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We tried to predict the tertiary structure of the 63-residue-long alpha-helical protein, 1r69, from the amino acid
sequence with the assumption that the locations of α-helical residues are known. We applied two approaches.
One approach is to implement all-atom molecular dynamics (MD) simulations of segments of the target protein
and use the snapshot structures of these simulations as memory sets in the associated memory Hamiltonian,
which uses coarse-grained model of protein structure and describes the effect of solvent by a water-mediated
long range interaction potential. The other approach is to implement all-atom MD simulations with implicit
water model applying additional biasing potential functions to reduce the radius of gyration and induce the
formation of secondary structures for the helical residues. In the coarse grained model of the associated memory
Hamiltonian we tried two different sets of memory to see the effect of the local structural signals in the memory
set. We found that the predicted results strongly depend on the structures used in the memory set. The predicted
results from the associated memory Hamiltonian give a structure with RMSD value of 1.977 Å with respect to
the native structure. The predicted results from the biased all atom MD simulation method give a structure with
RMSD value of 2.971 Å.
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tion

Introduction

Protein folding is a fascinating topic in the computational

chemistry and biology. The problem of protein folding can

be divided into two categories: (a) dynamics of the folding

process and (b) prediction of the three dimensional struc-

tures of folded proteins.1-7 These two topics are not com-

pletely separated and some insight in one field can benefit

the other. In the field of protein structure prediction,8,9 there

are broadly three ways to approach the problem: homology

modeling,10,11 threading12,13 and ab initio prediction of the

structure using physicochemical principles. The former two

methods, homology modeling and threading, use the know-

ledge of previously solved structures,14 whereas ab initio

folding uses the physical principles starting from the amino

acid sequence. For the ab initio folding, potential energy

function is proposed and global optimization is attempted or

various sampling techniques are employed to search the

configuration space.15-26

The structure of protein molecule has a hierarchy from

one-dimensional amino acid sequences to secondary struc-

tures to tertiary folded structures.27 So we can think that the

problem of protein structure prediction can be tackled in a

stepwise manner considering the structural hierarchy of

protein molecules.28-31 Especially there are many endeavors

to predict the secondary structure from the amino acid

sequence.32-24 Also there are various investigations for the

prediction of the loop structure for the segments of amino

acid sequence as a part of a given protein molecule.35 But the

next step in the structural hierarchy of the protein structure is

far more difficult than the previous steps because of the

difficulty of modeling the interactions between the residues

which are far apart in sequence. There are some recent

advances in this direction such as the inclusion of water

mediated long range interactions36,25 into the associated

memory (AM) Hamiltonia22,37 in the description of protein

folding and dynamics. 

Another issue regarding the structural hierarchy from the

secondary structure to the tertiary structure is the influence

of the local structural signals in the folding into the 3-

dimensional structures.38-43 There are experimental observa-

tions that the segments of the peptide from the protein

molecules preserve their structural propensity to the specific

structure when they are part of the protein molecule.44-47

Myers and coworkers44 measured the helix propensities of

the nonpolar amino acids for an α-helix in an intact protein

and for a 17-residue peptide with a sequence identical to that

of the α-helix in the protein. Their conclusion was that helix

propensities can make equivalent energetic contribution in

both peptide and proteins. Dyson and coworkers45 have

examined the conformational preferences of peptides deriv-

ed from a simple four-helix bundle protein, myohemeryth-

rin, in aqueous solution and found that the peptides corre-

sponding to the helices of the folded protein all exhibit

conformational preferences for nascent helix. But they also

found that the peptide fragments derived from the β-sand-

wich protein plastocyanin are relatively devoid of secondary

structure in aqueous solution.46 Saven and Wolynes48 have
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implemented a theoretical study on the role that local

conformational tendencies can have in guiding the folding of

helical proteins using simple statistical models. Their calcu-

lation indicated that native turn and start-stop signals can be

important in guiding the molecule toward the native struc-

ture and the presence of the native stabilization with local

conformational signals acts to reduce the effective confor-

mational entropy. 

In this work we tried the protein structure prediction in the

view point of the ab initio folding method. We assume that

we know the exact information on the location of the helical

residues and tried to predict the 3-dimensional structure only

using that information. We tried two approaches: one is

using the coarse-grained model described by the associated

memory (AM) Hamiltonian with the recently developed

water-mediated interaction potential for the residues in the

long range in sequence, which will be denoted as AMW

Hamiltonian in this work. The other is using the all-atom

AMBER force field49,50 with implicit solvent model51,52 with

biasing potentials for the dihedral angle of the helical residue

and the radius of gyration of the molecule. 

