Determination of Hydroperoxyl/superoxide Anion Radical (HO₂'/O₂'⁻) Concentration in the Decomposition of Ozone Using a Kinetic Method

Bum Gun Kwon^a and Jai H. Lee^{*}

Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Korea. *E-mail: jhlee@gist.ac.kr Received June 3, 2006

A novel kinetic method for determination of HO₂'/O₂⁻⁻ in ozone decomposition in water is described. In this study, potential interferences of O₃ and the hydroxyl radicals, $OH_{(O3)}$, are suppressed by HSO₃^{-/}SO₃²⁻. HO₂'/O₂⁻⁻ formed in ozone decomposition reduces Fe³⁺-EDTA into Fe²⁺-EDTA and subsequently the well-known Fenton-like (FL) reaction of H₂O₂ and Fe²⁺-EDTA produces the hydroxyl radicals, $OH_{(FL)}$. Benzoic acid (BA) scavenges $OH_{(FL)}$ to produce OHBA, which are analyzed by fluorescence detection ($\lambda_{ex} = 320$ nm and $\lambda_{em} = 400$ nm). The concentration of HO₂'/O₂⁻⁻ in ozone decomposition has been determined by the novel kinetic method using the experimentally determined half-life (t_{1/2}). The steady-state concentration of HO₂'/O₂⁻⁻ in ozone decomposition is inversely proportional to pH values. This pH dependence is due to significant loss of O₂⁻⁻ by O₃ at higher pH conditions. The steady-state concentrations of HO₂'/O₂⁻⁻ are in the range of 2.49 (± 0.10) × 10⁻⁹ M (pH = 4.17) ~ 3.01 (± 0.07) × 10⁻¹⁰ M (pH = 7.59) at [O₃]₀ = 60 μ M.

Key Words : Hydroperoxyl radical, Superoxide anion radical, Ozone, Fenton-like, Hydroxyl radical

Introduction

The chemistry of ozone is of major interest in drinking water and wastewater treatment processes since ozone has been recognized as a potent oxidant to improve taste, color, disinfection, and degradation of pollutants.¹ During ozone decomposition in water, however, the two major oxidants, ozone and the hydroxyl radicals ($OH_{(O3)}$), govern the oxidative processes.²⁻⁷ The reaction of transient hydroper-oxyl/superoxide anion radical (HO_2^-/O_2^{--}) with ozone is one of the possible formation pathways for generating $OH_{(O3)}$. This reaction has found comparable interest considering the production of the highly reactive $OH_{(O3)}$ to eliminate ozone-refractory compounds in water treatment processes.⁸

Numerous studies on the HO_2'/O_2'' reactions in the decomposition of aqueous ozone are now available in several studies.^{2-7,9,10} So far, the best reaction model to explain the decomposition of ozone in water is the chain mechanism suggested by the elegant works of Hoigne and co-workers as follow:^{1,8}

$$O_3 + OH^- \rightarrow HO_2^- + O_2 \tag{1}$$

$$HO_2^- + H^+ \leftrightarrow H_2O_2 \qquad pK_a = 11.6 \tag{2}$$

$$HO_2^- + O_3 \rightarrow O_2^- + OH_{(O3)} + O_2$$
(3)

$$H_2O_2 + O_3 \rightarrow HO_2 + OH_{(O3)} + O_2$$

$$\tag{4}$$

$$O_2^{-} + H^+ \leftrightarrow HO_2^{-} \qquad pK_a = 4.8 \tag{5}$$

$$O_2^{-} + O_3 \rightarrow O_2 + O_3^{-} \tag{6}$$

 $HO_2 + O_3 \rightarrow 2O_2 + OH_{(O3)}$ $\tag{7}$

 $O_3^{-} \rightarrow O_2 + O^{-} \tag{8}$

$$O^{-} + H^+ \leftrightarrow OH_{(O3)} \qquad pK_a = 11.8$$
 (9)

$$OH_{(O3)} + O_3 \rightarrow HO_2 + O_2$$
(10)

^aPresent address: Environmental & Whole Information System (E&WIS), Seoul 151-848, Korea.

$$OH_{(O3)}$$
 + Pollutants \rightarrow Products (11)

In aqueous solution of ozone, the initiation of ozone decomposition can be accelerated with increasing the concentration of hydroxide ion, and ozone decomposition is propagated by hydrogen peroxide (H_2O_2/HO_2^-) . The reaction between O₃ and H_2O_2/HO_2^- leads to the formation of $OH_{(O3)}$, HO₂', and O₂. Subsequently, O₂⁻⁻ reacts with O₃ to produce O₃⁻⁻, which is decomposed to O₂ and O⁻⁻. The additional hydroxyl radicals, $OH_{(O3)}$, is generated in an acid-base equilibrium of O⁻⁻ (reactions 7-9). Then $OH_{(O3)}$ reacts rapidly with O₃ producing HO₂⁻. Thus, the decomposition of O₃ is accelerated by radical-type chain reactions. However, ozone-refractory compounds in reaction 11 may compete with O₃ for $OH_{(O3)}$.

