Efficient Synthesis of Benzoprostacyclins Using Free-Radical and Palladium-Catalyzed Tandem Alkene Insertion Strategies

Nam Ho Lee ${ }^{*}$ and Richard C. Larock ${ }^{\dagger}$
Department of Chemistry and Research Institute for Basic Sciences, Cheju National University, Cheju 690-756, Korea
${ }^{\dagger}$ Department of Chemistry, Iowa State University, Ames, IA 50011, U.S.A.

Received May 10, 2001
Efficient syntheses of PGI_{2} analogue 2a and its epimer $\mathbf{3}$ have been accomplished. Using aryl iodide $\mathbf{6}$ as the common intermediate, either radical or palladium-assisted tandem alkene insertion strategies have been employed for construction of the benzoprostacyclin framework.
Keywords : Prostaglandin, Benzoprostacyclin, Synthesis, Free radical, Palladium.

Introduction

Prostacycline $\left(\mathrm{PGI}_{2}, \mathbf{1}\right)$ was discovered in 1976. It has attracted much attention as a potential medicine for cardiovascular disease, such as strokes and heart attacks, because of its potent antiplatelet and vasodilating effect. ${ }^{1}$ However, due to the labile cyclic enol ether moiety, PGI_{2} is readily metabolized to biologically much less active 6 -oxo- $\mathrm{PGF}_{1 \alpha}$ under physiological conditions. ${ }^{2}$ Since its discovery, many attempts have been made to synthesize chemically stable and biologically active PGI_{2} analogues. ${ }^{3}$ Some of the more important analogues posess a phenyl ether in place of the enol ether. Analogues, such as 2a and 2b, have been reported to exhibit substantial inhibition of platelet aggregation induced by ADP, collagen and arachidonic acid. ${ }^{4}$ The sodium salt of beraprost (2b), the first commercial orally active PGI_{2} drug has proven valuable in clinical use for its marked effect on arteriosclerosis obliterans. ${ }^{5}$

In our continuing effort to synthesize prostaglandins, ${ }^{6}$ we decided to examine the preparation of compound $2 \mathbf{a}$ and its 12-epi analogue 3. ${ }^{7}$ The synthetic strategy is shown in Scheme 1. It appeared that the compound 6 could be prepared stereoselectively from cyclopentadiene monoepoxide (4) and functionalized phenol 5 employing desired $\operatorname{Pd}(0)$ chemistry. ${ }^{8}$ The key step in the syntheses of $\mathbf{2 a}$ and $\mathbf{3}$ are the preparation of compounds 7 and 8 , from which the analogues could be easily obtained. A radical promoted cyclization, followed by β-stannyl enone trapping, previously employed in the synthesis of $\mathrm{PGF}_{2 \alpha}$ was envisioned for the efficient synthesis of 7. ${ }^{9}$ On the other hand, the 12 -epimer $\mathbf{8}$
should also be readily available from the same starting material 6 using a palladium-catalyzed tandem alkene insertion strategy with 1 -octen- 3 -one as the trapping agent.

Results and Discussion

For the synthesis of the key intermediate 6, we needed to prepare the substituted phenol 5. Iodophenol was used as the starting material for the preparation of the required phenol 5 (Scheme 2). The allylation of iodophenol and subsequent Lewis acid-catalyzed Claisen rearrangement gave the 2-allyl-6-iodophenol (11) with high efficiency. While Lewis acids such as $\mathrm{Et}_{2} \mathrm{AlCl}^{10}$ or $\mathrm{BF}_{3}{ }^{2} \cdot \mathrm{OEt}_{2}$ provided no Claisen rearrangement product, $\mathrm{MeAlCl} l_{2}$ at $-20^{\circ} \mathrm{C}$ proved to be an efficient and selective catalyst for this transformation, giving the ortho allylation over para rearrangement in a $>20: 1$ isomeric ratio. Protection of phenol 11, followed by ozonolysis provided the aldehyde 13, which was then subjected to a Wittig reaction to give the adduct $\mathbf{1 4}$. Direct ozonolysis of the unprotected phenol $\mathbf{1 1}$ gave poor results, suggesting that the hydroxyl group was the source of the problem. Selective reduction of the unsaturated ester to the corresponding saturated substrate $\mathbf{1 5}$ using H_{2} and a Pd / C catalyst failed. This reduction gave the iodide-reduced unsaturated ester as the only product. The use of PtO_{2} as the catalyst, however, led to the desired product $\mathbf{1 5}$, but in only 32% yield, along side product with the iodide reduced off. This problem was solved by using a small amount of aq. HCl as an additive. This gave the desired product in 90% yield. The compound 5 was then obtained by deprotection with n - $\mathrm{Bu}_{4} \mathrm{NF}$ in THF.

1

2a $\mathrm{R}=n-\mathrm{C}_{5} \mathrm{H}_{11}$ 2b $\mathrm{R}=\mathrm{CH}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CCH}_{3}$

3

5

Scheme 1

With the compound 5 at hand, stereoselective synthesis of the cyclopentenol 6 was cleanly carried out using cyclopentadiene monoepoxide (4) and known π-allylpalladium chemistry. ${ }^{8}$ It is worth commenting that the iodide functionality in compound 5 remained intact under the reaction conditions employed.

Stork and co-workers have previously reported a radical cyclization-trapping method for construction of the $\mathrm{PGF}_{2 \alpha}$ framework. ${ }^{9}$ Keck and Burnett later improved upon the Stork procedure by employing a β-stannyl enone as a radical trapping reagent. ${ }^{11}$ Employment of this strategy using the radical precursor 6 proved successful. Using 4 equiv. of
stannyl enone with a reaction temperature of $110{ }^{\circ} \mathrm{C}$, the desired product 7 was obtained in 80% yield (Scheme 3).

The diastereoselective reduction of the enone in compound 7 was attempted using Noyori's (S)-BINAL-H, which has been documented to reduce the enone side chains of PGs to give the desired $15-(S)$ configuration. ${ }^{12}$ When the reduction was conducted, to our surprise, the $15-(R)$ isomer 17 was apparently obtained as the major product from compound 7. The stereochemistry at C15 was assigned based on the hydrolysis product $\mathbf{2 a}$ and its $15-(R)$ diastereomer 20, already known in the literature, ${ }^{4 \mathrm{c}}$ The more polar isomer has been assigned as the $15-(S)$ isomer and measured to be

Scheme 2. ${ }^{\text {a }}$ Reaction conditions: (i) 1.2 allyl bromide, $1.2 \mathrm{~K}_{2} \mathrm{CO}_{3}$, 94%; (ii) $0.8 \mathrm{MeAlCl}_{2},-20{ }^{\circ} \mathrm{C}$, 70%; (iii) TBDMSCl, imidazole, 90%; (iv) $\mathrm{O}_{3},-78{ }^{\circ} \mathrm{C}$, then $\mathrm{Me}_{2} \mathrm{~S}, 83 \%$; (v) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}, 83 \%$; (vi) $\mathrm{H}_{2}, \mathrm{PtO}_{2}, \mathrm{HCl}, 90 \%$; (vii) n - $\mathrm{Bu}_{4} \mathrm{NF}$, THF, 94%; (viii) 4 (1.5 equiv), THF, rt, $24 \mathrm{~h}, 72 \%$.

