SAR Study of β -Aminoacyl-Containing Cyclic Hydrazide Derivatives as DPP-IV Inhibitors

Mi Ae Jun, Mi Sik Shin, Woul Seong Park,[†] Seung Kyu Kang, Ki Young Kim, Sang Dal Rhee, Duck Hyung Lee,[†] Hyae Gyeong Cheon, Jin Hee Ahn,^{*} and Sung Soo Kim^{*}

Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 305-600, Korea *E-mail: jhahn@krict.re.kr *Department of Chemistry, Sogang University, Seoul 121-742, Korea Received August 3, 2008

In continuation of our efforts to further derivatize dipeptidyl peptidase IV (DPP-IV) inhibitors, a series of β aminoacyl-containing 5-, 6- and 7- membered cyclic hydrazide derivatives was synthesized. All the compounds were evaluated for their ability to inhibit DPP-IV, and an optimum structural unit on basic skeleton is identified to show good *in vitro* activity.

Key Words : Dipeptidyl peptidase IV, Diabetes, Cyclic hydrazide

Introduction

A non-insulin dependent diabetes mellitus (NIDDM) is characterized by chronic hyperglycemia, and belongs to a group of metabolic disorders with multiple etiologies. It is very common and may result from insulin resistance, inadequate secretion of insulin, hepatic glucose overproduction, or glucose intolerance.¹

GLP-1² is released from L cells of the small intestine in response to digestion of food, and plays an important role in secretion of insulin. Increased activity of GLP-1 will lead to sustained insulin secretion, which normalize an elevated glucose level. It also retards gastric emptying, induction of satiety and stimulation, regeneration & differentiation of islet β -cells.³ A dipeptidyl peptidase IV (DPP-IV), a serine protease present in many tissues, and body fluids exist either with membrane bound or soluble enzyme. It degrades GLP-1 (GLP-1[7-36]amide) into inactive GLP[9-36]amide^{4,5} at N-terminus position. Inhibition of DPP-IV increases the concentration of GLP-1 as a result increases insulin secretion,⁶ which can ameliorate hyperglycemia in type 2 diabetes. In recent past, several reports on use of small molecules as inhibitors of DPP-IV is available in literauture.7

In our previous paper,⁸ we have described the synthesis and biological evaluation of β -aminoacyl-containing cyclic hydrazine derivatives with only 6 examples. In continuation of our efforts, we have further derivatized the core compounds with diversified substituents, in order to find a potential candidate as DPP-IV inhibitor. We now wish to

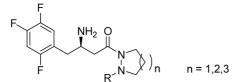
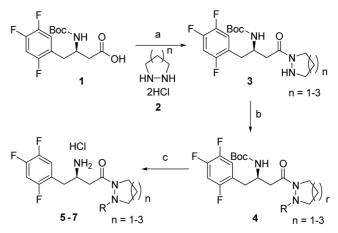
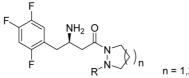



Figure 1. β -aminoacyl-containing cyclic hydrazide derivatives.

report here the detailed SAR study of β -aminoacyl-containing cyclic hydrazide derivatives as DPP-IV inhibitors.

A series of β -aminoacyl-containing cyclic hydrazine derivatives was synthesized by using the route shown in Scheme 1. The detailed synthetic explanation was described in our previous publication.⁸


5-, 6- and 7-Membered cyclic hydrazide derivatives with β -aminoacyl group were evaluated *in vitro* for their inhibitions against DPP-IV. MK-0431 was used as a reference compound. Compounds which showed more than 50% inhibition of DPP-IV at 100 nM, were considered as promising and the IC₅₀ values of the compounds were determined. The data are compared with ring size and also various functionalities such as acyl, benzoyl, urea, sulfonyl, carbamate, and alkyl groups. Basic compounds (R = H, 5-1, 6-1 and 7-1) couldn't reach 50% inhibition at 100 nM, however benzoyl substituents promoted activity. More particularly 6- and 7- membered benzoyl hydrazides (6-2 and 7-2) showed good *in vitro* inhibitory activities with IC₅₀ values

Scheme 1. Reagents and conditions: (a) compound 2, triethylamine, EDCI, CH_2Cl_2 , room temperature; (b) electrophiles, CH_2Cl_2 , triethylamine, room temperature; (c) HCl, dioxane, room temperature.