Up to now, two methods have been available for the detection and/or determination of HO2 /O2 - in ozone decomposition reactions: a) the kinetic spectroscopy in pulse radiolysis of aqueous ozone solutions;^{2,11} b) the reduction of tetranitromethane (TNM, C(NO2)4) as an HO2/O2⁻ indicator.^{6,8} In the kinetic spectroscopy method, both HO₂ and O2⁻ formed in the decomposition of electron-irradiated aqueous ozone have distinct absorption spectra ($\varepsilon_{HO_2}^{220nm} \approx 1,350 \text{ M}^{-1}\text{cm}^{-1}$ and $\varepsilon_{O_2}^{220nm} \approx 1,900 \text{ M}^{-1}\text{cm}^{-1}$) at pH 2 and 10.5, respectively.^{9,11} This method, however, has been limited in O₃ solution by the spectrum overlapping since many chemical species, *i.e.*, OH ($\varepsilon_{220nm} \approx 550 \text{ M}^{-1} \text{cm}^{-1}$)¹¹ and O_3 ($\varepsilon_{220nm} = 516 \text{ M}^{-1}\text{cm}^{-1}$ as estimated value) (see Appendix), absorb strongly at wavelength 220 nm. The use of the kinetic spectroscopy has only focused on the rate constant data of HO₂/O₂⁻ with ozone.^{2,11} In the TNM method, the reaction of TNM with HO2'/O2'- at diffusioncontrolled rate ($k = 2 \times 10^9 \text{ M}^{-1}\text{s}^{-1}$) produces the nitroform

anion, $C(NO_2)_3^-$ (NF⁻) with intense optical absorbance $(\varepsilon_{350nm} = 15,000 \text{ M}^{-1}\text{cm}^{-1}).^8$ However, the spectrophotometric method using TNM has suffered from low sensitivity,¹² and a consumption of NF⁻ by ozone as well as a rapid production of NF⁻ by the hydrolysis of TNM has to be taken into account.⁸ This method has high uncertainty for the quantitative determination of HO₂'/O₂⁻⁻ concentration. Nevertheless, information on the concentration of HO₂'/O₂⁻⁻ has been so far limited in earlier studies involving O₃ chemistry in aqueous solution.

For an alternative method of determining the HO_2/O_2^{-1} , Kwon et al.¹² developed a new kinetic method as an analytical tool for the measurement of HO2'/O2' in aqueous solution. This new method is based on the reduction of Fe^{3+} -EDTA into Fe²⁺-EDTA by HO₂/O₂⁻⁻ and the subsequent well-known Fenton-like (FL) reaction of H_2O_2 and Fe^{2+} -EDTA to yield the hydroxyl radicals, 'OH_(FL). Benzoic acid (BA) scavenges OH(FL) to produce hydroxybenzoic acids (OHBA), which are analyzed by fluorescence detection (λ_{ex} = 320 nm and λ_{em} = 400 nm). The concentration of HO₂ /O₂ in ozone decomposition has been determined by the novel kinetic method using the experimentally determined half-life $(t_{1/2})$. The new kinetic method has shown high sensitivity and simple calibration system. It can contribute significantly to the studies of HO2 '/O2' at very low concentrations as well as of the basic function of HO_2'/O_2 .

In this study, the optimization of the kinetic method in aqueous ozone decomposition and the quantitative determination of HO_2^-/O_2^- concentration are investigated. The reactions of O₃ with H_2O_2/HO_2^- and HO_2^-/O_2^- produce the hydroxyl radicals, $OH_{(O3)}$, through reactions of 3-4 and 8-9, which may interfere with the additional formation of OHBA. In addition, the OHBA formation may be resulted from the direct oxidative reaction of O₃ with BA:⁵

$$O_3 + BA \rightarrow \rightarrow OHBA$$
 (12)

Hence potential OHBA formation by reactions of O_3 and $OH_{(O3)}$ with BA should be effectively suppressed, which was performed by addition of HSO_3^{-7}/SO_3^{2-} depending on the ozone solution pH.

Experimental Section

Materials. Ozone is generated with a dioxygen (purity, 99.99%)-fed ozone generator (Ozonia Triogen, model LAB2A). The aqueous stock solution of ozone is generated with bubbling the gas-phase ozone through a gas-washing bottle (500 mL) filled with slightly acidic deionized water. The concentration of aqueous ozone stock solution is determined spectrophotometrically by measuring the absorbance at 258 nm ($\varepsilon = 2,900 \text{ M}^{-1}\text{cm}^{-1}$).¹³ Stock solution is then pipetted into a reaction flask where it is diluted in proper level with buffer solution. The solution pH is adjusted to the ranges between 4 and 10 with phosphate buffer (Sigma) and borate buffer (LabChem Inc.) along with H₂SO₄ and NaOH. Potential OHBA formation reactions by

Figure 1. Schematic diagram and calibration equipment for measuring HO_2'/O_2^- . PP, peristaltic pump; UVPR, UV photolysis reactor; KTR1, KTR2, knotted tubing reactors; GD, glass debubbler; FM, fluorometer; A/D, A/D converter; PC, computer; P1, P2, P3, P4, P5, P6, and P7, solution inlet ports; V1, V2, V3, and V4, manually operated valves.