Scheme 3
biologically more active. The chromatographic separation of diastereomers 16 and 17 was easy, because they show a large difference in polarities $\left(\mathrm{R}_{f}=0.17\right.$ for $\mathbf{1 6}$ and $\mathrm{R}_{f}=0.38$ for $\mathbf{1 7}$ in $1: 2$ hexane/EtOAc). The unusual reversed stereoselectivity of (S)-BINAL-H in this reduction is interesting. It is reported that the reactivity of BINAL-H towards a carbonyl group is influenced by steric effects and various electronic factors, such as the LUMO energy levels. ${ }^{12 b}$ We assume that either steric or electronic factors introduced by the presence of an aromatic ring are responsible for this reversal of stereoselectivity.
A more direct pathway to compound $\mathbf{1 6}$ might be a radical reaction using γ-stannyl allylic alcohol $\mathbf{1 8}$ as a trapping agent. The allylic alcohol $\mathbf{1 8}$ is readily available in optically active form, ${ }^{13}$ and utilization of the homochiral $\mathbf{1 8}$ should
lead to the optically active diastereomer 16. Thus, using the alcohol $\mathbf{1 8}$ as a trapping agent, the radical-promoted cyclization was conducted. Using the reaction conditions shown in Scheme 4 led to desired the product 16 along with its diastereomer 19 in 41% yield. The compounds $\mathbf{1 6}$ and 19 were cleanly separable by flash chromatography. Therefore, chromatographic separation, followed by the hydrolysis of compounds 16 and 19 with aq. NaOH , led to optically active PGI_{2} analogues $\mathbf{2 a}$ and $\mathbf{2 0}$.
In our continuing effort to synthesize prostaglandins using a palladium-promoted cyclization-trapping strategy, ${ }^{6}$ we decided to try to synthesize the key intermediate $\mathbf{8}$ for 12 -epibenzoprostacyclin $\mathbf{3}$. Compound $\mathbf{6}$ was used as the organopalladium precursor, and 1-octen-3-one was used as the trapping agent. Various reaction conditions, including vari-

Scheme 4

Scheme 5
ations in the base, temperature and solvent were examined to effect the tandem alkene insertions. We found that the desired product $\mathbf{8}$ could be obtained in 41% yield using the reaction conditions described in Scheme 5. It was found that the iodophenol 6 has low reactivity towards the Pd-assisted intramolecular cyclization under the reaction conditions. At a lower temperature, the product $\mathbf{8}$ was obtained usually along with the recovered $\mathbf{6}$. At a higher temperature, however, the allyl aryl ether moiety in 6 was readily cleaved presumably via a π-allyl palladium intermediate to give a phenol as the major product.
A reaction mechanism for this interesting tandem alkene insertion process is proposed in Scheme 6. In this reaction, $\mathrm{Pd}(\mathrm{OAc})_{2}$ is first reduced to $\mathrm{Pd}(0)$ species. To this $\mathrm{Pd}(0)$, aryl iodide $\mathbf{6}$ is oxidatively added to generate organopalladium intermediate 23, which undergoes intramolecular syn addition to the cyclopentene to give $\mathbf{2 4}$. The intermediate $\mathbf{2 4}$ is blocked from syn palladium β-hydride elimination by the
hydroxy group. Enone insertion into the carbon-palladium bond and subsequent palladium β-hydride elimination provide the product $\mathbf{8}$ in a single step.

The next step in the synthesis of compound 21 required the stereoselective reduction of the α, β-unsaturated ketone in compound 8 . The diastereoselective reduction was examined using (S)-BINAL-H. The reaction was quite clean; only two spots were observed upon TLC analysis with a large polarity difference $\left(\mathrm{R}_{f}=0.25\right.$ for compound $\mathbf{2 1}, \mathrm{R}_{f}=$ 0.48 for compound 22 in $1: 2$ hexane/EtOAc). However, this reduction provided no selectivity, which might be ascribed to the presence of p-electrons in the phenyl ring in 8 as described previously in this text. The more polar component was tentatively assigned as the desired 15-(S) isomer. It is generally recognized that the more polar isomer has the 15-(S) configuration in prostaglandins. Comparison of the ${ }^{1} \mathrm{H}$ NMR spectra of the final products 3 and 27 also supports this assignment. The ${ }^{1} \mathrm{H}$ NMR spectral data for compounds

Scheme 6

Figure 1. Comparison of the ${ }^{1} \mathrm{H}$ NMR δ values in compounds 2a, 3, 20, and 27.
$\mathbf{2 a}, \mathbf{3}, \mathbf{2 0}, 27$ are shown in Figure 1. The chemical shifts of H13, H14 and H15 in 15-(S) isomers 2a and $\mathbf{3}$ consistently appear at higher field than those in the $15-(R)$ isomers 20 and 27.

The reaction mechanism in Scheme 6 suggests that the use of optically pure stannyl alcohol $\mathbf{1 8}$ might lead to optically active diol 21 directly from compound 6. Cross-coupling reactions between organopalladium and organotin reagents have been well studied. ${ }^{14}$ Thus, the racemic compound 6 was subjected to $\operatorname{Pd}(0)$-assisted cyclization in the presence
of the vinylic tin compound 18 (Scheme 7). The desired product 21 along with its diastereomer 26 were obtained in 30% combined yield. Compound 21 was separable from compound 26 by flash chromatography. Finally, the products 3 and 27 were readily obtained upon hydrolysis of compounds 21 and 26 using aq. sodium hydroxide.

In conclusion, the preparation of biologically active PGI_{2} analogue 2a and its epimer $\mathbf{3}$ has been successfully achieved. In this synthesis, the compound 6 stereoselectively obtained using organopalladium chemistry was used as the key start-

1) separation
2)3 N NaOH $\mathrm{THF,rt,6d}$ 83%

Scheme 7
ing material, and either free radical or a palladium-assisted cyclization, followed by an alkene trapping proctocol, have been employed for construction of each prostaglandin framework. This tandem insertion strategy should find use in organic synthesis for the preparation of other alkyl branched aryl bicyclic compounds.

