Asymmetric Alkylation and Aldol Reactions of D-Mannitol-Derived Chiral Oxazolidin-2-one Derivatives

Yun Hee Maeng and Jong-Gab Jun*
Department of Chemistry, Hallym University, Chunchon 200-702, Korea
Received September 19, 2003

Key Words : Oxazolidin-2-one, Chiral auxiliary, Alkylation, Aldol reaction, 1,2:5,6-Di-O-cyclohexylidene-D-mannitol

In the preceeding article, we have introduced a new chiral oxazolidin-2-one auxiliary (1) derived from a cheap Dmannitol, and demonstrated the chiral selectivity in alkylation, aldol reaction and β-lactam synthesis. ${ }^{1}$ The present work began with a search for useful chiral directing groups with which to control the chiral selectivity. Because the rigidity of cyclic structures contributes significantly to control of chirality, ${ }^{2}$ the 1,2:5,6-di- O-cyclohexylidene-Dmannitol (2) was used for the synthesis of oxazolidin-2-one chiral auxiliary (3) comparing the selectivity with the auxiliary (1) in alkylation and aldol reactions.

The 1,2:5,6-di- O-cyclohexylidene-D-mannitol (2), which was prepared from D-mannitol with cyclohexanone, boron trifluoride etherate and triethyl orthoformate in DMSO, ${ }^{3}$ was converted into the cyclic sulfate 4 via cyclic sulfite methodology. ${ }^{4}$ This cyclic sulfate is similar to epoxide in that they undergo nucleophilic displacement $\left(\mathrm{S}_{N} 2\right)$ readily, ${ }^{5}$ and produced 3-amino-3-deoxy-1,2:5,6-di- O-cyclohexyl-
idene-D-altritol (5) via azide displacement, hydrolysis followed by reduction (Scheme 1). The altritol 5 was converted into the chiral auxiliary $\mathbf{3}$ in 95% yield by using diethyl carbonate with sodium methoxide. ${ }^{6}$

The N -acylated derivatives 6a-c were easily prepared in high yield by reaction of auxiliary $\mathbf{3}$ with acyl chlorides a-c using n-butyllithium in THF at $-60^{\circ} \mathrm{C}$ (Table 1).

As we expected, LDA mediated asymmetric alkylations of N -acyl derivatives were obtained with high diastereomeric excess through Z-enolate and re-face selectivity (Table 2). ${ }^{7}$
In most cases (entries a1-c1 except c2), the cyclohexylidene auxiliary 6 gave higher diastereomeric excess than the isopropylidene auxiliary derived from 1 (the \%de in parenthesis indicates the \%de from the isopropylidene auxiliary). The diasteromeric ratio was easily identified by the integration of benzyl (entries a1, b1, b2, c2) and allyl (entries $\mathrm{a} 2, \mathrm{c} 1$) protons in ${ }^{1} \mathrm{H}$ NMR chemical shift as we seen in previous results. Cyclohexylidene substituent in auxiliary

Table 1. N-Acylated derivatives 6a-c from the chiral auxiliary $\mathbf{3}$

Entry	R	Reaction time	Yield \%	$[\alpha]_{\mathrm{D}}^{25}$ $\left(\mathrm{c}, \mathrm{CHCl}_{3}\right)$
a	CH_{3}	30 min	92.2	$+35.3(0.6)$
b	PhCH_{2}	30 min	95.6	$+33.3(1.2)$
c	allyl	30 min	85.0	$+32.9(1.1)$

Scheme 1

[^0]Table 2. Asymmetric alkylation of N -acyl derivatives 6

Entry	R	$\mathrm{R}^{\prime} \mathrm{X}$	Rxn (h)	$\%$ yield a	$\%$ de b	$[\alpha]_{\mathrm{D}}$
a1	CH_{3}	$\mathrm{PhCH}{ }_{2} \mathrm{Br}$	5	91.7	$>99(94.0)$	$+20.6\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right)$
a2	CH_{3}	allyl bromide	9	36.4	$>99(91.6)$	$+31.2\left(\mathrm{c}=1.7, \mathrm{CHCl}_{3}\right)$
b1	PhCH_{2}	Mel	9	45.6	$96.9(92.6)$	$+53.8\left(\mathrm{c}=1.9, \mathrm{CHCl}_{3}\right)$
b2	PhCH_{2}	allyl bromide	6	55.6	$96.8(91.6)$	$+75.4\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right)$
c1	allyl	MeI	20	46.3	$97.1(92.9)$	$+52.2\left(\mathrm{c}=0.9, \mathrm{CHCl}_{3}\right)$
c2	allyl	$\mathrm{PhCH}_{2} \mathrm{Br}$	20	52.1	$89.4(96.7)$	$+29.3\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right)$