O₃ and OH_(O3) with BA are quenched with Na₂SO₃ (Sigma). Ferric ethylenediaminetetra acetate (Fe³⁺-EDTA), ferrous sulfate, ferric sulfate, sulfuric acid, sodium hydroxide, benzoic acid (BA), and 3% hydrogen peroxide are of reagent grade, and are purchased from Sigma-Aldrich. The concentration of the stock H₂O₂ solution is determined by using KMnO₄ titration method prior to use. Working solution of H₂O₂ is prepared daily by diluting the H₂O₂ stock in proper level with high-purity deionized water. The standard HO₂/ O₂⁻⁻ solution is prepared by the photolysis of H₂O₂ solution at wavelength 254 nm.¹² All solutions are made with highpurity water from Millipore ultra-purification system (> 18 MΩ cm).

 HO_2'/O_2 ⁻ measurement system in ozone process. A schematic diagram for HO_2'/O_2 ⁻ measurement is shown in Figure 1. The apparatus and the experimental procedures employed in the present study are similar to a previous study¹² except for the $HSO_3^{-}/SO_3^{2^{-}}$ and O_3 ports. All solutions are delivered by using peristaltic pump (Ismatec) with PTFE tubing (Cole-Parmer, i.d. 0.8 mm).

During measurement of HO₂/O₂⁻⁷, V1 (valve 1) and V2 (valve 2) are opened, while V3 and V4 are closed, and O₃ solution is delivered through the port 1 (P1, 0.23 mL/min). The OH-initiated decomposition of O₃ leads to the formation of HO₂/O₂⁻⁷, OH_(O3), and O₂.² Solution of SO₃²⁻ is added through the port 2 (P2, 0.23 mL/min) eliminating the residual O₃ and OH_(O3) which may react with BA to produce extra OHBA. Excess H₂O₂ in the port 3 (P3, 0.42 mL/min) destroys leftover HSO₃⁻⁷/SO₃²⁻ and is mixed with a premixed solution containing Fe³⁺-EDTA (port 4, 0.23 mL/min) and BA (port 5, 0.23 mL/min). Fe³⁺-EDTA is reduced by O₂⁻⁻ to Fe²⁺-EDTA with $k_{13} = 2 \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$.

Determination of Hydroperoxyl/superoxide Anion Radical (HO_2/O_2^{-})

$$Fe^{3+}$$
-EDTA + $O_2^{-} \rightarrow Fe^{2+}$ -EDTA + O_2 (13)

Subsequent Fenton-like reaction between Fe²⁺-EDTA and H₂O₂ ($k_{14} = (2 \pm 1) \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$) leads to the production of $\cdot \text{OH}_{(\text{FL})}$ and the regeneration of Fe³⁺-EDTA:¹⁴

$$Fe^{2+}$$
-EDTA + H₂O₂ \rightarrow Fe^{3+} -EDTA + OH⁻ + OH_(FL) (14)

Then, $OH_{(FL)}$ produces OHBA in the presence of BA with a nearly diffusion-controlled rate constant of $k_{15} = 4.3 \times 10^9$ $M^{-1} s^{-1}$ in KTR1 (knotted tubing reactor 1):¹⁵

$$OH_{(FL)} + BA \rightarrow OHBA$$
 (15)

After, 0.05 N NaOH through the port 6 (P6, 0.23 mL/min) is added to raise pH level above 11 at which the fluorescence signal of OHBA can be maintained at a maximum level. The mixed solution occasionally causes the formation of air bubble in the effluent stream, which is removed by a glass debubbler (GD) prior to the fluorometer (FM) in order to prevent a noise signal by the air bubbles.

The OHBA fluorescence is then measured with a fluorometer (Waters 474 model) equipped with a 16 μ L flowthrough cell using $\lambda_{ex} = 320 \text{ nm} / \lambda_{em} = 400 \text{ nm}$ with slitwidth of 40 nm. The fluorescence signal is transferred to a data acquisition system, *Auto-chrowin* (Younglin, Korea), consisting of an analog-to-digital converter (A/D) with a personal computer (PC).