Experimental Section

General. All chemicals were used directly as obtained commercially unless otherwise noted. Tetrahydrofuran was distilled over sodium benzophenone ketal and used immediately. Methanol was distilled over sodium methoxide and stored over 4A molecular sieves. Methylene chloride was distilled over phosphorous pentoxide and stored over 4A molecular sieves. Ethanol was distilled azeotropically by adding a small amount of benzene and stored over 4A molecular sieves. Toluene was distilled over sodium hydride. Hexane was distilled over sodium hydride. DMF was distilled over sodium hydride and stored over 4A molecular sieves.
NMR spectra were recorded on a Nicolet NT-300 spectrometer (${ }^{1} \mathrm{H}$ NMR, 300 MHz ; ${ }^{13} \mathrm{C}$ NMR, 75 MHz), and chemical shifts are reported in ppm relative to TMS ($\delta 0.00$) as an internal standard. IR spectra were obtained on an IBM IR 98. High-resolution mass spectra were recorded on a Kratos MS-50 spectrometer.
Preparation of (+)-5,6,7-trinor-4,8-inter-m-phenylene $\mathbf{P G I}_{2}$ (2a). To a solution of compound $\mathbf{1 6}(40 \mathrm{mg}, 0.10$ mmol) in 1.2 mL of THF was added 0.6 mL of 3 N aqueous NaOH . After the reaction mixture was stirred for 4 d at room temperature, it was neutralized with 2 N aqueous HCl . The organic phase was decanted with ethyl acetate $(3 \times 5 \mathrm{~mL})$, then dried over MgSO_{4} and concentrated in vacuo. Flash chromatography with $20: 1 \mathrm{EtOAc} / \mathrm{MeOH}$ gave the title product: $27 \mathrm{mg}, 72 \%$ yield; $\mathrm{R}_{f}=0.21(20: 1 \mathrm{EtOAc} / \mathrm{MeOH})$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.91-6.87(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 6.70(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar}), 5.59(\mathrm{~m}, 2 \mathrm{H}, \mathrm{HC}=\mathrm{CH}), 5.29(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$, CHOAr), 4.95 (br s, 2H, OHs), 4.17 (m, 1H, CHOH), 4.03$3.99(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}-\mathrm{CHOH}), 3.84(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHAr})$, 2.75-2.64 (m, 2H), 2.57-2.48 (m, 1H), $2.34(\mathrm{~d}, J=15.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2}$ in cyclopentane), $2.25(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.16-1.99$ $(\mathrm{m}, 2 \mathrm{H}), 1.88-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~m}, 3 \mathrm{H}), 1.31(\mathrm{~m}, 6 \mathrm{H}$, CH_{2} 's), $0.91\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. This compound has ${ }^{1} \mathrm{H}$ NMR spectral data very close to those reported in the literature ${ }^{4 \mathrm{c}} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDC1}_{3}\right) \delta 178.14,158.02,136.25,128.87$, $128.38,127.64,123.94,122.75,119.86,88.30,77.00,73.03$, $52.10,49.87,41.92,36.89,32.89,31.80,28.79,25.24,24.79$, 22.72, 14.14; IR (neat) $3510(\mathrm{OH}), 2935,1703(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$, HRMS m/z calculated for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{5} 388.22497$, found 388.22530. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{5}: \mathrm{C}, 71.11 ; \mathrm{H}, 8.30$. Found: C, 69.21; H, 8.43.
Preparation of $\mathbf{1 2}$-epi-5,6,7-trinor-4,8-inter-m-phenylene $\mathbf{P G I}_{2}$ (3). To a solution of compound $21(22 \mathrm{mg}, 0.06 \mathrm{mmol})$ in 0.74 mL of THF was added 3 N aqueous NaOH (0.37 mL) at room temperature. After the mixture was stirred for 6 d at room temperature, it was neutralized by 2 N aqueous

HCI. The organic phase was decanted with EtOAc, and then dried over MgSO_{4}. Concentration, followed by flash chromatography with $20: 1 \mathrm{EtOAc} / \mathrm{MeOH}$, gave product 3: 17 mg , 83% yield; $\mathrm{R}_{f}=0.29$ (20 : $\left.1 \mathrm{EtOAc} / \mathrm{MeOH}\right) ;{ }^{1} \mathrm{H}$ NHR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 6.90(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.89(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar})$, $6.72(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 5.61(\mathrm{~m}, 2 \mathrm{H}, \mathrm{HC}=\mathrm{CH}), 5.31(\mathrm{dd}$, $J=0.9$ and $7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOAr}), 4.30(\mathrm{br}, 2 \mathrm{H}, \mathrm{OH} ' \mathrm{~s}), 4.18$ (m, 1H, CHOH), $4.03(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CCHOH}), 3.85(\mathrm{t}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHAr}), 2.75-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{~m}, 1 \mathrm{H}), 2.36$ (d, J $=15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ in cyclopentane), $2.26(\mathrm{~m}, 2 \mathrm{H}), 2.17-$ $2.01(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{~m}, 1 \mathrm{H}), 1.53(\mathrm{~m}, 3 \mathrm{H}), 1.32(\mathrm{~m}, 6 \mathrm{H}), 0.91$ $\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 177.93,157.99$, 136.35, 128.91, 128.29, 127.65, 123.97, 122.80, 119.98, 88.37, 77.00, 73.04, 52.18, 49.95, 42.02, 36.96, 32.89, 31.83, 28.83, 25.28, 24.85, 22.73, 14.12; IR (neat) 3383 (OH), 2928, 1709 (C=O), 1595, $1454 \mathrm{~cm}^{-1}$; HRMS m/z calculated for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{5} 388.22497$, found 388.22406. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{5}: \mathrm{C}, 71.11 ; \mathrm{H}, 8.30$. Found: C, 70.75; H, 8.92.

Preparation of compound 5. To a solution of compound $15(2.85 \mathrm{~g}, 6.2 \mathrm{mmol})$ in 60 mL of THF at $-78^{\circ} \mathrm{C}$ was added n - $\mathrm{Bu}_{4} \mathrm{NF}$ (Aldrich, 1.0 M in THF, $6.2 \mathrm{~mL}, 6.2 \mathrm{mmol}$). The reaction mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, then allowed to warm to $0^{\circ} \mathrm{C}$, and quenched by adding $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The mixture was poured into 50 mL of EtOAc, washed with $\mathrm{H}_{2} \mathrm{O}$ $(25 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, The organic phase was dried and concentrated. The residue was purified by flash chromatography with $4: 1$ hexane/EtOAc to give the title compound: $2.02 \mathrm{~g}, 94 \%$ yield; $\mathrm{R}_{f}=0.37$ ($5: 1$ hexane/EtOAc); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.53(\mathrm{dd}, J=7.8$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.05(\mathrm{dd}, J$ $=7.8$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.58(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.18$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 4.15\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.69(\mathrm{t}, J=7.2$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.36\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.91(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.27\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDC1}_{3}\right) \delta$ $174.15,152.96,136.44,130.64,128.05,122.06,86.28,60.59$, $33.28,30.54,24.68,14.24$; IR (neat) $3373(\mathrm{OH}), 2980,2957$, $1707(\mathrm{C}=\mathrm{O}), 1445 \mathrm{~cm}^{-1}$. HRMS m/z calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{I}$ 334.00660, found 334.00617.