${ }^{a}$ Isolated yield. ${ }^{b}$ The \%de in parenthesis indicates the yield from the isopropylidene auxiliary $\mathbf{1}$.
shows bulkier and more ligid character in space than isopropylidene derivative, and gives better selectivity in alkylation.
We also applied this cyclohexylidene auxiliary 6 to the aldol reaction with benzaldehyde. "Evans" syn product $\mathbf{8}$ was obtained by using 1 equiv of TiCl_{4} via non-chelated Z enolate, however, "non-Evans" syn aldol product 9 was produced by using 2 equiv of TiCl_{4} via chelated Z-enolate (Scheme 2). ${ }^{8}$ Selectivity employing 1 equiv of TiCl_{4} was > 99: 1 Evans syn 8:non-Evans syn 9. The absolute configuration of $\mathbf{8}$ and the selectivity of syn:anti ratio were determined after hydrolytic cleavage of $\mathbf{8}$ to $\mathbf{1 0}$ by using $\mathrm{LiOOH} .{ }^{9}$ The hydrolysis gave 79.4% yield of $(2 S, 3 S)$-acid $10\left[[\alpha]_{D}^{25}=-24.4\left(\mathrm{c}=0.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right.$, lit. $[\alpha]_{\mathrm{D}}^{22}=-26.4(\mathrm{c}=$ $\left.\left.1.04, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right]^{10}$ with quantitative recovery ($>99 \%$) of auxiliary 3. The ${ }^{1} \mathrm{H}$ NMR of the product $\mathbf{1 0}$ indicated the selectivity > 96 : 4 for syn:anti ratio similar to previous results. ${ }^{1}$
In the same way, we found that the selectivity for nonEvans $\operatorname{syn} \mathbf{9}$: Evans syn $\mathbf{8}$ employing 2 equiv of TiCl_{4} was $>99: 1$ and for syn:anti of $\mathbf{1 1}$ after hydrolysis was $>82: 18$. No products from endocyclic cleavage in hydrolysis reaction were observed in both cases. ${ }^{11}$
In conclusion, the cyclohexylidene chiral auxiliary $\mathbf{3}$
derived from D-mannitol shows better selectivity in asymmetric alkylations and comparable selectivity in aldol reactions compare with the isopropylidene derivative $\mathbf{1}$.

Experimental Section

All chemicals used were purchased from commercial sources and used as received unless otherwise stated. NMR spectra were recorded at Varian Gemini- 400 MHz FT-NMR for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$, with the chemical shifts (δ) reported in parts per million (ppm) relative to TMS and the coupling constants (J) quoted in $\mathrm{Hz} . \mathrm{CDCl}_{3}$ was used as a solvent and an internal standard. Infrared spectra were recorded on a Shimadzu IR-435 spectrometer. GC-MS analyses were performed using a HP-5890/JMS-AM 150, JEOL. Flash chromatography was carried out using silica gel Merck 60 (230-400 mesh). Thin-layer chromatography (TLC) was performed on DC-Plastikfolien 60, F_{254} (Merck, layer thickness 0.2 mm) plastic-backed silica gel plates with visualization by UV light (254 nm) or by treatment with p anisaldehyde. Melting points were measured on a MELTEMP II apparatus and were uncorrected.

Scheme 2
(4S,5R)-4,5-Bis-(2,2-dicyclohexyl-1,3-dioxolan-4-yl)-oxazolidin-2-one (3). To a solution of 3-amino-3-deoxy-1,2:5,6-di- O-isopropylidene-D-altritol (5) ($0.63 \mathrm{~g}, 1.85$ mmol) in diethyl carbonate (3.15 mL) under nitrogen atmosphere was added sodium methoxide (0.11 mL of 25% solution in $\mathrm{MeOH}, 0.46 \mathrm{mmol}$) and heated for 3 h at $70-80$ ${ }^{\circ} \mathrm{C}$. Diethyl carbonate was removed by evaporation and the residual solid was washed with hexane, recrystallized by MeOH to give the white solid 3 ($0.64 \mathrm{~g}, 95 \%$). $R_{\mathrm{f}} 0.47$ (MeOH: $\mathrm{CHCl}_{3}=1: 9$); $m p 170-172{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}-35.8(c 1.0$, CHCl_{3}); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3288,2933,2850,1757,1738$, 1094; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.40-1.66(20 \mathrm{H}, \mathrm{m})$, $3.79(1 \mathrm{H}, \mathrm{dd}, J 9.3,4.6 \mathrm{~Hz}), 3.83-3.88(1 \mathrm{H}, \mathrm{m}), 3.95-3.99$ $(1 \mathrm{H}, \mathrm{m}), ~ 4.13-4.19(2 \mathrm{H}, \mathrm{m}), 4.33-4.39(2 \mathrm{H}, \mathrm{m}), 4.40-4.46$ $(1 \mathrm{H}, \mathrm{m}), 5.43\left(1 \mathrm{H}, \mathrm{br}\right.$ s, NH); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 158.1, 111.2, 110.8, 78.1, 73.9, 71.9, 67.7, 67.1, 58.3, 36.9, 36.7, 34.9, 34.6, 25.4, 25.3, $24.4(\times 2), 24.2,24.1$.