Calibration procedures for HO₂/O₂⁻. The calibration employed in this work is described in detail in the previous study.¹² Briefly, during calibration of the system, V3 and V4 are opened, while V1 is by-passed and V2 is closed. All working solutions containing 4 mM H₂O₂, 20 μ M Fe³⁺-EDTA, 1 mM benzoic acid (BA), and 0.05 N NaOH are passed through the appropriate ports under UV lamp-off and the base lines are monitored. H₂O₂ solution ($\varepsilon_{254nm} = 19 \text{ M}^{-1}$ cm⁻¹) placed in UV irradiation under lamp-on using a 4W low pressure Hg lamp ($\lambda_{max} = 254 \text{ nm}$, Philips) is photodecomposed to produce two OH radicals. Most of the OH radicals formed under UV irradiation react with residual H₂O₂ giving HO₂:

$$H_2O_2 + h\nu \to 2 \text{ OH}$$
(16)

$$OH + H_2O_2 \rightarrow HO_2 + H_2O \tag{17}$$

where $k_{17} = 2.7 \times 10^7 \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}.^9$

In the absence of additives, HO₂⁻ and O₂⁻⁻ in knotted tubing reactor 2 (KTR2) are disproportionated by self-reactions of 18 and 19 according to the empirically observed pH-dependent rate constant, k_{obs} .⁹

$$\mathrm{HO}_{2}^{\prime} + \mathrm{HO}_{2}^{\prime} \rightarrow \mathrm{H}_{2}\mathrm{O}_{2} + \mathrm{O}_{2} \tag{18}$$

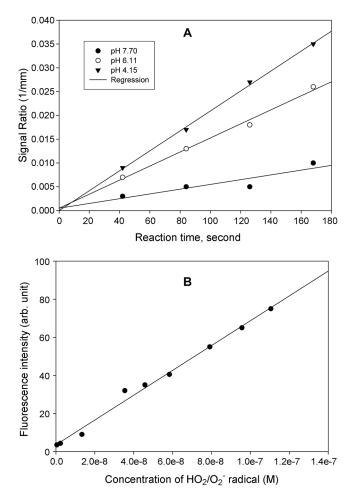
$$\mathrm{HO}_2^{-1} + \mathrm{O}_2^{-1} \to \mathrm{HO}_2^{-1} + \mathrm{O}_2^{-1} \tag{19}$$

$$k_{\rm obs} = \{k_{18} + k_{19}(K_{\rm HO2}/[\rm H^+])\}/(1 + K_{\rm HO2}/[\rm H^+])^2$$
(I)

where k_{obs} can be calculated at a given pH using $k_{18} = (8.3 \pm 0.7) \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$, $k_{19} = (9.7 \pm 0.6) \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$, and $K_{HO2} = 1.6 \times 10^{-5} \text{ M}$ as recommended values.⁹ The rate of second-order reaction mainly given by the reactions of 18 and 19 is

Bull. Korean Chem. Soc. 2006, Vol. 27, No. 11 1787

$$-\frac{d[HO_2^{'}/O_2^{''}]}{dt} = k_{obs} [HO_2^{'}/O_2^{''}]^2$$
(II)


The solution of equation (II) is

$$k_{\rm obs} \times t = \frac{[\rm HO_2^{-}/O_2^{--}]_{\rm o} - [\rm HO_2^{-}/O_2^{--}]_{\rm t}}{[\rm HO_2^{-}/O_2^{--}]_{\rm o} \times [\rm HO_2^{-}/O_2^{--}]_{\rm t}} \equiv SR = \frac{A_{\rm o} - A_{\rm t}}{A_{\rm o}A_{\rm t}} \quad (III)$$

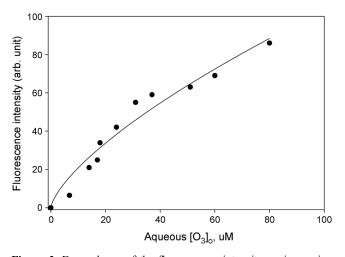
where the signal ratio (SR) can be defined as $(A_o - A_l)/(A_o \times A_t)$ where A_o is signal height of fluorescent OHBA at KTR2 of 0 m and A_t is signal heights at KTR2 of 1, 2, 3, and 4 m, respectively. Since $[HO_2'/O_2^{--}]_{t1/2}$ is equal to $[HO_2'/O_2^{--}]_o/2$ at the half-life $(t_{1/2})$, equation (III) becomes

$$[HO_2^{\prime}/O_2^{\prime-}]_o = \frac{1}{k_{obs} \times t_{1/2}}$$
(IV)

In the case of the second-order reaction, the $t_{1/2}$ is inversely proportional to the initial concentration of HO₂'/O₂⁻⁻. Thus, the concentration of HO₂'/O₂⁻⁻ can readily be determined from the $t_{1/2}$ of HO₂'/O₂⁻⁻ decay in the aqueous solution with calculated k_{obs} at a given pH.

Figure 2. A: Plot of SR vs. reaction time with straight line: [BA] = 1 mM, $[H_2O_2] = 4 \text{ mM}$, $[Fe^{3+}-EDTA] = 20 \mu M$, and [NaOH] = 0.05 N. B: Linear plot of fluorescence signal intensity versus concentration of HO_2/O_2^{--} : pH = 6.11 and same as A. Figure 2 B is fitted by the least squares method using the SigmaPlot (ver. 8.0).