Preparation of compound 6. To a dried flask was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(18 \mathrm{mg}, 0.016 \mathrm{mmol})$. To this was added compound $5(264 \mathrm{mg}, 0.79 \mathrm{mmol})$ in 2 mL of THF, and the reaction mixture was stirred in an ice-water bath. Cyclopentadiene monoepoxide ${ }^{15}(4,97 \mathrm{mg}, 1.18 \mathrm{mmol})$ in 2 ml of THF was added dropwise at $0^{\circ} \mathrm{C}$, and stirring was continued for 20 min at this temperature and another 24 h at room temperature. The reaction mixture was concentrated. The residue was purified by flash chromatography with $2: 1$ hexane/EtOAc to give product 6: $235 \mathrm{mg}, 71 \%$ yield; $\mathrm{R}_{f}=$ 0.27 (2:1 hexane/EtOAc); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDC1}_{3}\right) \delta 7.58$ (dd, J $=7.8$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.15(\mathrm{dd}, J=7.8$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{Ar}), 6.77(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.09(\mathrm{~m}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{C}), 6.01$ (m, 1H, HC=C), $5.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOAr}), 4.68(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH})$, $4.12\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.85(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{ddd}, J=$ 15.3 and 9.6 and $6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ in cyclopentane), 2.30 (dt, $J=1.8$ and $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.06(\mathrm{dt}, J=14.7$ and $3.9 \mathrm{~Hz}, \mathrm{IH}$, CH_{2} in cyclopentane), $1.88(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{t}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 0.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 173.69,156.22$, $138.09,137.98,136.65,133.55,130.56,125.87,92.45,85.71$,
74.97, 60.52, 41.28, 33.50, 30.86, 25.47, 14.28; IR (neat) 3350 (OH), 2959, 1720 (C=O), 1599, 1462, $1352 \mathrm{~cm}^{-1}$; HRMS m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{I} 416.04847$, found 416.04747.
Preparation of compound 7. To a solution of compound $6(70 \mathrm{mg}, 0.17 \mathrm{mmol})$ in 1.7 mL of toluene were added $1-$ stannyl-1-octen-3-one ${ }^{16}$ ($279 \mathrm{mg}, 0.67 \mathrm{mmol}$) and AIBN (Aldrich, $2.8 \mathrm{mg}, 0.017 \mathrm{mmol}$). The resulting mixture was placed into an oil bath preheated to $90^{\circ} \mathrm{C}$ and stirred for 12 h . After cooling to room temperature, the mixture was purified by flash chromatography with $1: 1$ hexane/EtOAc to give product 7 as a yellow oil: $65 \mathrm{mg}, 80 \%$ yield; $\mathrm{R}_{f}=$ 0.32 (1:1 hexane/EtOAc); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDC1}_{3}\right) \delta 6.93$ (d, $J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.86(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.84(\mathrm{dd}, J=$ 16.2 and $9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC=C}), 6.73$ (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar})$, 6.19 (d, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 5.38$ (dd, $J=7.5$ and 6.3 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHOAr}), 4.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH}), 4.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right)$, $3.98(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dt}, J=3.9$ and $9.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.66-2.43 (m, 4H), $2.25(\mathrm{~m}, 2 \mathrm{H}), 2.17$ (ddd, $J=15.3$ and 6.4 and $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~m}, 1 \mathrm{H}), 1.86$ $(\mathrm{m}, 1 \mathrm{H}), 1.59(\mathrm{~m}, 3 \mathrm{H}), 1.41-1.22(\mathrm{~m}, 7 \mathrm{H}), 0.88(\mathrm{t}, J=6.9$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDC1}_{3}\right) \delta 200.99,173.84,157.67$, $144.28,132.82,129.09,127.05,123.65,123.23,120.11,88.58$, $76.77,60.30,52.65,50.70,43.03,38.93,33.38,31.48$, 28.93, 24.84, 24.02, 22.48, 14.30, 14.00; IR (neat) 3466 (OH), 2930, 1666 (C=O), 1372, $1456 \mathrm{~cm}^{-1}$; HRMS m/z calculated for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{5} 414.24062$, found 414.24080 .

Preparation of compound 8. In a vial were placed compound $6(94 \mathrm{mg}, 0.23 \mathrm{mmol}$), 1-octen-3-one ($285 \mathrm{mg}, 2.3$ mmol), $n-\mathrm{Bu} 4_{4} \mathrm{NCl}$ (Lancaster, $70 \mathrm{mg}, 0.25 \mathrm{mmol}$), $i-\mathrm{Pr}_{2} \mathrm{NEt}$ $(98 \mu \mathrm{~L}, 0.58 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(2.5 \mathrm{mg}, 0.011 \mathrm{mmol})$ and DMF $(0.46 \mathrm{~mL})$. After the reaction was stirred for 12 h at 50 ${ }^{\circ} \mathrm{C}$, it was poured into 40 mL of EtOAc. The mixture was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$ and then the aqueous phase was back-extracted with EtOAc (15 mL). The overall organic phase was washed with brine $(15 \mathrm{~mL})$, and then dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash chromatography to give product 8: $37 \mathrm{mg}, 42 \%$ yield; $\mathrm{R}_{f}=0.44$ ($1: 1$ hexane/EtOAc); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDC1}_{3}\right) \delta 6.94(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.88(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.85(\mathrm{dd}, J=15.9$ and $9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH})$, 6.75 (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.21(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{HC}=\mathrm{C}$), 5.39 (dd, $J=8.1$ and $6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOAr}), 4.30$ (m, $1 \mathrm{H}, \mathrm{CHOH}), 4.12(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dt}$, $J=3.9$ and $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~m}, 4 \mathrm{H}), 2.26(\mathrm{~m}, 2 \mathrm{H}), 2.18$ (ddd, $J=15.3$ and 6.0 and $4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ in cyclopentane), $2.02(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~m}, 2 \mathrm{H}), 1.28\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CH}_{2}{ }^{\prime} \mathrm{s}\right.$ and $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $0.89\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDC1}_{3}\right) \delta 200.94,173.79,157.68,144.27,132.17,129.05$, 127.05, 123.61, 123.20, 120.06, 88.92, 76.69, 60.26, 52.63, $50.69,43.01,38.94,33.36,31.46,28.94,24.81,24.00,22.42$, 14.22, 13.90; IR (neat) $3464(\mathrm{OH}), 2932,1732(\mathrm{C}=\mathrm{O}), 1688$ (C=O), $1465 \mathrm{~cm}^{-1}$; HRMS m/z calculated for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{5}$ 414.24063 , found 414.24118 .

Preparation of compound 10. A solution of o-iodophenol ($9,6.6 \mathrm{~g}, 30 \mathrm{mmol}$), allyl bromide ($4.0 \mathrm{~g}, 33 \mathrm{mmol}$) and potassium carbonate $(4.6 \mathrm{~g}, 33 \mathrm{mmol})$ in 7.5 mL of acetone was refluxed for 8 h . The reaction mixture was
diluted with 40 mL of $\mathrm{H}_{2} \mathrm{O}$, and extracted with ether (225 $\mathrm{mL})$. The organic phase was washed with brine (25 mL), and then dried over MgSO_{4}. Concentration followed by flash chromatography, gave compound 10 as a colorless oil: 6.8 g , 94% yield; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDC1}_{3}\right) \delta 7.77(\mathrm{dd}, J=7.8$ and 1.5 Hz , $1 \mathrm{H}, \mathrm{Ar}), 7.27(\mathrm{dt}, J=1.8$ and $7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.80(\mathrm{dd}, J=$ 7.8 and $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.70(\mathrm{dt}, J=7.8$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}$, Ar), 6.06 (ddt, $J=17.4$ and 10.5 and $7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{C}$), 5.52 (dd, $J=17.4$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{C}$), 5.31 (dd, $J=10.5$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{C}), 4.59(\mathrm{dt}, J=4.8$ and $1.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDC1}_{3}\right) \delta 157.09,139.51,132.57,129.35$, 122.66, 117.59, 112.58, 86.72, 69.68; IR (neat) 1582, 1477 cm^{-1}.