Typical Procedure for the Preparation of N-Acyloxa-zolidin-2-ones, 6a-c. To a solution of oxazolidinone 3 (1.00 $\mathrm{g}, 2.72 \mathrm{mmol}$) in THF (100 mL) under nitrogen atmosphere was added n - BuLi (2.55 mL of 1.6 M solution in Hexane, 4.08 mmol) at $-60{ }^{\circ} \mathrm{C}$ and stirred for 30 min . Propionyl chloride ($0.47 \mathrm{~mL}, 5.44 \mathrm{mmol}$) was added to this reaction mixture at $-40^{\circ} \mathrm{C}$ and stirred for 30 min . The reaction was quenched by the addition of water at $0{ }^{\circ} \mathrm{C}$. The organic product was extracted with ethyl acetate, washed with brine, dried, concentrated and chromatographed (EtOAc : Hex = $1: 4)$ to give the liquid $\mathbf{6 a}(1.06 \mathrm{~g}, 92.2 \%)$.
(4S,5R)-3-(1-Oxopropyl)-4,5-bis-(2,2-dicyclohexyl-1,3-dioxolan-4-yl)-oxazolidin-2-one (6a). $R_{\mathrm{f}} 0.42$ (EtOAc : Hex $=1: 4) ;[\alpha]_{\mathrm{D}}^{20}+35.3\left(c 0.6, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.18(3 \mathrm{H}, \mathrm{t}, J 7.3 \mathrm{~Hz}), 1.29-1.58(20 \mathrm{H}, \mathrm{m}), 3.92-$ $4.06(3 \mathrm{H}, \mathrm{m}), 4.18(1 \mathrm{H}, \mathrm{dd}, J 9.2,5.8 \mathrm{~Hz}), 4.31(1 \mathrm{H}, \mathrm{dd}, J$ $9.8,7.0 \mathrm{~Hz}), 4.58-4.68(2 \mathrm{H}, \mathrm{m}), 4.73(1 \mathrm{H}, \mathrm{d}, J 6.7 \mathrm{~Hz})$.
(4S,5R)-3-(3-Phenyl-1-oxopropyl)-4,5-bis-(2,2-dicyclo-hexyl-1,3-dioxolan-4-yl)-oxazolidin-2-one (6b). 95.6\%; R_{f} 0.45 (EtOAc : $\mathrm{Hex}=1: 4) ;[\alpha]_{\mathrm{D}}^{20}+33.3\left(c 1.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.29-1.67(20 \mathrm{H}, \mathrm{m}), 2.94-3.11(2 \mathrm{H}$, $\mathrm{m}), 3.20-3.29(2 \mathrm{H}, \mathrm{m}), 3.87-4.05(3 \mathrm{H}, \mathrm{m}), 4.10-4.29(2 \mathrm{H}$, m), $4.56-4.65(2 \mathrm{H}, \mathrm{m}), 4.70(1 \mathrm{H}, \mathrm{d}, J 6.7 \mathrm{~Hz}), 7.15-7.32(5 \mathrm{H}, \mathrm{m})$.
(4S,5R)-3-(1-Oxo-4-pentenyl)-4,5-bis-(2,2-dicyclohexyl-1,3-dioxolan-4-yl)-oxazolidin-2-one (6c). $85.0 \% ; R_{f} 0.52$ (EtOAc : $\mathrm{Hex}=1: 4$); $[\alpha]_{\mathrm{D}}^{20}+32.9$ (c 1.1, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.39-1.72(20 \mathrm{H}, \mathrm{m}), 2.37-2.49(2 \mathrm{H}, \mathrm{m})$, 2.96-3.07 ($2 \mathrm{H}, \mathrm{m}$), 3.91-4.13 (3H, m), $4.18(1 \mathrm{H}, \mathrm{dd}, J 7.5$, $3.4 \mathrm{~Hz}), 4.30(1 \mathrm{H}, \mathrm{dd}, J 9.8,8.4 \mathrm{~Hz}), 4.58-4.69(2 \mathrm{H}, \mathrm{m}), 4.72$ $(1 \mathrm{H}, \mathrm{d}, J 6.7 \mathrm{~Hz}), 4.99-5.14(2 \mathrm{H}, \mathrm{m}), 5.79-5.88(1 \mathrm{H}, \mathrm{m})$.
Typical Procedure for the Preparation of Alkylated Products, 7a1-7c2. To a solution of diisopropyl amine (0.05 $\mathrm{mL}, 0.35 \mathrm{mmol}$) in THF (3 mL) at $-20^{\circ} \mathrm{C}$ under nitrogen atmosphere was added $n-\mathrm{BuLi}(0.22 \mathrm{~mL}$ of 1.6 M solution in Hexane, 0.35 mmol) and stirred for 30 min . N-Propionyl oxazolidinone $6 \mathbf{a}(0.10 \mathrm{~g}, 0.24 \mathrm{mmol})$ in THF (2 mL) was added to this reaction mixture at $-60^{\circ} \mathrm{C}$ and stirred for 30 min. Benzyl bromide ($0.11 \mathrm{~mL}, 0.94 \mathrm{mmol}$) was added to this reaction mixture at $-40{ }^{\circ} \mathrm{C}$ and stirred for 2 h . The reaction was quenched by the addition of water at $0^{\circ} \mathrm{C}$. The