1788 Bull. Korean Chem. Soc. 2006, Vol. 27, No. 11


The half-life ($t_{1/2}$) of HO₂'/O₂⁻⁻ is experimentally measured with plotting linear relationship of SR vs. reaction time based on each length of KTR2. Since self-reactions of 18 and 19 occur in KTR2, the concentrations of HO₂'/O₂⁻⁻ can be expected to decrease with increasing length of KTR2, which are stepwise varied as 0, 1, 2, 3, and 4 m. Hence the fluorescence intensity of OHBA corresponding to the concentration of HO₂'/O₂⁻⁻ is decreased with increasing length of KTR2, which is converted into reaction time by the constant flow rate through KTR2 and their constant volumes. A plot of SR vs. reaction time gives a straight line (Figure 2a) as expected, which produces a pair of slope and intercept at a given pH. From this slope and intercept, we derived the half-life ($t_{1/2}$) as following equation (V):

$$SR_{t1/2} = Slope \times t_{1/2} + Intercept$$
 (V)

where $SR_{t1/2}$ is the SR of half-life and becomes identical with $1/A_o$ at $t_{1/2}$. Consequently, a given concentration of HO_2^{-}/O_2^{-} is kinetically calculated from the equation (IV), based on the measured $t_{1/2}$ and calculated k_{obs} at a given pH. The fluorescence intensity using various irradiation time of H_2O_2 to produce different quantities of HO_2^{-}/O_2^{-} is linear at pH 6.12 as shown in Figure 2b.

Results and Discussion

Potential interferences and their elimination. As mentioned earlier, $OH_{(O3)}$ and O_3 are considered as potential interfering oxidants for the use of the kinetic method. The fluorescence intensity of OHBA against various concentrations of O_3 in the absence of Fe³⁺-EDTA is given in Figure 3, in which the fluorescence signal shows a reasonable response to $OH_{(O3)}$ and O_3 . The possible formation pathways of OHBA may be resulted from the hydroxylation of BA by O_3 (reaction 12) and $OH_{(O3)}$ (reaction 15). Although the direct hydroxylation of BA by O_3 ($k_{12} = 1.2$

Figure 3. Dependence of the fluorescence intensity on increasing O_3 concentration in the absence of Fe^{3+} -EDTA: pH = 4.9, [BA] = 1 mM, $[H_2O_2] = 4$ mM, and [NaOH] = 0.05 N. The fitting method is the hyperbola method with nonlinear regression using SigmaPlot (ver. 8.0).

Bum Gun Kwon and Jai H. Lee

 $M^{-1}s^{-1}$) is negligible,⁵ O₃ decomposition in water can continuously generate $OH_{(O3)}$ which reacts very rapidly with BA ($k_{15} = 4.3 \times 10^9 M^{-1} s^{-1}$) to produce OHBA.¹⁵ Thus, OH_(O3) and O₃ have to be eliminated prior to their reactions with Fe³⁺-EDTA/H₂O₂/BA for HO₂/O₂⁻⁻ determination using the kinetic method. This prompted us to seek a proper scavenging compound that would suppress OH_(O3) and O₃ while minimizing the quenching of the fluorescence signal of OHBA generated from OH_(FL).

Several compounds such as formate (HCOO⁻), alcohols (i.e., methanol and ethanol), nitrite (NO2⁻), and sulfite $(SO_3^{2^-})$ were considered as scavengers for suppressing both OH_(O3) and O₃. Formate, methanol, and ethanol, however, lead to a production of additional HO2'/O2⁻⁻ in the presence of $OH_{(O3)}^{7}$ and react very slow with O₃, $k = 0.02-100 \text{ M}^{-1}$ $s^{-1.5}$ In addition, nitrite reacts fast not only with $OH_{(O3)}$ and O_3 but also with $HO_2/O_2^{-.5,9,15}$ Hence, formate, alcohols, and nitrite are not proper scavengers in the kinetic method for HO_2/O_2 determination. On the other hand, it has been well known the chain oxidation mechanism of HSO_3^{-7}/SO_3^{-2} in aqueous solution. As expected from kinetic considerations, HSO₃^{-/}SO₃²⁻ is considered as a possible scavenger of both $OH_{(O3)}$ and O_3 . The interfering effects of O_3 and $OH_{(O3)}$ in the kinetic method may be effectively suppressed by addition of HSO₃^{-/}SO₃²⁻ as follow:^{4,5,9,16-20}

$$O_3 + SO_3^{2-} \rightarrow \text{ products}$$
 (20)

$$O_3 + HSO_3^- \rightarrow \text{ products}$$
 (21)