The information of the location of the helical residues is

the only input in these two methods to predict the final

structure of the target protein. In the first method of the

AMW Hamiltonian, we need to provide a set of structures as

a memory term in the Hamiltonian, which will be used to

describe the short and medium range (in sequence) inter-

actions of the residues.22-24,53,54 In the previous calculations

using the AM Hamiltonian, the memory terms are provided

by a set of previously known protein structures. In the

present work we implemented the all atom MD simulations

of segments of target proteins and used the snapshot struc-

tures of these MD simulations as the memory set structures

in the AM Hamiltonian. In the simulation of the segments of

the target protein the information of locations of helical

residues is used to set up the initial configuration in which

the helical residues have a typical helical conformation. In

the second method using all atom MD simulations of the

whole molecule, the information of the location of the

helical residues is used to bias the dihedral angles of the

assigned helical residues to a typical helical conformation in

the course of the simulation. 

In the description of protein dynamics using the AM

Hamiltonian, one of the important factors is how much

helpful the structures in the memory terms of the Hamil-

tonian are in guiding the folding process. We found that the

propensity of each residue for the specific secondary struc-

tures depends on the location of that residue within the

segments in the MD simulation of the segments of the target

protein. And the conformation of each residue in the memory

set obtained from the MD simulation of the segments can be

different from the conformations of the native state. In the

present work we prepared two sets of segments to use in the

memory term: One set consists of segments sequentially

taken from the target protein without overlapping between

them. The other set consists of the previous set and addi-

tional segments which has partial overlap with the previous

segments. In this second set some residues have different

conformational preferences as their locations within seg-

ments have changed. We have compared the results from

these two memory sets and also compared them with the

previous method of using a database of known protein

structures. The objective of this work is (a) to investigate the

influence of local structural signals expressed in the memory

terms of the AMW Hamiltonian on the folding dynamics

and the final predicted structure and (b) to access the

performance of long range potential description in the AMW

Hamiltonian scheme by comparing it with the implicit water

model in the all atom simulation.

We obtained the improved results of prediction and the

free energy profile for the memory term using the first seg-

ments set compared to the result using a database of known

protein structures. In addition we obtained similarly good

results of prediction for the second scheme of the biased all-

atom MD simulation. In the next section we give briefly the

formulation of the AMW Hamiltonian and the simulation

methods. Then we summarize the results of the all-atom MD

simulations of the segments of the target protein to get the

memory set for using in the AM Hamiltonian, and we

analyze the results of the simulated annealing run using the

coarse-grained model of the AMW Hamiltonian. Next, we

give the results of the biased all-atom MD simulation, which

is the second scheme of the present work. In the final section

we give concluding remarks.

Methods

A. Associated Memory Energy Function. We used the

AMW Hamiltonian to sample structures of the target pro-

tein.22-25,53 It was originally developed by Friedrichs and

Wolynes,22 and is a coarse grained description with only Cα,

Cβ, and O atoms explicitly represented. The AM energy

function consists of a backbone term Eback and interaction

term Eint so that

E = Eback + Eint. (1)

The backbone term, which describes the protein backbone,

consists of several terms. For the detailed expression of each

term in Eback, we refer to the previous publications.23,24,53

The non-bonded interactions between residues of the

protein are supplied by the interaction term, Eint. The inter-

actions described by Eint depend on the sequence separation

|i−j | between the residues i and j involved. Specifically, they

are divided into three proximity classes, x(|i−j |): x = short

(|i−j | < 5), x = medium (5 ≤ |i−j | ≤ 12), and x = long (|i−j | >

12). Thus,

Eint = Eshort + Emed  + Elong. (2)

The short- and medium-range interactions are treated by an

associated memory energy functions:

EAM = Eshort + Emed

= (3)−
ε
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The unit of energy denoted by ε in Eq. (3) is defined as the
native state interaction energy per contact:

(4)

where N is the number of residues of the protein being
considered. a is a dimensionless constant chosen so that Eq.
(4) is satisfied. The sum over i and j runs over all possible
pairs of Cα and Cβ atoms (Cα − Cα, Cα − Cβ, Cβ − Cα, Cβ −

Cβ) with sequence separation between 3 and 12, and rij is the
distance between atoms i and j. The index μ runs over all
Nmem memory proteins to which the sequence of the target
protein has previously been aligned so that, for a given i − j

pair, there is a specific  pair in some μth memory
protein. The letter Pi represents the identity of the ith residue
in the reduced four-letter (as opposed to 20-letter) code:
hydrophilic (ala, gly, pro, ser, thr), hydrophobic (cys, ile,
leu, met, phe, trp, tyr), acidic (asn, asp, gln, glu), and basic
(arg, his, lys). Each term in the summation of Eq. (3) is a
Gaussian well centered at the separation  of the corre-
sponding memory atoms. The widths of the Gaussians are
dependent upon the sequence separation  such that

. The relative weights of these Gaussian wells
are controlled by γ’s, which depend on the identity of the
residues matched between the target and memory proteins
and the sequence separation . In this work we used the
γ values optimized using a set of α/β proteins in the previous
work of Ref. 25. 