Preparation of 6-allyl-2-iodophenol (11). To a solution of compound $\mathbf{1 0}(7.0 \mathrm{~g}, 27 \mathrm{mmol})$ in 130 mL of hexane was added $\mathrm{MeAlC1}_{2}$ (Aldrich, 1.0 M in hexane, $22 \mathrm{~mL}, 22$ mmol) dropwise at $-20^{\circ} \mathrm{C}$. After the reaction was stirred for 2 h at $-20^{\circ} \mathrm{C}$ under N_{2}, it was quenched by adding $\mathrm{H}_{2} \mathrm{O}(40$ mL) and slowly warmed to room temperature with swirling. EtOAc (30 mL) was added to the reaction mixture, then stirring was continued for 5 min . After separating the phases, the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$, then dried and concentrated. The residue was purified by flash chromatography with $15: 1$ hexane/EtOAc to give product 11: $4.9 \mathrm{~g}, 70 \%$ yield; $\mathrm{R}_{f}=0.38(20: 1$ hexane/EtOAc); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.51$ (dd, $J=1.2$ and $7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.07$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.62$ (t, $J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar}$), 5.98 (ddt, $J=17.4$ and 9.6 and $6.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{HC}=\mathrm{C}), 5.37(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 5.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{C}), 5.07(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{HC}=\mathrm{C}$), $3.43\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 152.60,136.33,136.01,130.73,126.81,122.42$, $116.22,86.41,35.56$; IR (neat) $3487(\mathrm{OH}), 1593,1234 \mathrm{~cm}^{-1}$; LRMS m/z (relative intensity) 51.1 (34), 77.1 (47), 105.1 (58), 118.1 (41), 133.1 (42), $260.0\left(\mathrm{M}^{+}, 100\right)$.

Preparation of compound 12. To a solution of compound $\mathbf{1 1}(4.9 \mathrm{~g}, 18.7 \mathrm{mmol})$ and imidazole ($3.2 \mathrm{~g}, 47.1 \mathrm{mmol}$) in 20 mL of DMF was added t-butyldimethylsilyl chloride (3.1 g , 20.5 mmol) dissolved in 15 mL of DMF at room temperature under N_{2}. After the mixture was stirred for 12 h at room temperature, it was extracted with hexane ($50 \mathrm{~mL} \times 2$). The hexane phase was concentrated and then flash chromatographed to give compound $\mathbf{1 2}: 6.3 \mathrm{~g}, 90 \%$ yield; $\mathrm{R}_{f}=0.52$ (hexane); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{dd}, J=7.8$ and 1.8 Hz , $1 \mathrm{H}, \mathrm{Ar}), 7.11(\mathrm{dd}, J=7.8$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.66(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 5.86$ (ddt, $J=17.4$ and 9.6 and $6.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}=\mathrm{CHCH}_{2}\right), 5.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}=\mathrm{C}\right), 3.39(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$, CH_{2}), 1.06 ($\mathrm{s}, 9 \mathrm{H}, t$ - BuSi), 0.331 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{SiMe}_{2}$).

Preparation of compound 13. Ozone was passed through a solution of compound $\mathbf{1 2}(722 \mathrm{mg}, 1.9 \mathrm{mmol})$ in 19 mL of methanol at $-78^{\circ} \mathrm{C}$ until the deep blue color persisted (about 15 min). The reaction was flushed with N_{2} gas and 8 mL of $\mathrm{CH}_{3} \mathrm{SCH}_{3}$ was added at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was then allowed to stir for 30 min at $-78^{\circ} \mathrm{C}$, for 1 h at $0^{\circ} \mathrm{C}$ and for another 30 min at room temperature. The methanol solvent was evaporated under reduced pressure, and 60 mL of ether was then added to the residue. After the mixture was washed with water (10 mL) and brine ($20 \mathrm{~mL} \times 2$), it was
dried and concentrated. Flash chromatography gave product 13: $638 \mathrm{mg}, 83 \%$ yield; $\mathrm{R}_{f}=0.63$ ($3: 1$ hexane/EtOAc); ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 9.63(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}), 7.74(\mathrm{dd}, J=$ 8.1 and $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.09$ (dd, $J=7.5$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{Ar}), 6.72(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 3.68(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}$, CH_{2}), $1.05\left(\mathrm{~s}, 9 \mathrm{H}, t\right.$-BuSi), $0.32\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiMe}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 199.34,153.92,139.70,131.54,124.26,123.81$, 91.23, 46.16, 26.37, 18.85, -1.52.

Preparation of compound 14. To a solution of (carbethoxymethylene)triphenylphosphorane (Aldrich, $3.88 \mathrm{~g}, 11.5$ mmol) dissolved in 30 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise at room temperature aldehyde $\mathbf{1 3}(3.57 \mathrm{~g}, 9.3 \mathrm{mmol})$ dissolved in 14 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After the reaction was stirred for 12 h at room temperature, it was concentrated in vacuo and purified by flash chromatography with $5: 1$ hexane/EtOAc to give ester 14: $3.52 \mathrm{~g}, 83 \%$ yield; $\mathrm{R}_{f}=0.46$ ($5: 1$ hexane/EtOAc); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{dd}, J=7.8$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar})$, $7.05(\mathrm{dd}, J=7.5$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.99(\mathrm{dt}, J=15.6$ and $6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{C}), 6.66(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 5.80(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{C}), 4.18\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.53$ (dd, $J=6.9$ and $1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}), $1.05(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{BuSi}), 0.32\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}_{2} \mathrm{Si}\right) ;{ }^{13} \mathrm{CNMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 166.32,153.31,146.18,138.75,130.60,129.52$, 123.61, 122.93, 91.09, 60.36, 33.94, 26.42, 18.94, 14.32, -1.49.
Preparation of compound 15. To a three neck flask equipped with a H_{2} gas balloon were added α, β-unsaturated ester 14 ($619 \mathrm{mg}, 1.36 \mathrm{mmol}$), ethanol (20 mL), 2 N aqueous $\mathrm{HCl}(0.4 \mathrm{~mL})$ and PtO_{2} (Aldrich, 60 mg). The reaction was flushed with H_{2} gas using an aspirator, and then stirred for 1 h at room temperature under the H_{2} balloon pressure. After the reaction was neutralized with 3 N aqueous $\mathrm{NaOH}(0.27$ mL), it was poured into 100 mL of ethyl acetate. The solution was washed with brine ($50 \mathrm{~mL}, 25 \mathrm{~mL}$) and concentrated in vacuo. The residue was purified by flash chromatography to give compound 15; 562 mg , 90% yield; $\mathrm{R}_{f}=0.52$ ($7: 1$ hexane/EtOAc); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.62$ (dd, $J=7.8$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.10(\mathrm{dd}, J=7.8$ and 1.5 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.64(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 4.11(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.66\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.27(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.25\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.04(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{BuSi}), 0.32\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiMe}_{2}\right)$.