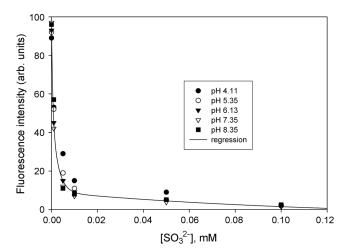
$$OH_{(O3)} + SO_3^{2-} \rightarrow OH^- + SO_3^{--}$$

$$(22)$$

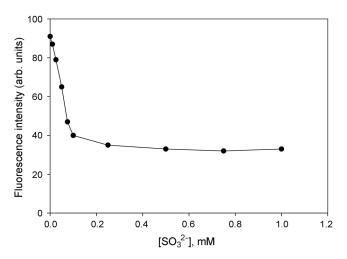
$$^{\circ}OH_{(O3)} + HSO_{3}^{-} \rightarrow H_{2}O + SO_{3}^{-}$$

$$(23)$$

$$O_2^- + SO_3^{2-} (+H_2O) \rightarrow SO_3^- + HO_2^- + OH^-$$
 (24a)


$$HO_2 + HSO_3 \rightarrow \text{products}$$
 (24b)

$$HSO_3^- \leftrightarrow SO_3^{2-} + H^+ \quad pK_a = 7.2$$
(25)


where $k_{20} = 1.0 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$, $k_{21} = 3.2 \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$, $k_{22} = 5.5 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$, $k_{23} = 4.5 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$, $k_{24a} = 82 \text{ M}^{-1} \text{ s}^{-1}$, and $k_{24b} < 20 \text{ M}^{-1} \text{ s}^{-1}$. O₃ and 'OH_(O3) react rapidly with HSO₃⁻/SO₃²⁻ at nearly diffusion-controlled rate (reactions of 20, 22, and 23), whereas HO₂'/O₂⁻⁻ reacts very slow with HSO₃⁻/SO₃²⁻ (reactions of 24a and 24b). SO₃⁻⁻ formed in reactions 22-24a would be removed by dissolved O₂ with $k_{26} = 1.5 \times 10^9 \text{ M}^{-1} \text{s}^{-1}$.⁵

$$2SO_3^{-} + O_2 \rightarrow \rightarrow 2SO_4^{2-}$$
(26)

In order to examine the scavenging effect of HSO_3^{-}/SO_3^{2-} on both $OH_{(O3)}$ and O_3 , the kinetic method for HO_2/O_2^{--} measurement is evaluated without and with Fe³⁺-EDTA. In the absence of the Fe³⁺-EDTA, Figure 4 shows the dependence of the fluorescence intensity of OHBA on $HSO_3^{-/}SO_3^{2-}$ concentration at various pH conditions of 4.11-8.35. The fluorescence intensity of OHBA is rapidly decreased by gradually increasing HSO_3^{-}/SO_3^{2-} concentrations in the ranges of 0.001-0.01 mM and is slowly decreased thereafter. It suggests that HSO_3^{-}/SO_3^{2-} effectively eliminates residual O_3 and $OH_{(O3)}$ formed by ozone decomposition. After eliminating O_3 and $OH_{(O3)}$, residual SO_3^{2-} may compete

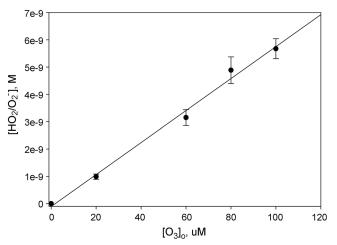


Figure 4. Dependence of the fluorescence intensity on increasing of $SO_3^{2^-}$ concentration in the absence of Fe^{3+} -EDTA and in different pH conditions: $[O_3] = 60 \ \mu M$, $[BA] = 1 \ mM$, $[H_2O_2] = 4 \ mM$, and $[NaOH] = 0.05 \ N$. The fitting method is the exponential decay method using SigmaPlot (ver. 8.0).

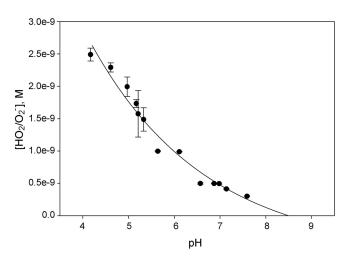


Figure 5. Dependence of the fluorescence intensity on increasing of $SO_3^{2^-}$ concentration in the presence of $[Fe^{3+}-EDTA] = 20 \ \mu M$: pH = 4.9, $[O_3] = 60 \ \mu M$, $[BA] = 1 \ mM$, $[H_2O_2] = 4 \ mM$, and $[NaOH] = 0.05 \ N$.

with BA for $OH_{(FL)}$. This competing reaction would be eliminated by the oxidation of residual HSO₃^{-/}SO₃²⁻ by excess H₂O₂ prior to the Fenton-like reaction. On the other hand, in the presence of Fe³⁺-EDTA the fluorescence intensity of OHBA is measured at pH 4.9 as shown in Figure 5. The fluorescence intensity of OHBA is rapidly decreased by gradually increasing sulfite concentration in the ranges of 0-0.1 mM and thereafter reaches at a steady fluorescence intensity. This rapid decrease of the fluorescence signal indicates that residual O3 and OH(O3) formed by O3 decomposition are properly eliminated by sulfite, and the steady fluorescence signal of OHBA is caused by HO₂/O₂. through the reduction of Fe³⁺-EDTA into Fe²⁺-EDTA followed by the Fenton-like reaction of H₂O₂ and Fe²⁺-EDTA in the presence of BA. These results suggest that the kinetic method using HSO_3^{-}/SO_3^{2-} can be used to determine

Figure 6. The steady-state concentration of $HO_2'/O_2'^-$ depending on initial O₃ concentration: pH = 4.9, $[SO_3^{2-}] = 0.1$ mM, $[Fe^{3+}-EDTA] = 20 \ \mu$ M, [BA] = 1 mM, $[H_2O_2] = 4$ mM, and [NaOH] = 0.05 N. The fitting method is the least squares method using SigmaPlot (ver. 8.0).