In the previous studies using the AM energy function, this
association between  pair and  pair of the memory
has been done using a sequence-structure threading algorithm.54

In the present work we use the snapshot structures taken
from MD simulations of segments of the target protein as the
set of memory proteins in the AMW Hamiltonian. An 
pair of the target protein is associated with the same 
pair in the memory protein which is a segment of the target
protein. Thus, the Eq. (3) is effectively written as

,(5)

where .
Since Pi and Pj can have four different values and 
is short or medium, there are effectively 4 × 4 × 2 = 32
different γ parameters working in the associated memory
terms. 

The long-range interaction part Elong is not related to the
memory proteins. This term is constructed to model a
physically motivated, non-pairwise-additive model of water-
mediated interactions.36 Elong can be partitioned into three
terms:

. (6)

Econtact describes a potential well located between 4.5 Å and
6.5 Å to represent a direct contact between two residues.
Ewater gives a second well located between 6.5 Å and 9.5 Å,
representing protein-mediated or water-mediated interactions.

The switch between protein- and water-mediated potential is
done by calculating the local density around each pair of
residues. For detailed expressions for protein- and water-
mediated potentials, we refer to ref. 36. The burial profile
term, Eburial, is a many-body local density-based three well
potential that describes amino acid preferences for a parti-
cular coordinate density.25 

We carried out coarse-grained molecular dynamics simu-
lations using AMW energy function with temperature quen-
ching to search for low energy conformations. Temperature
is reduced linearly from  = 1.8 to  = 0.0 in 720000 time
steps, where  = kBT/ε. 

B. All-Atom MD Simulation of Segments of Protein.

We implemented all-atom MD simulations for segments of
the target protein to sample snapshot structures to be used
for constructing a set of memory structures in the associated
memory energy function. We have divided the 63-residue-
long target protein 1r69 into three segments which are 21-
residue long: segment A (residues 1-21), segment B (residues
22-42), segment C (residues 43-63). In addition, we take two
segments which are overlapping with the previous segments:
segment D (residues 11-31) and segment E (residues 32-52).
The N-terminal and C-terminal of each segment are blocked
by acetyl (ACE) and N-methyl (NME) group. We determin-
ed the location of the α-helical residues using the STRIDE
program.55 The residues 2-13, 17-24, 28-36, 44-52, and 56-
61 are α-helical residues. Figure 1(a) shows the segment D
starting from 11th residue as an example. For this segment
the residues 11-13, 17-24, and 28-31 are α-helical residues.
We only use the information of the locations of the alpha
helical residues and do not use detailed values of dihedral
angles. Thus we assign φ = 57o and ψ = 47o for the alpha
helical residues and φ = 180o and ψ = 180o for the rest
residues for the initial conformation of the MD simulation as
shown in Figure 1(b). We modify the dihedral angles of non-
helical residues slightly in the initial configurations if there
is any steric clash between the side chain atoms. 

We used the AMBER9 program package56 to implement
the simulation using ff03 force field50 to describe the protein
segments and implicit solvent model to describe water. We
implemented MD simulation for the five segments at 300 K
using the weak coupling algorithm of Bredensen et al.57

Time step was 1 fs. For each segment, we implemented MD
run for 24ns. For each MD trajectory, we take 60 snapshot
structures with 400ps time interval between neighboring two
snapshots. These snapshot structures will be used as memory
structures in the associated memory energy function.

C. Biased All-Atom MD Simulation. In addition to the
MD simulation of the segments of the target protein, we also
implemented MD simulations of the whole protein molecule
with biasing potentials with respect to the secondary struc-
ture and radius of gyration. The simulation protocols are
similar to the segment MD simulation. We used the langevin
dynamics for the temperature coupling. We have modified
the Amber program package56 to introduce two additional
biases: secondary structure bias and the radius of gyration
bias. For the secondary structure bias, we impose the follow-
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ing potential function of φ and ψ angles for the helical

residues:

, (7)

where x is φ or ψ. We select A = 10 kcal/mol and x0 = 57o for

φ and 47o for ψ. We impose this biasing potential only on the

helical residues. With these parameter values, the helical

residues under this potential have formed the helical struc-

tures in the early phase of the simulation. The formation of α

helical structures is completed within 100 ps from the start

of the simulation. For the biasing potential for the radius of

gyration, we use an one-sided harmonic potential: VRg =

(10.0 kcal/mol/A2)(Rg(t) − (t))2. We change the location

of the minimum of this one-sided harmonic potential

linearly with respect to time from 5  to 0.95 

where  = 2.2N0.38. The length of the simulation is 2ns.