Preparation of compounds 16 and 17

Procedure in Scheme 3 (via reduction of compound 7): To a solution of LiAlH_{4} (Aldrich, $0.91 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, 0.91 mmol) was added ethanol ($0.46 \mathrm{~mL}, 2.0 \mathrm{M}$ in THF, 0.91 mmol) dropwise at room temperature. To this was added (S)-binaphthol (Aldrich, $258 \mathrm{mg}, 0.91 \mathrm{mmol}$) in 1.5 mL of THF, and the resulting mixture was stirred for 30 min . Enone $7(126 \mathrm{mg}, 0.30 \mathrm{mmol})$ in 1.2 mL of THF was added dropwise over 3 min at $-100^{\circ} \mathrm{C}$. The resulting mixture was stirred for 2 h at $-100^{\circ} \mathrm{C}$. and then another 2 h at $-78^{\circ} \mathrm{C}$. Methanol (0.5 mL) was added at $-78{ }^{\circ} \mathrm{C}$ to destroy the excess reducing agent and the mixture was allowed to warm to room temperature. After the addition of water (20 mL) and diethyl ether (25 mL), stirring was continued for 10 min . The solution was neutralized with 2 N aqueous HCl , and
then extracted with ether $(3 \times 30 \mathrm{~mL})$. The organic phase was dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by flash chromatography using $1: 2$ hexane/EtOAc to give compound 16 ($11 \mathrm{mg}, 9 \%$ yield) and compound 17 ($52 \mathrm{mg}, 41 \%$ yield) as an oil. Starting material 7 (14 mg, 11% yield) was also recovered. Compound 16: R_{f} $=0.17$ (1:2 hexane/EtOAc); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.92(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 5.69-5.67(\mathrm{~m}, 2 \mathrm{H}, \mathrm{HC=CH}), 5.34(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOAr}), 4.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH}), 4.15-4.07(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{OCH}_{2}$ and $\left.\mathrm{C}=\mathrm{CCHOH}\right), 3.90(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHAr})$, 2.79-2.71 (m, 1H), 2.66-2.51 (m, 2H), $2.38(\mathrm{~d}, J=15.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2}$ in cyclopentane), $2.27(\mathrm{dt}, J=1.5$ and $7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.15\left(\mathrm{dt}, J=15.0\right.$ and $5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ in cyclopentane), 2.04-1.81 (m, 2H), $1.63(\mathrm{~m}, 4 \mathrm{H}), 1.34(\mathrm{~m}, 6 \mathrm{H}), 1.25(\mathrm{t}, J=$ $\left.7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.92\left(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 173.92,157.81,136.39,128.71,128.19,127.75$, 123.90, 122.96, 119.80, 88.27, 76.27, 76.92, 72.95, 60.32, 52.21, 49.98, 42.30, 36.98, 33.50, 31.80, 29.06, 25.23, 24.87, 22.69, 14.24, 13.62; IR (neat) 3396 (OH), 2930, 1734 (C=O), $1458 \mathrm{~cm}^{-1}$; HRMS m/z calculated for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{5}$ 416.25627, found 416.25574. Compound 17; $\mathrm{R}_{f}=0.38(1: 2$ hexane/EtOAc); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.96(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{Ar}), 6.91(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.73(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar})$, $5.69(\mathrm{~m}, 2 \mathrm{H}, \mathrm{HC}=\mathrm{CH}), 5.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOAr})$, $4.14(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH}), 4.07(\mathrm{~m}, 3 \mathrm{H}), 3.88(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.74(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{~m}, 2 \mathrm{H}), 2.35\left(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ in cyclopentane), $2.27(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{dt}, J=15.0$ and 5.7 Hz , $1 \mathrm{H}, \mathrm{CH}_{2}$ in cyclopentane), $1.99(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.81(\mathrm{~m}, 3 \mathrm{H})$, $1.49(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~m}, 6 \mathrm{H}), 1.24\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $0.88\left(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 173.84$, 157.72, 136.39, 128.76, 127.79, 127.20, 124.04, 123.02, 119.91, 88.27, 77.00, 72.64, 60.28, 52.44, 50.12, 42.59, 37.32, 33.55, $31.82,29.09,25.21,24.90,22.66,14.28,14.10$, IR (neat) 3443 (OH), 2987, 1732 (C=O), 1593, $1456 \mathrm{~cm}^{-1}$; HRMS m/ z calculated for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{5} 416.25627$, found 416.25591 .

Procedure in Scheme 4 (via direct conversion from compound 6): In a vial were placed racemic compound 6 ($100 \mathrm{mg}, 0.24 \mathrm{mmol}$), optically active γ-stannyl allylic alcohol $18(401 \mathrm{mg}, 0.96 \mathrm{mmol})$, toluene (2.4 mL) and AIBN (Aldrich, $3.9 \mathrm{mg}, 0.024 \mathrm{mmol}$). After the reaction was stirred for 16 h at $130^{\circ} \mathrm{C}$, the resulting mixture was cooled to room temperature, and purified by flash chromatography using $1: 1$ to $1: 2$ hexane/EtOAc to give optically active $16(22 \mathrm{mg}, 21 \%$ yield) and $\mathbf{1 9}$ ($19 \mathrm{mg}, 20 \%$ yield). The spectral data for $\mathbf{1 9}$ is the same as its racemic mixture 17.

Preparation of optically active allylic alcohol 18. To a solution of $\mathrm{LiAlH}_{4}(6.0 \mathrm{~mL}, 1 \mathrm{M}$ in THF, 6.0 mmol) was added ethanol ($3.0 \mathrm{~mL}, 2 \mathrm{M}$ in THF, 6.0 mmol) dropwise at room temperature. To this was added (S)-binaphthol (Aldrich, $1.7 \mathrm{~g}, 6.0 \mathrm{mmol}$) in 2 mL of THF, and the resulting mixture was stirred for 30 min . The 1-tri- n-butylstannyl-1-octen-3one 16 ($830 \mathrm{mg}, 2.0 \mathrm{mmol}$) in 2 mL of THF was added dropwise at $-100^{\circ} \mathrm{C}$. The reaction was quenched by adding 1 mL of methanol at $-78^{\circ} \mathrm{C}$. After the reaction was warmed to room temperature, water $(2 \mathrm{~mL})$ and ether $(30 \mathrm{~mL})$ were added. Anhydrous MgSO_{4} was added to the reaction mixture, and stirring was continued for 30 min at room temperature.