Table 1. Inhibitory activity of β -aminoacyl-containing cyclic hydrazide derivatives against DPP-IV

$F = \frac{NH_2 O}{R^{-N}} n = 1,2,3$											
R	Compd $(n = 1)$	% inh. at 100 nM	IC_{50} , nM^a	Compd $(n=2)$	% inh. at 100 nM	$IC_{50},$ nM^{a}	Compd $(n=3)$	% inh. at 100 nM	$IC_{50},$ nM^{a}		
Н	5-1	3.94		6-1	22.10		7-1	20.14			
O , z	5-2	14.32		6-2	67.97	74.40	7-2	51.12	85.72		
O ZZ H	5-3	11.51		6-3	5.65		7-3	51.71	95.07		
O 242 V	5-4	14.68		6-4	ND^b		7-4	16.25			
	5-5	\mathbf{ND}^{b}		6-5	20.64		7-5	41.95			
3	5-6	\mathbf{ND}^{b}		6-6	ND^b		7-6	1.59			
MK-0431	$IC_{50} = 65.42 \text{ nM}$										

^aIC₅₀ values were determined from direct regression curve analysis. ^b not determined.

of 74.40 nM and 85.72 nM respectively. In case of urea, 7membered hydrazide displayed a good activity with 95.07 nM. All other substituents such as sulfonyl, carbamate and aralkyl groups showed weak activities.

The benzoyl derivatives (6-2 and 7-2) being demonstrated good activity further derivatized with various substituted benzoyl derivatives and evaluated. Some compounds (7-11, 7-13, 7-14, 7-15, 7-17, 7-18 and 7-22) showed good activities and compound (7-18) is found to be most active with an IC₅₀ value 32.80 nM. The details are tabulated in Table 2.

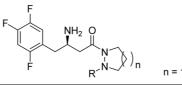
Urea based substituent also being active, it is further derivatized with various substituents and evaluated. Compound 7-39 showed better activity than other urea based derivatives, and the details of activity data is tabulated in Table 3.

From the SAR data, we have chosen compound 7-18 to evaluate in vivo for their ability to reduce DPP-IV activity in normal C57BL/6J mice. Oral administration of compounds 7-18, at 10 mg/kg dose, resulted in ca 70% inhibition of plasma DPP-IV activity after 2 h.

Conclusion

Diverse β -aminoacyl-containing 5-, 6- and 7-membered cyclic hydrazide derivatives were synthesized and evaluated for their ability to inhibit dipeptidyl peptidase IV (DPP-IV). Among them, 7-18 emerged as the most active compound with an IC₅₀ value of 32.8 nM, and evaluated for its in vivo DPP-IV inhibitory activity.

Experimental


General. All reported yields are isolated yields after column chromatography or crystallization. ¹H-NMR spectra were obtained on FT-NMR Varian GEMINI-200FT or Bruker AVANCE-300 with TMS as internal reference. MS spectra were obtained on a Shimadzu QP5050 spectrograph.

Synthetic Procedure for Representative Compound 7-18: A mixture of (R)-tert-butyl 4-(1,2-diazepan-1-yl)-4-oxo-1-(2,4,5-trifluorophenyl)butan-2-ylcarbamate (30 mg, 0.072 mmol), Benzo[1,3]dioxole-5-carbonyl chloride (20 mg, 0.108 mmol), and triethylamine (20 µL, 0.144 mmol) in CH_2Cl_2 (2 mL) was stirred for 1 h at room temperature. The reaction mixture was diluted with brine and CH₂Cl₂. The organic layer was separated, dried and evaporated. The residue was purified by silica gel column chromatography to give (R)-tert-butyl 4-(2-(benzo[d][1,3]dioxole-5-carbonyl)-1,2-diazepan-1-yl)-4-oxo-1-(2,4,5-trifluorophenyl)butan-2ylcarbamate (36 mg, 89%) as an oil.