Figure 7. Dependence of the steady-state HO₂'/O₂⁻ concentrations on pH: $[SO_3^{2^-}] = 0.1 \text{ mM}$, $[Fe^{3+}$ -EDTA] = 20 μ M, [BA] = 1 mM, $[O_3] = 60 \ \mu$ M, $[H_2O_2] = 4 \text{ mM}$, and [NaOH] = 0.05 N. The fitting method is the exponential method using SigmaPlot (ver. 8.0).

the steady-state concentration of HO_2^{-}/O_2^{-} formed in O_3 decomposition.

Determination of HO₂/ O_2 ⁻⁻. The steady-state concentration of HO₂/ O_2 ⁻⁻ in aqueous O₃ solution was measured by using the kinetic method as a function of initial O₃ concentration at pH 4.9 using a continuous flow system as shown in Figure 6. The concentration of HO₂/ O_2 ⁻⁻ increases with increasing the O₃ concentration, which shows a reasonable linearity within the experimental error. These results suggest that the steady-state HO₂/ O_2 ⁻⁻ concentration is proportional to the O₃ concentration at a given pH.

The steady-state concentration of HO₂'/O₂⁻⁻ generated during O₃ decay shows pH dependence in the range of pH 4-7.59 as shown in Figure 7 and in Table 1, and they are ranging from 2.49 (\pm 0.10) × 10⁻⁹ M (pH = 4.17) ~ 3.01 (\pm 0.07) × 10⁻¹⁰ M (pH = 7.59) at [O₃]_o = 60 μ M. The pH

Table 1. Dependence of the steady-state HO_2'/O_2 concentrations on pH

pН	Concentration of $HO_2^{-}/O_2^{}(\pm)^a$, M
4.17	$2.49 (\pm 0.10) \times 10^{-9}$
4.61	$2.29~(\pm 0.07) imes 10^{-9}$
4.97	$1.99 (\pm 0.15) \times 10^{-9}$
5.17	$1.73 (\pm 0.06) \times 10^{-9}$
5.21	$1.58 (\pm 0.36) \times 10^{-9}$
5.33	$1.49 \ (\pm \ 0.18) \ imes \ 10^{-9}$
5.64	$9.97~(\pm 0.06) imes 10^{-10}$
6.11	$9.88~(\pm 0.03) imes 10^{-10}$
6.57	$4.98~(\pm~0.11)\times10^{-10}$
6.87	$4.98~(\pm 0.05) imes 10^{-10}$
6.98	$4.96~(\pm 0.10) imes 10^{-10}$
7.14	$4.14~(\pm 0.10) \times 10^{-10}$
7.59	$3.01~(\pm 0.07) imes 10^{-10}$

^athe errors in parentheses refer to standard deviation

dependence of HO₂ /O₂⁻ concentration is distinguished from the different reactivities of HO₂ and O₂⁻ on O₃ molecules. Based on pK_a (HO₂) = 4.8, at low pH condition [HO₂]/ [O₂⁻] ratio is high and HO₂ reacts very slow with O₃ ($k_7 < 10^4 \text{ M}^{-1}\text{s}^{-1}$).²¹ Thus, the steady-state concentration of HO₂ is relatively high. On the other hand, as the pH increases, [HO₂]/[O₂⁻] ratio rapidly decreases. Since the reaction between O₂⁻ and O₃ ($k_6 = 1.52 (\pm 0.05) \times 10^9 \text{ M}^{-1}\text{s}^{-1}$)^{2,11} is very fast, the loss rate of O₂⁻ by O₃ is increased as pH increases. Thus, its concentration obtained by the kinetic method is relatively low or even undetectable at higher pH (> 8).

However, any quantitative concentration of HO₂'/O₂⁻⁻ measured in the ozone decomposition in water has not been found from a number of previous studies. Staehelin *et al.*⁷ reported without specifying pH condition that the steady-state concentration of HO₂'/O₂⁻⁻ was estimated to be $\leq 10^{-9}$ M, assuming that formation rate of HO₂'/O₂⁻⁻ is $\leq 10^{-5}$ M/s and ozone concentration of $\leq 10^{-5}$ M controls its consumption rate. It is fortuitous that the steady-state concentrations of HO₂'/O₂⁻⁻ measured in this study find a reasonable agreement with their results.