organic product was extracted with ethyl acetate, washed with brine, dried, concentrated, and chromatographed (EtOAc : Hex =1:4) to give the liquid $7 \mathbf{a 1}(0.11 \mathrm{~g}, 91.7 \%)$.
($4 S, 5 R, 2^{\prime} R$)-3-(2-Methyl-3-pheny-l-oxopropyl)-4,5-bis-(2,2-dicyclohexyl-1,3-dioxolan-4-yl)-oxazolidin-2-one (7a1). $R_{\mathrm{f}} 0.45$ (EtOAc : Hex =1:4); $[\alpha]_{\mathrm{D}}^{20}+20.6$ (c 1.1, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.10(3 \mathrm{H}, \mathrm{d}, J 6.8$ Hz, α-methyl), $1.17-1.55(20 \mathrm{H}, \mathrm{m}), 2.50(1 \mathrm{H}, \mathrm{dd}, J 13.3,8.4$ Hz , benzyl proton), 3.18 (1H, dd, $J 13.2,6.2 \mathrm{~Hz}$, benzyl proton), $3.47(1 \mathrm{H}, \mathrm{dd}, J 8.9,7.3 \mathrm{~Hz}), 3.87(1 \mathrm{H}, \mathrm{dd}, J 9.0,6.3$ $\mathrm{Hz}), 3.91-3.98(2 \mathrm{H}, \mathrm{m}), 4.11(1 \mathrm{H}, \mathrm{dd}, J 9.1,5.8 \mathrm{~Hz}), 4.25$ $(1 \mathrm{H}, \mathrm{dd}, J 9.7,6.9 \mathrm{~Hz}), 4.47(1 \mathrm{H}, \mathrm{t}, J 6.7 \mathrm{~Hz}), 4.57(1 \mathrm{H}, \mathrm{m}$, α-proton), $4.66(1 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}), 7.13(1 \mathrm{H}, \mathrm{m}), 7.19-7.21$ $(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.5(C=O), 151.9$ ($\mathrm{C}=O$), 138.2, 128.3 (x 2), 127.3 (x 2), 125.3, 109.8, 108.9, 76.1, 72.7, 71.3, 66.0, 64.5, 54.4, 28.6, 38.5, 35.9, 34.3, 34.0, 33.5, 24.0, 23.9, 23.0, 22.9, 22.8, 22.7, 15.4.
(4S,5R,2'R)-3-(2-Methyl-1-oxo-4-pentenyl)-4,5-bis-(2,2-dicyclohexyl-1,3-dioxolan-4-yl)-oxazolidin-2-one (7a2). $36.4 \% ; R_{\mathrm{f}} 0.48$ (EtOAc : $\mathrm{Hex}=1: 4$); $[\alpha]_{\mathrm{D}}^{20}+31.2$ (c 1.7, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.13(3 \mathrm{H}, \mathrm{d}, J 6.8$ Hz, α-methyl), 1.37-1.63 ($20 \mathrm{H}, \mathrm{m}$), 2.19 ($1 \mathrm{H}, \mathrm{m}$, allyl proton), $2.59(1 \mathrm{H}, \mathrm{m}$, allyl proton), $3.77(1 \mathrm{H}$, quintet, $J 6.7$ $\mathrm{Hz}), 3.84(1 \mathrm{H}, \mathrm{dd}, J 8.9,6.7 \mathrm{~Hz}), 3.99-4.05(2 \mathrm{H}, \mathrm{m}), 4.18$ $(1 \mathrm{H}, \mathrm{dd}, J 9.1,5.9 \mathrm{~Hz}), 4.31(1 \mathrm{H}, \mathrm{dd}, J 9.7,6.9 \mathrm{~Hz}), 4.60$ $(1 \mathrm{H}, \mathrm{t}, J 6.6 \mathrm{~Hz}), 4.65(1 \mathrm{H}, \mathrm{m}), 4.73(1 \mathrm{H}, \mathrm{d}, J 6.9 \mathrm{~Hz}), 5.06$ $(1 \mathrm{H}, \mathrm{m},=\mathrm{CH}$ trans $), 5.12(1 \mathrm{H}, \mathrm{s},=\mathrm{CH}$ cis $), 5.80(1 \mathrm{H}, \mathrm{m}$, $=\mathrm{CH}$ internal); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.7$ $(C=O), 152.9(\mathrm{C}=O), 135.3,117.2110 .8,110.1,77.1,73.8$, $72.3,67.1,65.6,55.8,37.8,37.1,37.0,35.5,34.8,34.6,25.1$, 25.0, 24.1, 23.9, 23.8 (x2), 16.4.
(4S,5R,2'S)-3-(2-Methyl-3-pheny-l-oxopropyl)-4,5-bis-(2,2-dicyclohexyl-1,3-dioxolan-4-yl)-oxazolidin-2-one (7b1). $45.6 \% ; R_{\mathrm{f}} 0.52$ (EtOAc: $\mathrm{Hex}=1: 4$); $[\alpha]_{\mathrm{D}}^{20}+53.8$ (c 1.9 , $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.27(3 \mathrm{H}, \mathrm{d}, J 6.8$ Hz, α-methyl), 1.36-1.63 ($20 \mathrm{H}, \mathrm{m}$), $2.72(1 \mathrm{H}, \mathrm{dd}, J 13.3,7.0$ Hz , benzyl proton), $2.93(1 \mathrm{H}, \mathrm{dd}, J 13.4,8.2 \mathrm{~Hz}$, benzyl proton), 3.87 (2H, dd, J 9.3, 6.5 Hz), $3.94 \mathrm{dd}, J 9.0,3.4 \mathrm{~Hz}$), 4.00 $(1 \mathrm{H}, \mathrm{dd}, J 9.0,6.4 \mathrm{~Hz}), 4.08-4.14(2 \mathrm{H}, \mathrm{m}), 4.52-4.57(3 \mathrm{H}$, m), 7.17-7.28 ($5 \mathrm{H}, \mathrm{m}$); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.8$ ($C=O$), 152.9 ($\mathrm{C}=O$), 139.1, 129.1 (x2), 128.4 (x 2), 126.4, $110.8,110.1,77.0,73.8,72.2,67.0,65.7,55.8,40.1,38.9$, $36.9,35.4,34.7,34.5,25.0,24.9,24.0,23.9,23.8$ (x2), 17.6.
