Facile Synthesis of 5-Arylpent-4-enoates from the Baylis-Hillman Acetates

Yang Jin Im, Jeong Mi Kim, and Jae Nyoung Kim*
Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757, Korea Received June 7, 2002

Key Words : 5-Arylpent-4-enoates, Baylis-Hillman acetates, Decarbethoxylation, DMAP

Recently, Basavaiah et al. have published some papers dealing with the Johnson-Claisen rearrangement of the BaylisHillman adducts. ${ }^{1}$ 5-Arylpent-4-enoates or 4-cyanoalk-4enoates can be obtained from the above reaction in moderate yields. Shen et al. have also reported the synthesis of the latter compounds by using the sequential Michael reaction and Horner-Wadworth-Emmons (HWE) reaction of phosphonates. ${ }^{2}$

During our studies on the Baylis-Hillman chemistry ${ }^{3}$ we found another efficient method for the synthesis of the abovementioned compounds. As shown in Scheme 1 the reaction of the Baylis-Hillman acetate $\mathbf{1 a}$ and diethyl malonate (2a) in $\mathrm{CH}_{3} \mathrm{CN}$ in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ gave the allylic rearrangement product 3a in good yield. The structure of 3 a was exclusively E-form as in our previous papers. ${ }^{3}$ Trace amount (ca. 5\%) of the corresponding Z-form was observed in ${ }^{1} \mathrm{H}$ NMR spectrum. The separation of E and Z form was difficult at this stage. Thus, we used the mixture directly in the next reaction without further purification. Following decarbethoxylation was conducted in p-xylene in the presence of 4-dimethylaminopyridine (4-DMAP). ${ }^{4 \mathrm{a}, 4 \mathrm{~b}}$ We could isolate the desired compound $\mathbf{4 a}$ in 77% yield. At this stage, pure $4 \mathbf{a}-E$ could be separated easily from the minor component, $\mathbf{4 a}-Z$. In the reaction, DABCO (1,4-diazabicyclo[2.2.2]octane) and DBN (1,5-diazabicyclo[4.3.0]non5 -ene) could also be used as reported in similar systems. ${ }^{4 \mathrm{c}, 4 \mathrm{~d}}$ However, the use of DMAP in refluxing xylene gave the best results. ${ }^{5}$

The representative results for the synthesis of the allylic rearrangement products 3a-g are summarized in Table 1. Besides of diethyl malonate (2a, entries 1-3) and dimethyl

Scheme 1

Table 1. Synthesis of allylic rearrangement products 3
Entry $\mathrm{B}-\mathrm{H}$ acetate 1
${ }^{a}$ Trace amounts (ca. 5\%) of the corresponding Z-isomer were observed in their ${ }^{1} \mathrm{H}$ NMR spectra.
malonate ($\mathbf{2 b}$, entry 4), some other activated methylene compounds such as ethyl cyanoacetate ($\mathbf{2 c}$, entry 5) and ethyl acetoacetate (2d, entry 6) gave similar results. The Baylis-Hillman acetate 1d, derived from benzaldehyde and methyl vinyl ketone, gave $\mathbf{3 g}$ similarly (entry 7). The results of selective decarbethoxylation of 3a-g with 4-DMAP (5 equiv.) are summarized in Table 2.

A typical procedure for the synthesis of $\mathbf{3 a}$ and $\mathbf{4 a}$ is as follows: To a stirred solution of $\mathbf{1 a}(496 \mathrm{mg}, 2.0 \mathrm{mmol})$ and diethyl malonate ($360 \mathrm{mg}, 2.2 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(305 \mathrm{mg}, 2.2 \mathrm{mmol})$ and the mixture was stirred at room temperature for 24 h . After usual workup and column chromatographic purification (hexane/ether, $8: 1$)

Table 2. Synthesis of 5-arylpent-4-enoate derivatives 4

Entry	3	Conditions	Product ${ }^{a} \quad$ Yi	Yield (\%) ${ }^{\text {b }}$
1	3a	4-DMAP (5.0 equiv.) p-xylene reflux, 3.5 days		¢ $\quad 77$
2	3b	$\begin{aligned} & \text { 4-DMAP (} 5.0 \text { equiv.) } \\ & p \text {-xylene } \\ & \text { reflux, } 3 \text { days } \end{aligned}$		Et 67
3	3c	4-DMAP (5.0 equiv.) p-xylene reflux, 6 days		Et 40
4	3d	4-DMAP (5.0 equiv.) p-xylene reflux, 2 days		Me 50
5	3 e	4-DMAP (5.0 equiv.) p-xylene reflux, 2 days		57
6	3f	4-DMAP (5.0 equiv.) p-xylene $120^{\circ} \mathrm{C}, 4$ days		64
7	3g	4-DMAP (5.0 equiv.) p-xylene reflux, 6 days		E 45

${ }^{a}$ Pure E-form. ${ }^{b}$ Products were obtained as clear oil except for $\mathbf{4 f}$ (mp 44$46^{\circ} \mathrm{C}$).