Conclusions

The concentration of HO₂/O₂⁻⁻ in ozone decomposition has been determined by the novel kinetic method using the experimentally determined half-life (t_{1/2}). HO₂/O₂⁻⁻ formed in ozone decomposition reduce Fe³⁺-EDTA into Fe²⁺-EDTA and subsequently the well-known Fenton-like (FL) reaction of H₂O₂ and Fe²⁺-EDTA produces the hydroxyl radicals, OH_(FL). Benzoic acid (BA) scavenges OH_(FL) to produce OHBA, which are analyzed by fluorescence detection (λ_{ex} = 320 nm and λ_{em} = 400 nm). In this study, potential interferences of O₃ and the hydroxyl radicals, OH_(O3), are suppressed by HSO₃⁻⁷/SO₃²⁻. The steady-state concentration of HO₂/O₂⁻⁻ is proportional to the O₃ concentration at a given pH. However, the steady-state concentration of HO₂/ O₂⁻⁻ in ozone decomposition is inversely proportional to pH values. This pH dependence is due to significant loss of O₂⁻⁻ by O₃ at high pH conditions. The steady-state concentrations of HO₂'/O₂⁻⁻ are in the range of 2.49 (\pm 0.10) × 10⁻⁹ M (pH = 4.17) ~ 3.01 (\pm 0.07) × 10⁻¹⁰ M (pH = 7.59) at [O₃]_o = 60 μ M.

Acknowledgements. This work was supported by Ministry of Environment as "the Eco-technopia 21 project" and in part by the Korea Science and Engineering Foundation (KOSEF) through the Advanced Environmental Monitoring Research Center (ADEMRC) at Gwangju Institute of Science and Technology (GIST) and the Brain Korea 21 Project, Ministry of Education and Human Resources Development Korea.

References

- 1. von Gunten, U. Wat. Res. 2003, 37, 1443-1467.
- 2. Bühler, R. E.; Staehelin, J.; Hoigne, J. J. Phys. Chem. 1984, 88, 2560-2564.
- 3. Hoigne, J.; Bader, H. Wat. Res. 1976, 10, 377-386.
- 4. Hoigne, J.; Bader, H.; Haag, W. R.; Staehelin, J. *Wat. Res.* 1985, 19, 993-1004.
- 5. Neta, P.; Huie, R. E.; Ross, A. B. J. Phys. Chem. Ref. Data 1988, 17.
- 6. Staehelin, J.; Hoigne, J. Environ. Sci. Technol. 1982, 16, 676-681.
- Staehelin, J.; Hoigne, J. Environ. Sci. Technol. 1985, 19, 1206-1213.
- Flyunt, R.; Leitzke, A.; Mark, G.; Mvula, E.; Reisz, E.; Schick, R.; von Sonntag, C. J. Phys. Chem B 2003, 107, 7242-7253.
- Bielski, B. H. J.; Cabelli, D. E.; Arudi, R. L.; Ross, A. B. J. Phys. Chem. Ref. Data 1985, 14.
- Forni, L.; Bahnemann, D.; Hart, E. J. J. Phys. Chem. 1982, 86, 255-259.
- 11. Sehested, K.; Holcman, J.; Hart, E. J. J. Phys. Chem. 1983, 87, 1951-1954.
- 12. Kwon, B. G.; Lee, J. H. Anal. Chem. 2004, 76, 6359-6364.
- 13. Bader, H.; Hoigne, J. Wat. Res. 1981, 9, 449-456.
- Bull, C.; McClune, G. J.; Fee, J. A. J. Am. Chem. Soc. 1983, 105, 5290-5300.
- Buxton, G. V.; Greenstock, C. L.; Helman, W. P.; Ross, A. B. J. Phys. Chem. Ref. Data 1988, 17.
- Sadat-Shafai, T.; Pucheault, J.; Ferradini, C. Radiat. Phys. Chem. 1981, 17, 283-288.
- 17. Hayon, E.; Treinin, A.; Will, J. J. Phys. Chem. 1972, 94, 47-57.
- 18. Fischer, M.; Warneck, P. J. Phys. Chem. 1996, 100, 15111-15117.
- Das, T. N.; Huie, R. E.; Neta, P. J. Phys. Chem. A 1999, 103, 3581-3588.
- Yermakov, A. N.; Zhitomirsky, B. M.; Poskrebyshev, G. A.; Stoliarov, S. I. J. Phys. Chem. 1995, 99, 3120-3127.
- 21. Sehested, K.; Holcman, J.; Bjergbakke, E.; Hart, E. J. J. Phys. Chem. **1984**, 88, 4144-4147.

Appdendix

Estimation for the extinction coefficient of aqueous ozone. Up to now, previous studies are not presenting the extinction coefficient of aqueous ozone for the wavelength range 200 to 240 nm because of the instability of ozone in water. In this study, the extinction coefficient of ozone in water at 220 nm is extrapolating from the cross section of ozone, based on the well-known $\varepsilon_{258nm} = 2,900 \text{ M}^{-1} \text{ cm}^{-1}$. The cross sections of gaseous ozone in the atmosphere have a value of $1,120 \times 10^{-20}$ cm² at 258 nm and $199 \times 10^{-20} \text{ cm}^2$ at 220 nm, respectively. The cross section values of gaseous ozone in the atmosphere can get from NASA. (2003) JPL Publication 02-25, 4-8.