(4S,5R,2'S)-3-(2-Benzyl-1-oxo-4-pentenyl)-4,5-bis-(2,2-dicyclohexyl-1,3-dioxolan-4-yl)-oxazolidin-2-one (7b2). $55.6 \% ; R_{\mathrm{f}} 0.53$ (EtOAc : $\mathrm{Hex}=1: 4$); $[\alpha]_{\mathrm{D}}^{20}+75.4$ (c 1.1, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.42-1.60(20 \mathrm{H}, \mathrm{m})$, $2.35(1 \mathrm{H}, \mathrm{m}$, allyl proton), $2.60(1 \mathrm{H}, \mathrm{m}$, allyl proton), 2.76 $(1 \mathrm{H}, \mathrm{dd}, J 13.0,10.0 \mathrm{~Hz}$, benzyl proton), $2.87(1 \mathrm{H}, \mathrm{dd}, J$ $13.0,6.1 \mathrm{~Hz}$, benzyl proton), $3.47(1 \mathrm{H}, \mathrm{dd}, J 9.8,6.8 \mathrm{~Hz})$, $3.76(1 \mathrm{H}$, br t, $J 7.6 \mathrm{~Hz}), 3.85(1 \mathrm{H}$, dd, $J 9.1,3.4 \mathrm{~Hz}), 3.97$ $(1 \mathrm{H}, \mathrm{dd}, J 8.9,6.5 \mathrm{~Hz}), 4.08(1 \mathrm{H}, \mathrm{dd}, J 9.1,5.9 \mathrm{~Hz}), 4.31$ $(2 \mathrm{H}, \mathrm{m}), 4.46(2 \mathrm{H}, \mathrm{m}), 5.04(1 \mathrm{H}$, br d $J 10.3 \mathrm{~Hz},=\mathrm{CH}$ trans $)$, $5.14(1 \mathrm{H}, \mathrm{d}, J 16.4 \mathrm{~Hz},=\mathrm{CH}$ cis $), 5.84(1 \mathrm{H}, \mathrm{m},=\mathrm{CH}$ internal), $7.15(2 \mathrm{H}, \mathrm{m}), 7.19-7.27(3 \mathrm{H}, \mathrm{m})$.
(4S,5R,2'S)-3-(2-Methyl-1-oxo-4-pentenyl)-4,5-bis-(2,2-dicyclohexyl-1,3-dioxolan-4-yl)-oxazolidin-2-one (7c1).
$46.3 \% ; R_{\mathrm{f}} 0.59$ (EtOAc : $\mathrm{Hex}=1: 4$); $[\alpha]_{\mathrm{D}}^{20}+52.2(c \quad 0.9$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.25(3 \mathrm{H}, \mathrm{d}, J 6.6$ Hz, α-methyl), 1.37-1.59 ($20 \mathrm{H}, \mathrm{m}$), 2.17 ($1 \mathrm{H}, \mathrm{m}$, allyl proton), $2.40(1 \mathrm{H}, \mathrm{m}$, allyl proton), $3.79(1 \mathrm{H}, \mathrm{m}), 3.87(1 \mathrm{H}$, dd, $J 9.0,6.5 \mathrm{~Hz}), 4.03(2 \mathrm{H}, \mathrm{m}), 4.18(1 \mathrm{H}, \mathrm{dd}, J 9.2,5.9 \mathrm{~Hz})$, $4.28(1 \mathrm{H}, \mathrm{dd}, J 9.8,6.9 \mathrm{~Hz}), 4.58-4.66(2 \mathrm{H}, \mathrm{m}), 4.73(1 \mathrm{H}, \mathrm{d}$, $J 6.9 \mathrm{~Hz}), 5.01(1 \mathrm{H}, \mathrm{m},=\mathrm{CH}$ trans $), 5.07(1 \mathrm{H}, \mathrm{s},=\mathrm{CH}$ cis $)$, 5.75 (1H, m, =CH internal).
(4S,5R,2'R)-3-(2-Benzyl-I-oxo-4-pentenyl)-4,5-bis-(2,2-dicyclohexyl-1,3-dioxolan-4-yl)-oxazolidin-2-one (7c2). $52.1 \% ; R_{\mathrm{f}} 0.56$ (EtOAc : $\mathrm{Hex}=1: 4$); $[\alpha]_{\mathrm{D}}^{20}+29.3$ (c 1.1, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.52-1.59(20 \mathrm{H}, \mathrm{m})$, $2.24(1 \mathrm{H}, \mathrm{m}$, allyl proton), $2.34(1 \mathrm{H}$, m, allyl proton), 2.71 (1 H , dd, $J 13.5,7.2 \mathrm{~Hz}$, benzyl proton), 3.16 ($1 \mathrm{H}, \mathrm{dd}, J 13.5$, 7.5 Hz , benzyl proton), $3.43(1 \mathrm{H}$, dd, $J 8.8,7.8 \mathrm{~Hz}), 3.91$ $(1 \mathrm{H}, \mathrm{dd}, J 9.0,6.1 \mathrm{~Hz}), 4.02(1 \mathrm{H}, \mathrm{dd}, J 9.1,3.5 \mathrm{~Hz}), 4.16$ ($1 \mathrm{H}, \mathrm{dd}, J 9.1,5.9 \mathrm{~Hz}$), 4.20-4.25 (2H, m), $4.49(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J$ $7.2 \mathrm{~Hz}), 4.60(1 \mathrm{H}, \mathrm{m}), 4.67(1 \mathrm{H}, \mathrm{dd}, J 7.3,0.9 \mathrm{~Hz}), 4.99(1 \mathrm{H}$, s , $=\mathrm{CH}$ cis $), 5.03(1 \mathrm{H}, \mathrm{d}, J 5.9 \mathrm{~Hz},=\mathrm{CH}$ trans $), 5.73(1 \mathrm{H}, \mathrm{m}$, $=\mathrm{CH}$ internal), $7.18(1 \mathrm{H}, \mathrm{m}), 7.23-7.27(4 \mathrm{H}, \mathrm{m})$.