3a was obtained as a clear oil, $565 \mathrm{mg}(81 \%) .{ }^{6}$ A stirred solution of 3a ($348 \mathrm{mg}, 1.0 \mathrm{mmol}$) and 4-DMAP ($610 \mathrm{mg}, 5$ mmol) in dry xylene (3 mL) was heated to reflux under nitrogen atmosphere for 3.5 days. After removal of the solvent and column chromatographic purification (hexane/ ether, $8: 1) \mathbf{4 a}$ was obtained as an oil, $213 \mathrm{mg}(77 \%) .{ }^{6}$
In conclusion we disclosed a facile synthetic method of synthetically useful 5-arylpent-4-enoate derivatives. ${ }^{1,2}$

Acknowledgment. This work was supported by the grant (R02-2000-00074) from the Basic Research program of the

Korea Science \& Engineering Foundation.

References and Notes

1. (a) Basavaiah, D.; Pandiaraju, S. Tetrahedron Lett. 1995, 36, 757.
(b) Basavaiah, D.; Pandiaraju, S.; Krishnamacharyulu, M. Synlett 1996, 747.
2. (a) Shen, Y.; Zhang, Z. Synth. Commun. 2000, 30, 445. (b) Shen, Y.; Zhang, Z. J. Chem. Res. (S) 1999, 556.
3. (a) Kim, J. N.; Lee, H. J.; Lee, K. Y.; Gong, J. H. Synlett 2002, 173. (b) Gong, J. H.; Im, Y. J.; Lee, K. Y.; Kim, J. N. Tetrahedron Lett. 2002, 43, 1247. (c) Chung, Y. M.; Gong, J. H.; Kim, T. H.; Kim, J. N. Tetrahedron Lett. 2001, 42, 9023. (d) Kim, J. N.; Kim, H. S.; Gong, J. H.; Chung, Y. M. Tetrahedron Lett. 2001, 42, 8341. (e) Kim, J. N.; Im, Y. J.; Gong, J. H.; Lee, K. Y. Tetrahedron Lett. 2001, 42, 4195. (f) Kim, J. N.; Lee, H. J.; Lee, K. Y.; Kim, H. S. Tetrahedron Lett. 2001, 42, 3737. (g) Kim, H. S.; Kim, T. Y.; Lee, K. Y.; Chung, Y. M.; Lee, H. J.; Kim, J. N. Tetrahedron Lett. 2000, 41, 2613. (h) Kim, J. N.; Lee, K. Y.; Kim, H. S.; Kim, T. Y. Org. Lett. 2000, 2, 343. (i) Lee, H. J.; Seong, M. R.; Kim, J. N. Tetrahedron Lett. 1998, 39, 6223. (j) Lee, H. J.; Kim, H. S.; Kim, J. N. Tetrahedron Lett. 1999, 40, 4363. (k) Chung, Y. M.; Lee, H. J.; Hwang, S. S.; Kim, J. N. Bull. Korean Chem. Soc. 2001, 22, 799. (1) Im, Y. J.; Kim, J. M.; Mun, J. H.; Kim, J. N. Bull. Korean Chem. Soc. 2001, 22, 349. (m) Kim, J. N.; Lee, K. Y. Current Organic Chemistry 2002, 6, 627.
4. (a) Taber, D. F.; Amedio, J. C., Jr.; Gulino, F. J. Org. Chem. 1989, 54, 3474. (b) Taber, D. F.; Amedio, J. C., Jr.; Patel, Y. K. J. Org. Chem. 1985, 50, 3618. (c) Miles, D. H.; Huang, B.-S. J. Org. Chem. 1976, 41, 208. (d) Huang, B.-S.; Parish, E. J.; Miles, D. H. J. Org. Chem. 1974, 39, 2647.
5. Decarbethoxylation of 3a with DABCO (10 equiv) in refluxing xylene gave $4 \mathbf{a}$ in 45% yield after 2 days. The use of DBN (5 equiv.) in similar reaction conditions gave intractable mixtures.
6. Selected data for 3a and 4a. 3a: oil; IR (KBr) 1746, 1733, 1707 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.15(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.34(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 3.20(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-$ $4.15(\mathrm{~m}, 4 \mathrm{H}), 4.27(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.77(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 13.79,14.13,26.15,50.42,60.87$, $61.18,127.83,128.14,128.46,129.01,134.92,141.44,167.32$, 168.72. 4a: oil; IR (KBr) 1734, $1707 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $1.15(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.45-2.51(\mathrm{~m}$, $2 \mathrm{H}), 2.77-2.83(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{q}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.27-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $14.07,14.19,22.99,33.44,60.32,60.81,128.47,128.49,129.05$, 131.38, 135.21, 140.01, 167.69, 172.61.
