated using

Results and Discussion

already available with which we can compare the results.
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Eqg. (19) andPyo is the vibrational transition probability for  In carrying out the time-evolution operatlon FReal, how-
the harmonic oscillator calculated using Eg. (21). As can bever, approximate@ as G, ,(t) = (2Mhawy,) r F(t)exp
seen from Figure 1, the rati®uo/Puo for the lower  [#iay(lotX,)t]dt. In addition to this approximation, they
vibrational levelsu = 0-2 when the anharmonicity effect is then took the harmonic oscillator limit flay i.e., they approxi-
small increases slowly as increases. For the higher matedly as unity,[o|N,f0= |N,fO for ease of calculation,
vibrational levelsu = 3-5, however, the ratio increases rapidly which is correct only wher, approaches zero, Therefore
with £ at low collision energies, reaches maximum, and theri; At) was approximated a8, ,(t) = (2M hwo) exp
decreases at high collision energies. [+i wy(1 + X,)t]dt. And also, the term in the exponehty

This clearly shows that the vibrational transition for thexg) was replaced byl(+ x, ), which has no quantum number
Morse oscillator is quite different from that for the harmonic (f) dependence. These approximations cause theRatig., ,
oscillator at higher vibrational levels where the anharmo-/(v + 1)P, _, to decrease with increasing
nicity effect becomes increasingly important. For example, Of course, when we replace the operdgawvith identity
the ratiosPvo/PHo for v = 0 - 1 transition aE = 0.5, 1.0, operatorl in our formulation, our results also reduce to the
1.5, 2.0 and 3.0 are 0.01, 0.48, 0.85, 1.22 and 1.31, respaesults by Reet al, as they must. Specifically, when we
tively, whereas those fov = 5 » 6 transitions are 14.2,replacelo with | in carrying out Q(A*, A7, A*A7, lo)
15.8, 12.3, 9.65 and 4.75, respectively, at the savadues.  operations in Eq. (25), the following's are obtained
The effect of anharmonicity on the transition probability becomes
much more pronounced asncreases. Ki = 1+ 2%,G, (1) G,(t) + 2%,G2(t) Ga(t) (33a)

For the harmonic oscillator, the so-called harmonic scaling
law should hold,P, . ,../(U+1)P, . ,= 1 . As can be
seen from Table 1, this law holds well for the harmonic
oscillator by both exact quantum mechanical numerica
calculation of Clark and Dickinson and semiclassical
operator algebra calculation in the present study.uAs 5t
increases from 1 to 5 the ratios from the Clark and " "
Dickinson's results vary from 0.986 to 0.944, whereas thos
from our results vary from 0.997 to 0.999. 12 .

For the Morse oscillator, however, the law does not hold a
all due to the anharmonicity effect. See the last column o
Table 1 and Figure 2(a). The rat®), _ ,,./(V+1)P,
increases rapidly witly rather than staying close to unity in
both calculations. This fact is in complete disagreement witt
the results of Reet al's approximate operator algebraic
calculatior?® Their results ag = 1.0 are shown in Figure i 7
2(b) and the ratio decreases linearly withnd is less than 34
unity at allv. 4+ —

This apparently opposite trend can be attributed to the differ | 2-3
ence in operatds, one of the basic operators for the Morse oscil- L .
lator. This operator reduces to the identity operator only ir S
the harmonic limit. That igim IoIN,f= lim (1 — 2xf)IN, 0 . 0t
MN, f O We have already defined this'o operator in Egs. (3c 0 1.0 2.0 3.0
and (14). Whety is inserted in Eq. (25) xf terms appear in &
the differential equations (26). These terms are responsiblFigure 1. The ratioPuo/Pro for one quantum vibrational transi-
for the rapid increase in probabilities with increasing tions as a function of the reduced collision energyE/hc.

16 + -

PMO/P jice]

Table 1. Vibrational transition probabilities of H He for the harmonic oscillator (H.O.) and Morse oscillator (M.O.) and the harmonic
scaling relation P-. ,+1/(u+1)R - 1 for Morse oscillator at collision energy=1

Vibrational H.O. M.O. RAO/PHO PUQU+1/(U+1)F{)Q1

Transition Peo® PP Peo Pr Peo Pr Peo Pr
0—1 7.20(-4f  7.07(-4) 2.46(-4) 2.41(-4) 0.34 0.34 1.0 1.0
1-2 1.42(-3) 1.41(-3) 1.25(-3) 1.31(-3) 0.88 0.93 25 2.7
2—3 2.10(-3) 2.12(-3) 5.29(-3) 5.09(-3) 2.52 2.40 7.2 7.0
34 2.76(-3) 2.82(-3) 1.92(-2) 1.59(-2) 6.96 5.64 19.5 16.5
45 3.40(-3) 3.53(-3) 5.97(-2) 4.58(-2) 17.6 12.8 485 38.0
5—6 - 4.23(-3) - 1.15(-1) - 27.2 - 79.5

3Exact numerical calculation results by Clark and Dickinson (Ref”BBijs work.®Parentheses include power of ten.
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K, = —Gy(t) —%o(3— 2X%0) Gi(1) G,(1)

+ 2%5(1 — %) GiG5(1) (33b)
Ks = (1+ 2X)Gy(t) + 2%(1 + %) G, (1) Ga(t)  (33c)
K, = —Gy(t)G,(t) —%o(1 —Xo) GI(1) Gi(t) (33d)

in which all the 2 terms in Eq. (27) have vanished. The

P, v+1/(U+1)P, ., ratios calculated with these néis 1.
are shown in Fig. (2c), and we can see that the results?.

reproduce exactly those of Regal.in Fig. (2b).
Conclusion
We have derived vibrational transition probability expre-

ssions for the Morse oscillator, using anharmonic creation
and annihilation operator algebra. The collinear collision model

and the exponential repulsive potential were employed in the7,

formulation.

Our model can be extended to other types of interaction8.

potentials, even to thabinitio numerical potentials. However,

they must first be converted into a form that has functional 9-

dependency on the vibrational displacement coordinate.
Sample calculation results forH He collision system in

which the anharmonicity effect is large are in excellent agreell'

ment with those obtained from exact numerical quantum
mechanical calculations by Clark and DickingdrOur

results, however, are markedly different from those ofdee
al.,”® who performed essentially the same calculation but re-

placed the guantum number dependent commutation operatos.
lo with the unit operatar. Our results show that the integrity 14.

of thelo operator must be kept and its operation is essential

in the anharmonic vibrational transitions, especially for high15-

16.
17.
18.
19.
20.
21.

30

10

0.8

Poovet/(0+1)Po -,

1.0

0.8 =

Figure 2. Dependence &, ,+1/(U+1)Po-10n vibrational quantum

by Reeet al®

o0 AW

22.

23.
24.
25.

26.

27.
28.
29.
30.
31.
U 32.
33.
numberu. (a) This work (b) The result from Eq. (33) (c) The result 34.

Chang Soon Lee and Yoo Hang Kim

energy levels.
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