From the analysis of the MD trajectory we found that, before

the value of  becomes about 3.5 , the protein

molecule does not feel the biasing potential of Rg. But after

 is reduced to values less than about 3.5 , the

protein molecule feels the biasing force to reduce its radius

of gyration and is forced to fold. This folding is different

from the usual protein folding in that the helical residues are

already almost formed. Therefore the interaction between

the already formed secondary structures is an important

factor in this simulation. 

We tried two versions of the implicit water model of

Generalized Born implemented in the AMBER program

packages.51,52 The two different model can be selected by

setting the igb = 5 or igb = 7 in the input file of the AMBER

program, so we denote the two versions of the implicit

solvent model with igb5 and igb7. In our biased simulation,

we treat the dihedral angle motion of non-helical residues by

the amber ff03 force field.50 We also tried a modified version

of ff03 force field, in which the potential parameters for

the backbone φ and ψ are set to be zero for non-helical

residues.58

Results and Discussion

A. Segment All-Atom MD Simulations. As an example,

Figure 1(c) represents several snapshot structures of the

segment D starting from 11th residues during the all-atom

MD simulations, which are 0.4, 4.4, 12.4, 16.4, 20.4 ns

configurations obtained from the 24 ns MD trajectory. Fig.

S1 (supporting information) shows the distribution of φ and

ψ angles obtained from the MD trajectory along with the

values of the dihedral angles of the native structure. Figure

S2 (supporting information) shows the difference between

the native angle and the most probable value of the dihedral

angle distribution.

(a) Helical residues in the ABC segment set: Forty five

residues out of 63 residues are helical residues. In the

distributions of dihedral angles for these residues, except for

two cases of residue 6 and 24, most populated conformations

are similar to the conformations of the native state. The

distributions of conformation of the residue 6 and 24 sample

both helical and extended regions but the major peaks are

located in the PII and β region, respectively.59 

(b) Non-helical residues in the ABC segment set: The

remaining 19 non-helical residues correspond to the turn and

coil regions in the native structure. For eleven residues

(residue 1, 14, 16, 37, 38, 40, 42, 43, 53, 54), the most

populated region is near the native state conformation. Three

residues (residue 15, 26, 27) have the distribution whose

major peak is at the αR conformation while the correspond-

ing native state structures are the extended β or PII con-

formations. There are five GLY residues which are αL con-

formation in the native structure. Among these, three

residues (residue 14, 37, 53) have conformations similar to

the native state. Two GLY residues (residue 25, 62) have αR

conformation. 

(c) Helical redisues in the DE segment set: The distri-

butions for the most helical residues are similar to the case of

segments A, B, and C. We can see that there is a tendency

that the residues which are near the end of a segment have

broader distributions of dihedral angle conformation com-

pared to the case when the same residue is located in the

middle of a segment. The five residues (19, 20, 21, 22, 23)

have small contributions from the extended conformation in

the ABC segment set, but the distributions of these residues

are nearly exclusively αR region in the DE segment set. The

four residues (31, 32, 51, 52) have mainly the αR confor-

mation in the ABC segment set while the extended confor-

mations are also sampled in the DE segment set. We observe

drastic changes in the dihedral angle distributions for two

residues (residue 36, 44) between the ABC segment set and
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Figure 1. A segment starting from 11th residue of the target protein. (a) Location of the segment (black) in the protein 1r69 (b) The initial
configuration for the segment MD simulation. (c) Snapshots sampled from the MD simulation trajectory for the segment.
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the DE segment set. The most populated conformation of
these two residues is αR conformation in the ABC segment
set and PII conformation in the DE segment set. Residue 24
is αR conformation in the native state, but the population of
αR structure is significantly reduced in the DE segment set.

(d) Non-helical residues in the DE segment set: Most of
these non-helical residues have significantly different distri-
butions of conformations between the ABC segment set and
the DE segment set. The Ramachandran plots for the distri-
butions of dihedral angles of several non-helical residues in
the MD simulation of both segment sets are shown in Figure
S3 (supporting information). Among the 13 non-helical
residues, five residues (14, 15, 16, 25, 37) are less native-like
conformation in the DE segment set than in the ABC
segment set. Three residues (26, 39, 40) have more native-
like conformations in the DE segment set. 