(4S,5R,2'S,3'S)-3-(3-Hydroxy-2-methyl-3-pheny-l-oxo-propyl)-4,5-bis-(2,2-dicyclohexyl-1,3-dioxolan-4-yl)-oxa-zolidin-2-one (8). To a solution of (4S,5R)-3-(1-oxopropyl)-4,5-bis-(2,2-dicyclohexyl-1,3-dioxolan-4-yl)-oxazolidin-2one (6a) ($0.15 \mathrm{~g}, 0.35 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) under nitrogen atmosphere was added $\mathrm{TiCl}_{4}(0.39 \mathrm{~mL}$ in 1.0 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.39 \mathrm{mmol}$) at $-60^{\circ} \mathrm{C}$ and stirred for 5 min. TMEDA ($0.13 \mathrm{~mL}, 0.89 \mathrm{mmol}$) was added to this reaction mixture at $-60{ }^{\circ} \mathrm{C}$ and stirred for 30 min . Benzaldehyde $(0.07 \mathrm{~mL}, 0.71 \mathrm{mmol})$ was added to this reaction mixture at $-60{ }^{\circ} \mathrm{C}$ and stirred for 2 h . The reaction was quenched by the addition of 50% aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ at $0{ }^{\circ} \mathrm{C}$. The organic product was extracted with ethyl acetate, washed with brine, dried and concentrated to give the product 8 (53 $\mathrm{mg}, 65.8 \%)$. $R_{\mathrm{f}} 0.31$ (EtOAc : $\mathrm{Hex}=1: 2$); ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.27(3 \mathrm{H}, \mathrm{d}, J 6.9 \mathrm{~Hz}, \alpha$-methyl), 1.34-1.57 (20H, m), $3.33(1 \mathrm{H}, \mathrm{d}$, , J 3.0 Hz), 3.83-3.93 ($3 \mathrm{H}, \mathrm{m}$), 4.01-4.14 $(3 \mathrm{H}, \mathrm{m}), 4.92(1 \mathrm{H}, \mathrm{dd}, J 5.0,2.8 \mathrm{~Hz}), 7.24-7.32(5 \mathrm{H}, \mathrm{m})$.
(4S,5R,2'R,3'R)-3-(3-Hydroxy-2-methyl-3-pheny-l-oxo-propyl)-4,5-bis-(2,2-dicyclohexyl-1,3-dioxolan-4-yl)-oxa-zolidin-2-one (9). To a solution of (4S,5R)-3-(1-oxopropyl)-4,5-bis-(2,2-dimethyl-1,3-dioxolan-4-yl)-oxazolidin-2-one (6a) $(0.15 \mathrm{~g}, 0.35 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ under nitrogen atmosphere was added $\mathrm{TiCl}_{4}(0.71 \mathrm{~mL}$ in 1.0 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.71 \mathrm{mmol}$) at $-60{ }^{\circ} \mathrm{C}$ and stirred for $5 \mathrm{~min} . \mathrm{Et}_{3} \mathrm{~N}$ $(0.07 \mathrm{~mL}, 0.53 \mathrm{mmol})$ was added to this reaction mixture at $-60^{\circ} \mathrm{C}$ and stirred for 30 min . Benzaldehyde ($0.07 \mathrm{~mL}, 0.71$ mmol) was added to this reaction mixture at $-60{ }^{\circ} \mathrm{C}$ and stirred for 2 h . The reaction was quenched by the addition of water at $0^{\circ} \mathrm{C}$. The organic product was extracted with ethyl acetate, washed with brine, dried and concentrated to give the product 9 ($41 \mathrm{mg}, 21.9 \%$). $R_{\mathrm{f}} 0.43$ ($\mathrm{EtOAc}: \mathrm{Hex}=1: 2$); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.96(3 \mathrm{H}, \mathrm{d}, J 6.9 \mathrm{~Hz}, \alpha-$ methyl), 1.37-1.60 ($20 \mathrm{H}, \mathrm{m}$), $3.51(1 \mathrm{H}, \mathrm{d}, J 4.7 \mathrm{~Hz}), 3.95-$ $4.12(4 \mathrm{H}, \mathrm{m}), 4.15-4.21(2 \mathrm{H}, \mathrm{m}), 4.32-4.37(1 \mathrm{H}, \mathrm{m}), 4.67-$ $4.70(2 \mathrm{H}, \mathrm{m}), 4.88(1 \mathrm{H}, \mathrm{dd}, J 7.1,1.1 \mathrm{~Hz}), 7.24-7.37(3 \mathrm{H}$, m), $7.46(2 \mathrm{H}, \mathrm{d}, J 6.9 \mathrm{~Hz})$.