The solution was filtered through Celite by adding ethyl acetate. The filtrate was concentrated. Hexane was added to the residue to remove the binaphthol as a crystalline solid. The filtrate was concentrated and purified by flash chromatography to give compound $\mathbf{1 8}: 677 \mathrm{mg}, 82 \%$ yield. The optical purity of compound $\mathbf{1 8}$ was not determined [literature report (98% ee)]. ${ }^{13 f}$
Preparation of compound 20. To a solution of compound $19(37 \mathrm{mg}, 0.09 \mathrm{mmol})$ in 1.2 mL of THF was added 0.6 mL of 3 N aqueous NaOH . After the reaction mixture was stirred for 4 d at room temperature, it was neutralized with 2 N aqueous HCl . The organic phase was decanted with EtOAc $(35 \mathrm{~mL})$, then dried over MgSO_{4} and concentrated in vacuo. Flash chromatography with $20: 1 \mathrm{EtOAc} / \mathrm{MeOH}$ gave compound 20: $26 \mathrm{mg}, 74 \%$ yield; $\mathrm{R}_{f}=0.29(20: 1 \mathrm{EtOAc} /$ $\mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.94(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar})$, 6.91 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.73$ (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar})$, 5.71 (dd, $J=15.6$ and $5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{C}$), 5.64 (dd, $J=15.6$ and $7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 5.31(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOAr}), 4.80(\mathrm{br} \mathrm{s}$, $2 \mathrm{H}, \mathrm{OH}$'s), 4.18 (m, 1H, CHOH), 4.10 (dd, $J=11.7$ and 6.3 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CCHOH}), 3.88(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHAr}), 2.77$ $(\mathrm{m}, 1 \mathrm{H}), 2.67(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~d}, J=15.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2}$ in cyclopentane), $2.29(\mathrm{dt}, J=3.0$ and $7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 2.15 (dt, $J=15.0$ and $5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ in cyclopentane), $2.06(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~m}, 3 \mathrm{H}), 1.29(\mathrm{~m}, 6 \mathrm{H}), 0.89$ $\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 178.17,157.94$, 136.42, 128.99, 127.66, 126.78, 124.19, 122.78, 119.98, 88.03, 76.97, 72.48, 52.31, 49.96, 42.16, 32.27, 33.01, 31.83, 29.02, 25.21, 24.66, 22.67, 14.18; IR (neat) 3362 (OH), 2926, 2851 1701 ($\mathrm{C}=\mathrm{O}$), $1593,1454 \mathrm{~cm}^{-1}$; HRMS m/z calculated for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{5} 388.22497$, found 388.22512 . Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{5}$: C, 71.11; H, 8.30. Found: C, 62.38; H, 7.52.

Preparation of compounds 21 and 22

Procedure in Scheme 5 (via reduction of compound 8): To a solution of LiAlH_{4} (Aldrich, $2.8 \mathrm{~mL}, 0.539 \mathrm{M}$ in THF, 1.52 mmol) was added ethanol ($0.76 \mathrm{~mL}, 2 \mathrm{M}$ in THF, 1.52 mmol) dropwise over 10 min at room temperature. Subsequently, a THF solution of (S)-binaphthol (Aldrich, 429 mg , 1.52 mmol in 2.4 mL of THF) was added dropwise, and the resulting mixture was stirred for 30 min . Compound $\mathbf{8}$ (199 $\mathrm{mg}, 0.51 \mathrm{mmol}$) in 2 mL of THF was added dropwise over 3 \min at $-100{ }^{\circ} \mathrm{C}$, and stirring was continued for 2 h at -100 ${ }^{\circ} \mathrm{C}$ and for another 2 h at $-78^{\circ} \mathrm{C}$. The reaction was quenched by adding methanol $(0.5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and warmed to room temperature. After addition of water $(0.5 \mathrm{~mL})$ and ether (15 mL), stirring was continued for an additional 30 min . To this was added anhydrous MgSO_{4} and the mixture was filtered through Celite. Concentration, followed by flash chromatography with $1: 2$ hexane/EtOAc, gave compounds 21 (49 $\mathrm{mg}, 25 \%$ yield) and 22 ($50 \mathrm{mg}, 25 \%$ yield). Compound 21; $\mathrm{R}_{f}=0.25\left(1: 2\right.$ hexane/EtOAc); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.91(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 6.73(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 5.66(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{HC}=\mathrm{CH}), 5.33(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOAr}), 4.20(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CHOH}), 4.10\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OCH}_{2}\right.$ and $\left.\mathrm{C}=\mathrm{CHCHOH}\right), 3.87(\mathrm{t}, J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHAr}), 2.74(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=12.9$ and 6.6 $\mathrm{Hz}, 1 \mathrm{H}), 2.55(\mathrm{~m}, 1 \mathrm{H}), 2.38\left(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ in cycolpentane), 2.27 (dt, $J=2.1$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.15 (ddd, J
$=15.0$ and 6.0 and $4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ in cycolpentane), $2.04-$ 1.78 (m, 4H), 1.67 (br s, 2H, OH's), 1.54 (m, 1H), 1.33 (m, 6 H), 1.25 ($\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $0.92\left(\mathrm{t}, J=6.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right) \delta 173.90,157.81,136.44,128.73,128.15$, 127.76, 123.91, 122.99, 119.82, 88.28, 76.93, 72.96, 60.30, $52.28,50.04,42.37,37.04,33.52,31.81,29.06,25.25,24.89$, 22.69, 14.29, 14.10; IR (neat) $3486(\mathrm{OH}), 1732(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; HRMS m/z calculated for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{5} 416.25628$, found 416.25541. Compound 22: $\mathrm{R}_{f}=0.48$ ($1: 2$ hexane/EtOAc); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.97(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.92(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.74(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 5.71(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{HC}=\mathrm{CH}), 5.34(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOAr}), 4.19(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CHOH}), 4.11\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OCH}_{2}\right.$ and $\left.\mathrm{C}=\mathrm{CHCHOH}\right), 3.90(\mathrm{t}, J=$ $11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHAr}), 2.75$ (m, 1H), 2.59 (m, 1H), 2.38 (d, J $=15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ in cyclopentane), $2.27(\mathrm{~m}, 2 \mathrm{H}), 2.16$ (ddd, $J=15.0$ and 6.0 and $4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ in cyclopentane), $2.05-1.82(\mathrm{~m}, 4 \mathrm{H}), 1.72(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.53$ (brs, 2H, $\mathrm{OHs}), 1.29(\mathrm{~m}, 6 \mathrm{H}), 1.25\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.88(\mathrm{~m}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 173.87,157.69,136.34,128.70$, 127.76, 127.08, 124.04, 122.95, 119.85, 88.23, 77.02, 72.53, $60.27,52.38,50.06,42.52,37.27,33.49,31.80$, 29.04, 25.19, 24.86, 22.63, 14.27, 14.10; IR (neat) 3416 (OH), 3053, 2845, 1732 (C=O), 1599, $1447 \mathrm{~cm}^{-1}$; HRMS m/z calculated for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{5} 416.25628$, found 416.25711 .