The number of residues whose dihedral angle distribution
contain both helical and non-helical regions increases from
28 residues in the three segments case (ABC) to 37 residues
in the five segments case (ABC+DE). 

B. Protein Structure Prediction with AMW Hamilto-

nian. We have implemented the annealing MD runs with
AMW Hamiltonian whose memory set consisting of the
snapshot structures of segments described in the previous
subsection. Firstly, we tried two different initial conditions: a
collapsed structure and randomly generated extended struc-
tures. For the case of the collapsed initial structure, we used
the same initial configuration for 20 annealing runs with
different random seed to initiate the dynamics. For the case
of extended initial configurations, our program for the
annealing run generates 20 different initial structures and
different random seed to start the dynamics. Secondly, we
tried two different sets of memory proteins for the AMW
Hamiltonian. The one is the set of memory which consists of
snapshot structures taken from MD trajectories of the three
segments (ABC) and the other is the set of memory which
consists of structures taken from MD trajectories of five
segments (ABC+DE).

We use the Q values to describe the resemblance of the
predicted structure with the native structure, defined as25,53

, (8)

which measures the resemblance between the predicted and
native structure by calculating the average of the Gaussian
weights as functions of the difference in the pair distances
between the two structures. The structure with Q = 1 corre-
sponds to the native state and Q = 0 means totally unfolded
state. Usually the conformations having Q values near 0.6
correspond to the RMSD value near 2 Å. Figure 2 shows the
Q values and RMSD values for the final structures obtained
by the annealing MD runs with the AMW Hamiltonian
starting from the random extended initial structure. Although
data is not shown here, the calculations starting with a
collapsed structure as initial conditions gave similar results.
Thus the dependence on the starting structure of the present

AMW annealing runs is not conspicuous. When we analyze
the trajectory of the annealing runs, we found that the initial
extended structures with the radius of gyration, Rg = 25-30 Å
collapse to structures with Rg = 11-12 Å within 3000 steps of
the total 720000 steps. This fast collapse in the annealing run
is the main reason of the weak dependence on the starting
configuration. 

A notable feature in Figure 2 is that the memory from the
MD trajectories of ABC segment set gives higher Q values
than the case of the ABC+DE segment set. As observed in
the Figure S3 (supporting information), the probability for
the helical residues to sample extended configuration is
increasing in the case of using ABC+DE set of segments. 

The best Q value among the predicted structures is 0.5482
and its RMSD is 1.977 Å. This structure is obtained from the
AMW MD run from the ABC segment set and the random
extended initial structure. We show the best Q value struc-
ture in the Figures 3(a). 

Figure S4 (supporting information) shows the best Q

values for the whole trajectories of each annealing runs. We
saved 240 structures equally spaced in annealing step for
each MD runs and selected the structure with best Q values
for each annealing trajectory. We observed that there exists a
correlation between the best Q value of the trajectory and the
Q values of the final structure of the same trajectory. The

Q = 
2

N 1–( ) N 2–( )
------------------------------------  

i j< 1–

∑ exp ri j ri j

N
–( )–

2

/2σij
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Figure 2. Plot of Q values and RMSD for the final structures
resulting from the simulated annealing runs with the random
extended initial conformation. The indexes in the x-axis are sorted
with respect to the descending Q values. 
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best Q structure for the whole trajectory and the best Q
structure among the final predicted structure are discovered
in the same trajectory. The best value of Q for the whole
trajectory is 0.5629 and its RMSD from the native structure
is 1.916 Å. We show the structure in the Figure 3(b), which
is the snapshot structure of the 642000th annealing step in the
trajectory. 

C. Analysis of the Folding Trajectories with the AMW

Hamiltonian. To compare the effect of the different memory
sets used in the AMW Hamiltonian, we calculated the Q
values for the parts of the protein molecule. The target
protein 1r69 has five helices. We denote the five helices as
H1(2-13), H2(17-24), H3(28-36), H4(44-52) and H5(56-61)
and the four non-helical regions between them as C1(14-16),
C2(25-27), C3(37-43), and C4(53-55) (residue numbers in

the parenthesis). Figure 4 shows the Q values calculated for
each helical and non-helical regions of the protein molecule
using the final structures of the simulated annealing runs.
Figure 4(a) and 4(b) show the results of the ABC memory
set and ABC+DE memory set, respectively. For comparison
we also implemented 20 simulated annealing runs using the
memory set consisting of 36 known protein structures given
in the Ref. 53. The result using this database memory set is
given in Figure 4(c). 