syn-(2S,3S)- and anti-(2R,3S)-3-Hydroxy-2-methyl-3phenylpropanoic acid (10). To a solution of ($4 S, 5 R, 2^{\prime} S, 3^{\prime} S$)-3-(3-hydroxy-2-methyl-3-pheny-l-oxopropyl)-4,5-bis-(2,2-dicyclohexyl-1,3-dioxolan-4-yl)-oxazolidin-2-one (8) (100 $\mathrm{mg}, 0.19 \mathrm{mmol})$ in THF $(2.9 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.95 \mathrm{~mL})$ was added $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(1.07 \mathrm{~g}, 0.94 \mathrm{mmol})$ and $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(16$ $\mathrm{mg}, 0.38 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ and stirred for 30 min . Solid sodium sulfite and saturated NaHCO_{3} solution were added to this reaction mixture until pH 10 . THF in the reaction mixture was evaporated. The mixture was diluted with water (2.5 mL), extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with brine, dried and concentrated to give the auxiliary $\mathbf{3}(70 \mathrm{mg}, 100 \%)$. The water layer was acidified with the addition of 3 N HCl solution until pH 2 , and extracted with EtOAc , washed with brine, dried, concentrated and chromatographed to give the acids 10 ($27 \mathrm{mg}, 79.4 \%$). $R_{\mathrm{f}} 0.19$ (EtOAc : $\mathrm{Hex}=1: 2$); $[\alpha]_{\mathrm{D}}^{25}-24.4\left(c \quad 0.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;\left[\right.$ lit. ${ }^{10}[\alpha]_{\mathrm{D}}^{22}=-26.4(c \quad 1.04$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)]; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.14(3 \mathrm{H}, \mathrm{d}, J 9.0$ Hz, α-methyl), $2.83(1 \mathrm{H}, \mathrm{m}, \alpha-\mathrm{H}), 4.75(0.01 \mathrm{H}, \mathrm{d}, J 8.8 \mathrm{~Hz}$, anti CHOH$), 5.18(0.99 \mathrm{H}$, d, J 4.0 Hz , syn CHOH$), 5.42$ ($2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}$ and $\mathrm{CO}_{2} \mathrm{H}$), $7.35\left(5 \mathrm{H}, \mathrm{s}\right.$, aromatic). ${ }^{1} \mathrm{H}$ NMR integration afforded a ratio syn:anti=96:4. The data were consistent with those reported in the literature. ${ }^{10,12}$
syn-(2R,3R)- and anti-(2S,3R)-3-Hydroxy-2-methyl-3phenylpropanoic acid (11). Prepared from 9 ($41 \mathrm{mg}, 0.08$ mmol) as same as above procedure and gave the acids $\mathbf{1 1}$ (10 $\mathrm{mg}, 71.9 \%$) and the auxiliary $3(28 \mathrm{mg}, 100 \%) . R_{\mathrm{f}} 0.19$ (EtOAc : $\mathrm{Hex}=1: 2$); $[\alpha]_{\mathrm{D}}^{25}+26.5\left(c 0.35, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; [lit. ${ }^{10}$ $\left.[\alpha]_{\mathrm{D}}^{22}=-26.4\left(c 1.04, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right]$ for the enantiomer 10; ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.75(0.04 \mathrm{H}, \mathrm{d}, J 8.8 \mathrm{~Hz}$, anti $\mathrm{CHOH}), 5.18(0.96 \mathrm{H}, \mathrm{d}, J 4.0 \mathrm{~Hz}$, syn CHOH$) .{ }^{1} \mathrm{H}$ NMR integration afforded a ratio syn:anti $=82: 18$.