Procedure in Scheme 7 (via direct conversion from compound 6): In a vial were placed compound $6(109 \mathrm{mg}$, $0.26 \mathrm{mmol}), \gamma$-stannyl alcohol 18 ($164 \mathrm{mg}, 0.39 \mathrm{mmol}$), i $\operatorname{Pr}_{2} \mathrm{NEt}\left(85 \mathrm{mg}, 0.66 \mathrm{mmol}\right.$), $n-\mathrm{Bu}_{4} \mathrm{NCl}$ (Lancaster, 88 mg , $0.31 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(2.9 \mathrm{mg}, 0.013 \mathrm{mmol})$ and DMF (52 mL) as solvent. After the resulting mixture was stirred for 12 h at room temperature, it was passed through a silica gel pad with $1: 2$ hexane/EtOAc. The solution was concentrated, and the residue was purified by flash chromatography with $1: 2$ hexane/EtOAc to give compounds $21(15 \mathrm{mg}, 14 \%$ yield) and 26 ($17 \mathrm{mg}, 16 \%$ yield).

Compound 27. To a solution of compound 26 (55 mg , 0.14 mmol) in 1.8 mL of THF was added 3 N aqueous $\mathrm{NaOH}(0.9 \mathrm{~mL})$ at room temperature. After the reaction was stirred for 6 d at room temperature, it was neutralized by 2 N aqueous HCl . The organic phase was decanted with ethyl acetate and dried over MgSO_{4}. Concentration in vacuo followed by flash chromatography with $20: 1 \mathrm{EtOAc} / \mathrm{MeOH}$ gave compound 27 ($47 \mathrm{mg}, 92 \%$ yield); $\mathrm{R}_{f}=0.37$ ($20: 1$ $\mathrm{EtOAc} / \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.94(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{Ar}), 6.90(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.74(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar})$, 5.72 (dd, $J=15.3$ and $5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{C}$), 5.65 (dd, $J=15.3$ and $7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}$), 5.62 (brs, $2 \mathrm{H}, \mathrm{OH}$'s), 5.32 (t, $J=$ $6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOAr}), 4.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH}), 4.12$ (dd, $J=$ 12.0 and $9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CHCHOH}), 3.89(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.80(\mathrm{dt}, J=4.2$ and $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{~m}$, $1 \mathrm{H}), 2.38\left(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ in cyclopentane), 2.29 (dd, $J=14.1$ and $6.3 \mathrm{~Hz}, 2 \mathrm{H}$), 2.22-2.04 (m, 2H), 1.84 (m, $1 \mathrm{H}), 1.49(\mathrm{~m}, 3 \mathrm{H}), 1.29(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{t}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 178.54,157.87,136.26,128.88$, 127.64, 126.73, 124.15, 122.72, 119.92, 88.00, 76.93, 72.39, 52.27, 49.92, 42.12, 37.19, 33.07, 31.81, 28.97, 25.17, 24.64, 22.64, 14.13; IR (neat) $3412(\mathrm{OH}), 3271(\mathrm{OH}), 3063$,

2924, 2858, $1709(\mathrm{C}=\mathrm{O}), 1456,1254 \mathrm{~cm}^{-1}$; HRMS m/z calculated for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{5} 388.22497$, found 388.22589. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{5}$: C, 71.11; H, 8.30. Found: C, 70.36; H, 8.09.

References

1. Moncada, S.; Gryglewski, R. J.; Bunting, S.; Vane, J. R. Nature 1976, 263, 663.
2. Johnson, R. A.; Morton, D. R.; Kinner, J. H.; Gorman, R. R.; McGuire, J. C.; Sun, F. F.; Whittaker, N.; Bunting, S.; Salmon, J.; Moncada, S.; Vane, J. R. Prostaglandins 1976, 12, 915.
3. (a) Bartmann, W.; Beck, G. Angew. Chem., Int. Ed. Engl. 1982, 21, 751. (b) Newton, R. F.; Roberts, S. M.; Taylor, R. J. K. Synthesis 1984, 449. (c) Skuballa, W.; Schillinger, E.; Sturzebecher, C. St.; Vorbruggen, H. J. Med. Chem. 1986, 29, 313.
4. (a) Ohno, K.; Nagase, H.; Matsumoto, K.; Nishiyama, H.; Nishio, S. Adv. Prostaglandin Thromboxane Leukotriene Res. 1985, 15, 279. (b) Umetsu, T.; Murata, T.; Tanaka, Y.; Osada, E.; Nishio, S. Jpn. J. Pharmacol. 1987, 43, 81. (c) Ohno, K.; Nishiyama, H.; Nagase, H.; Matsumoto, K.; Ishikawa, M. Tetrahedron Lett. 1990, 31, 4489. (d) Nagase, H.; Matsumoto, K.; Yoshiwara, H.; Tajima, A.; Ohno, K. Tetrahedron Lett. 1990, 31, 4493. (e) Ohno, K.; Takahashi, T.; Ohtake, A.; Wakita, H.; Nishio, S. PTC Int. Appl. WO 89 03,378; Chem. Abstr. 1989, 111, 232453p.
5. Nishio, S.; Nagase, H.; Kanou, K.; Aoki, S.; Kanbayashi, Y. Yakugaku Zasshi 1997, 117, 509.
6. (a) Larock, R. C.; Lee, N. H. J. Am. Chem. Soc. 1991, 113, 7815. (b) Larock, R. C.; Lee, N. H. Tetrahedron Lett. 1991, 32, 5911. (c) Lee, N. H.; Larock, R. C. Bull. Korean Chem. Soc. 1995, 16, 859.
7. This results have been published as a communication, see: Larock, R. C.; Lee, N. H. J. Org. Chem. 1991, 56, 6253.
8. Deardorff, D. R.; Myles, D. C.; MacFerrin, K. D. Tetrahedron Lett. 1985, 26, 5615.
9. Stork, G.; Sher, P. M.; Chen, H. L. J. Am. Chem. Soc. 1986, 108, 6384.
10. Sonnerberg, F. M. J. Org. Chem. 1970, 35, 3166.
11. Keck, G. E.; Burnett, D. A. J. Org. Chem. 1987, 52, 2958.
12. (a) Noyori, R.; Tomio, I.; Yamada, M.; Nishizawa, M. J. Am. Chem. Soc. 1984, 106, 6717. (b) Noyori, R.; Tomio, I.; Tanimoto, Y.; Nishizawa, M. J. Am. Chem. Soc. 1984, 106, 6709.
13. (a) Fried, J.; Lin, C.; Mehra, M.; Kao, W.; Dalven, P. Ann. N.Y. Acad. Sci. 1971, 180, 38. (b) Larock, R. C.; Babu, S. Tetrahedron 1987, 43, 2013. (c) Midland, M. M.; Graham, R. S. Org. Synth. 1984, 63, 57. (d) Kang, S. K.; Lee, D. H.; Lee, J. M. Synlett 1990, 591. (e) Suzuki, M.; Morita, Y.; Koyano, K.; Koga, M.; Noyori, R. Tetrahedron 1990, 46, 4809. (f) Kitano, Y.; Matsumoto, T.; Okamoto, S.; Shimazaki, T.; Kobayashi, Y.; Sato, F. Chem. Lett. 1987, 1523.
14. For a review of the cross-coupling of organostannanes and palladium compounds, see: Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508.
15. Kaneko, C.; Sugimoto, A.; Tanaka, S. Synthesis 1973, 790.
16. Jung, M. E.; Light, L. A. Tetrahedron Lett. 1982, 23, 3851.