From the plot of Figure 4(a) and 4(b), we can see that there
is no difference in the Q values for the parts from C2 to H5
between the two employed memory sets. Also in both cases
Q values for the C2 segment are around 0.2, meaning that
the predicted structure of the C2 region is very different
from the native structure. As shown in Figure S3 (supporting

Figure 3. Ordered as the native (left), the predicted structure (middle), and the contact map (right). (a) Predicted structures with highest Q
values among the final structures of the annealing runs with ABC memory set and starting from random extended configurations. Q =
0.5482, RMSD = 1.9770 A (b) The structure with highest Q values in the entire trajectory, Q = 0.5629, RMSD = 1.916 A. (c) The structure
with highest Q values among the results of the biased all-atom MD simulations, Q = 0.515, RMSD = 2.971 A.
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information), the dihedral angle conformations for these

residues are quite different from the native state in both the

memory sets and these have direct effects on the final pre-

dicted structures. Among the five helices the H2 helix shows

difference between the two memory sets as shown in Figure

4(a) and 4(b). One notable feature in the Figures 4(a) and

4(b) is that the distributions of the Q values are not broad

even for the non-helical regions. This fact is contrasted with

the situation using the database memory shown in Figure

4(c), where the non-helical regions of C1-4 have very broad

distributions of Q values. We can see that the final structures

are quite strongly influenced by the structures in the memory

set in the present prediction scheme.

Figure S5 (supporting information) shows the plot of the

Q values for the helical and non-helical regions for the two

trajectories of the simulated annealing runs, each using the

different memory sets and giving the second best Q values

for the given memory sets, as an example. We can see that

the helices H5, H4 and H3 form in the earlier phase of the

trajectory even though the intervening non-helical regions,

C4, C3, C2, are not well formed to the native structure. And

in this earlier phase of the trajectory there is little difference

between the two memory sets. The helix H2 forms in the

later phase of the trajectory. From this point the trajectories

become different between the two memory sets. We obser-

ved these features for more than half of the trajectories in the

total AMW MD runs. The trajectory of H1 shows that this

helix forms in the later phase of the trajectory. By inspecting

Figure 4. Plot of Q values for the helix and non-helix region of the
target protein for the final structures of annealing runs. (a) ABC
memory set. (b) ABC+DE memory set (c) knowledge-based
memory consisted of 36 proteins. (d) All-atom biased MD simu-
lation.

Figure 5. (a) Plot of free energy calculated from the umbrella
sampling runs with respect to the Q values. (b) Plot of average
potential energy calculated from the structures of the umbrella
sampling runs.
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all trajectories we found that there exists trajectories which
fails to form the complete H1 helix, thus giving the
relatively broad distribution in the final structures as shown
in the Figures 4(a) and (b).

D. Free Energy Profiles for the Q coordinates. We cal-
culated the free energy profile with respect to the Q coordi-
nate using the umbrella sampling with the constraining
potential of the form, Vi(Q) = 5000ε (Q−Qi)4, where we
select the location of Qi as equally spaced 21 points from 0
to 1 with 0.05 interval. In each Q window we implemented
720000 steps of AMW MD runs at T = 1.0 and get 240
snapshot structures at 3000 step interval. Figure 5 shows the
free energy profile and the average potential energy with
respect to the Q values. We can see that the difference bet-
ween the memory sets in the AMW Hamiltonian gives large
difference in free energy and potential energy profile. We
also plotted the free energy for the case of memory set using
the database of 36 known protein structures. In comparison
with the database memory set, the memory set from the
ABC segments gives much improved result and the memory
set from the ABC+DE segments gives worse result, as
shown in Figure 5(a). Figure 5(b) shows the average poten-
tial energy plot as a function of the Q values. The ABC+DE
memory set gives very unfavorable values for the higher Q
values and its minimum is near Q = 0.4. The plot for the
database memory set nearly monotonically decreasing as the
Q value increases and gives its lowest values for the Q

values greater than 0.9, which is quite desirable feature. The
ABC memory set, which gives most favorable free energy
profile among the three memory sets, also gives decreasing
behavior as Q value increases, but the energy slowly
increases as the Q values are greater than 0.7. Considering
the fact that the Q values greater than 0.5 give the structures
with the RMSD value of near 2 Å in the practical calculation
of the structure prediction, the energy plot of the ABC
memory set gives most smoothly funneled feature in the
range of Q values from 0.2 to 0.6 among the three memory
sets and this might be one reason why this memory set gives
most successful prediction result.