Acknowledgment. This work was supported by the Research Grant from Hallym University, Korea.

References

1. (a) Kim, S.-M.; Jin, H.; Jun, J.-G. Bull. Korean Chem. Soc. 2002, 23, 749. (b) Kim, S.-M.; Jun, J.-G. Synth. Commun. 2002, 32, 3851.
2. Meyers, A. I. Acc. Chem. Res. 1978, 11, 375.
3. Sugiyama, T.; Sugawara, H.; Watanabe, M.; Yamashita, K. Agric. Biol. Chem. 1984, 48, 1841.
4. (a) For a review, see Lohray, B. B. Synthesis 1992, 1035. (b) Cho, G. Y.; Choi, J. Y.; Ko, S. Y. Bull. Korean Chem. Soc. 2002, 23, 11.
5. Lohray, B. B.; Sharpless, K. B. Tetrahedron Lett. 1989, 30, 2623.
6. (a) Homeyer, A. H. U. S. Patent 2,399, 118, C. A. 1946, 40, 4084. (b) Newman, M. S.; Kutner, A. J. J. Am. Chem. Soc. 1951, 73, 4199. (c) Kang, S. H.; Hwang, Y. S.; Lee, H. S. Bull. Korean Chem. Soc. 2002, 23, 1195.
7. Evans, D. A.; Ennis, M. D.; Mathre, D. J. J. Am. Chem. Soc. 1982, 104, 1737.
8. Crimmins, M. T.; King, B. W.; Tabet, E. A. J. Am. Chem. Soc. 1997, 119, 7883.
9. Evans, D. A.; Britton, T. C.; Ellman, J. A. Tetrahedron Lett. 1987, 28, 6141.
10. Gage, J. R.; Evans, D. A. Org. Syn. 1990, 68, 83.
11. Evans, D. A.; Britton, T. C.; Ellman, J. A. Tetrahedron Lett. 1987, 28, 6141.
12. Evans, D. A.; Nelson, J. V.; Vogel, E.; Taber, T. R. J. Am. Chem. Soc. 1981, 103, 3099.

[^0]: *Corresponding author. Tel: +82-33-248-2075; E-mail: jgjun@hallym.ac.kr