E. Effect of collapse and local structural signals. The
prediction results shown in the Figures 2-3 are from the
trajectories in which the protein molecule takes a collapsed
shape in the early stages of annealing runs. To investigate
the correlation of the collapse and the local structure signals
from the memory terms in the AMW Hamiltonian, we have
performed the annealing runs in which we use the modified
form of Rg bias potential, 

 for , (9)

  = 0 otherwise, 

where the potential minimum  changes linearly from
 to , as illustrated in Figure S6 (supporting infor-

mation). In the present calculations  =2.2N 0.38 and
 = 4 , where N is the number of residues. The

conventional AMW run corresponds to the case of  =
 for all t. We modified the biasing potential such that

 decreased linearly from  at t = 0 to  at t = t1
and  =  for . The AMW MD run consists of
12000 grids of temperatures from 1.8 to 0.0 and each grid
consists of 60 annealing steps. We tried different values of
parameter t1 from 1000th grid to 10000th grid and for each
tried value of t1 we implemented twenty annealing MD runs
with randomly selected initial configurations of extended
structures. We plotted in Figure 6 the average of the Q

values of the final low temperature structures from the
resulting trajectories along with the highest value of the Q
among the final structures of the 20 runs. The average values
of Q do not show any noticeable difference between the runs
with different t1 values. But the best values of Q shows that
there is an advantage in the runs with the smaller values of
t1. In Figure 7 we plot the Q, RMSD and Rg for the trajectory
of the best Q value structure when t1 = 1000. With this value
of t1, the protein molecule collapsed in the early stage of the
annealing run and search for the lower energy configuration
within the collapsed state. Figures 7(a) and (c) show that the
configuration right after the collapse has the Q value less
than 3.5 but the molecule has enough energy to overcome
the energy barriers between local minima and can do the
search for the more stable configuration so that the molecule
finally found the configuration with the Q value of 0.519 in
the end of the annealing run. Figure 6 shows that the mech-
anism of folding with early collapse has slight advantage
compared to the mechanism of searching broad Rg range and
approximately t1 = 5000 is the boundary dividing the domi-
nant mechanisms of folding. This t1 value corresponds to the
temperature  = 1.1. If the molecule arrives at a collapsed
state with incorrect packing when the temperature is below
this temperature, it seems that it is not easy to correct the
packing configuration of the collapsed state. Another notice-
able feature in Figure 6 is difference between the results with
the two different memory sets. The fact that the ABC+DE
memory set have more diverse secondary structures seems
to give energy landscape which is weakly biased to the stable
native state compared to the case with the ABC memory set.
In other words, the Hamiltonian with ABC memory set is
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Figure 6. Average and highest Q values for the each 20 simulated
annealing MD simulations with respect to t1, which denote when
the Rg bias potential is in full effect in the simulation. 
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more capable of finding stable structures by rearrangements

in the collapsed state.

Figure 7(d) shows three snapshot structures obtained from

the annealing MD simulation trajectory shown as the verti-

cal lines in the Figure 7(a). Structure A shows the structure

right after the collapse and structure B shows the structure

when  = 1.2002 which corresponds to 240000th annealing

step. In these two structures the packing of the helices are

quite different from that of the native state shown in Figure

7(d). If we number the helices in the sequence order, then the

packing of the last three helices are in reversed order with

respect to the native structure from the view point of the first

helix. Structure C of Figure 7(d) shows the snapshot struc-

ture when = 0.8001 which corresponds to 480000th

annealing step. The packing of the helices in the structure C

is different from that of structure B and is more similar to

that of the native structure. The Q values for the structures

A, B and C are 0.3124, 0.3431 and 0.4568, respectively. This

trajectory gives the final predicted structure with the Q value

of 0.5190 and RMSD of 2.725 A. 

F. Biased All-Atom MD in Implicit Solvent. We imple-

mented all-atom MD simulation of the whole molecule with

additional biasing potential functions to force folding of the

target protein. In the calculation with AMW Hamiltonian,

we used the bias potential terms such as the secondary struc-

ture bias and radius of gyration bias. Here we apply similar

kind of biasing potentials to all-atom MD simulations of the

whole molecule with the implicit solvent model. Thus this

calculation can give a chance to compare between the long

range interaction potential in the AMW Hamiltonian and the

implicit solvent model in the all-atom MD in the perspective

of protein structure prediction. We implemented 10 runs for

each combination of simulation conditions at constant

T̃

T̃

Figure 7. plots of (a) Q values, (b) RMSD, and (c) radius of gyration along the annealing trajectory with t1 = 1000 temperature grid (= 60000
timestep). (d) Snapshot structures corresponding to the vertical lines in (a) and (b). A:  = 1.6126 (= 75000th time step), B:  = 1.2002
(= 240000th time step), C:  = 0.8001 (= 480000th time step). Color is from red to blue in the sequence order. 

T˜ T˜

T˜

T˜ T˜
T˜

Figure 8. Plots of Q values and RMSD for the final structures from
the biased all-atom MD simulations at 300 K. The indexes in the x-
axis are sorted with respect to the descending Q values. 
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temperature of 300 K and show the Q values and RMSD
values in the Figure 8. The Q values and RMSD are slightly
poor compared to the results of the MD runs with the AMW
Hamiltonian. But we should take into account that the final
structures corresponds to 300 K not 0 K in this calculation.
We get the best predicted structure from the trajectory with
the implicit solvent model of igb7 and the modified ff03
force field. The Q value of that structure is 0.515 and its
RMSD from the native structure is 2.971 Å. Figure 3(c)
shows the structure of the best prediction along with the
native structure. 

Figure 9 shows the time dependence of the energy terms
along the MD simulation trajectory which gives the final
structure shown in Figure 3(c). In this plot, the contributions
from the biasing potentials are not included. In Figure 9(a)
we plot the time dependence of the total energy, electrostatic
energy, and the solvation energy described by the implicit
solvent model. As the protein collapses due to the Rg bias
potential, the electrostatic interaction energy becomes more
and more favorable. But the solvation energy term behaves
to counteract the favorable electrostatic interaction. The
roles of these two energy terms are in the opposite direction
as shown in the Figure 9(a). But the cancellation between the
solvation and the electrostatic interaction among the various
part of the protein molecule is not perfect, so the resulting

total energy is stabilized as the protein folds as shown in
Figure 9(b). We are not sure how much of the favorable
electrostatic interactions are cancelled out by the solvation
energy in the real situation. In general, the implicit solvent
model tends to exaggerate the contribution of the solvation
energy within the interior of the protein molecule. Thus we
expect that the cancellation of the electrostatic interaction by
the solvation energy will be less if the solvation model
become more realistic, thus making the drop of the total
energy shown in Figure 9(b) more steep, that is, making the
energy landscape more funneled. 

Concluding Remark

In this work we tried to predict the protein tertiary struc-
ture for the selected target protein 1r69 from the amino acid
sequence under the assumption that we only know the
location of the helical residues without using any knowledge
database. 

We have implemented the simulated annealing MD simu-
lation with the coarse grained model of AMW Hamiltonian
by employing the memory sets which are obtained from the
all-atom MD simulations of segments of the target protein.
In the all-atom MD simulations of the segments of the
proteins we found that dihedral angle conformations of some
residues depend on the location within the segment. We
prepared two kinds of memory sets, one of which consists of
non-overlapping three segments and the other of which
consists of overlapping five segments. These two memory
sets are different in the magnitude and nature of the local
signal especially for the loop and turn regions of the protein
molecule. The results of the simulations with AMW Hamil-
tonian show that the Q values of predicted final structures of
the AMW MD simulations strongly depend on the memory
terms. The analysis of the individual annealing trajectories
shows that the AMW Hamiltonian can describe the pro-
cess of rearrangement of the packing of helices in the
collapsed conformation and in this process the role of local
signals from the memory set of the AMW energy function is
in effect determining the quality of the final predicted
structure.

In addition we also implemented the all-atom implicit-
solvent MD simulation of the protein molecule with similar
constraints as in the AMW Hamiltonian such as the bias
potentials for the helical residues and radius of gyration. The
process of folding in the all atom simulation is different from
the AMW simulations in that the helical structures are made
to form before collapse by the biasing potential. This fact
could be one reason for the lower average Q values in the all
atom simulations. It is very well likely that the speed of bias-
ing potential seems too fast to properly sample the confor-
mational space, so that it can be easily trapped in local minima
before getting to the native state. We think one needs much
longer simulation to observe the rearrangement of the pack-
ing of partially formed secondary structure in the all-atom
Rg-annealing simulations. 

One lesson from this study using the AMW Hamiltonian

Figure 9. (a) Time dependence of the total energy, the electrostatic
energy and the solvation energy. (b) Time dependence of the total
energy shown in (a) with more narrow y-axis range.
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is that, for the non-helical residues, memory set with only

partially correct structures is better than the mixture of

correct and wrong structures for the same residue in the

preparation of the memory set to be used in the AMW

Hamiltonian, and this is related to the problem of finding the

optimal size of the memory set.
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