¹H NMR (CDCl₃, 300 MHz) δ7.00-6.77 (m, 5H), 6.02 (s, 2H), 5.65-5.10 (br., s, 1H), 4.22-4.09 (m, 1H), 3.22-2.48 (m, 7H), 1.91-1.42 (m, 7H), 1.35 (s, 9H); MS m/z 563 (M⁺).

To a solution of (R)-tert-butyl 4-(2-(benzo[d][1,3]dioxole-5-carbonyl)-1,2-diazepan-1-yl)-4-oxo-1-(2,4,5-trifluorophenyl)butan-2-ylcarbamate (50 mg, 0.089 mmol) in EtOAc (2 mL), was added 4 M-HCl/1,4-dioxane (0.5 mL) and the mixture was stirred for 12 h at room temperature. The solvents were evaporated, and the residue was crystallized with ether to give (R)-3-amino-1-(2-(benzo[d][1,3]dioxoleTable 2. Inhibitory activity of β-aminoacyl-containing cyclic hydrazide derivatives with N-acyl substituents against DPP-IV

$F = \frac{NH_2 O}{R} n = 1,2,3$									
R	Compd (n = 1)	n = 1 % inh. at 100 nM	$IC_{50},$ nM^{a}	Compd (n=2)	n = 2 % inh. at 100 nM	IC ₅₀ , nM ^a	Compd (n = 3)	n = 3 % inh. at 100 nM	IC ₅₀ , nM ^a
O	5-2	14.32		6-2	67.97	74.40	7-2	51.12	85.72
o Z	5-7	ND		6-7	2.21		7-7	36.82	
2	5-8	ND		6-8	2.11		7-8	14.75	
	5-9	ND		6-9	4.47		7-9	28.87	
	5-10	ND		6-10	23.74		7-10	33.83	
	5-11	ND		6-11	15.46		7-11	55.41	85.04
OMe , 2, 2 OMe OMe	5-12	ND		6-12	0.76		7-12	9.54	
OMe	5-13	15.32		6-13	34.53		7-13	75.08	35.42
O ² 2 ² OMe	5-14	ND		6-14	35.15		7-14	55.68	83.07
MeO Q. OMe	5-15	ND		6-15	35.14		7-15	57.14	82.10
-32	5-16	ND		6-16	8.10		7-16	2.36	
MeO , , , , , , , , , , , , , , , , , , ,	5-17	ND		6-17	38.87		7-17	68.42	41.04
	5-18	16.08		6-18	27.53		7-18	74.07	32.80

2132 Bull. Korean Chem. Soc. 2008, Vol. 29, No. 11

 Table 2. Continued

R	$\begin{array}{c} \text{Compd} \\ (n=1) \end{array}$	n = 1 % inh. at 100 nM	IC50, nM ^a	Compd (n = 2)	n = 2 % inh. at 100 nM	IC ₅₀ , nM ^a	Compd $(n=3)$	n = 3 % inh. at 100 nM	IC50, nM ^a
O - Ze	5-19	ND		6-19	20.01		7-19	21.75	
0 -22	5-20	ND		6-20	1.78		7-20	21.69	
	5-21	ND		6-21	30.33		7-21	36.58	
220	5-22	ND		6-22	20.19		7-22	60.59	69.60
O Jan S	5-23	ND		6-23	36.87		7-23	36.57	
	5-24	ND		6-24	38.82		7-24	45.72	
O , 2 CF ₃	5-25	ND		6-25	11.56		7-25	43.22	
F ₃ C	5-26	ND		6-26	1.47		7-26	22.04	
CF3	5-27	ND		6-27	0.37		7-27	3.77	
CN	5-28	ND		6-28	0.43		7-28	28.89	
CI	5-29	ND		6-29	5.21		7-29	41.40	
	5-30	ND		6-30	35.47		7-30	30.19	
	5-31	ND		6-31	13.94		7-31	8.10	
NO2	5-32	ND		6-32	23.68		7-32	14.45	
NO ₂ MK-0431				IC	$h_{50} = 65.42 \text{ nM}$				

 $\overline{^{a}IC_{50}}$ values were determined from direct regression curve analysis.

Table 3. Inhibitory activity of β -aminoacyl-containing cyclic hydrazide derivatives with urea substituents against DPP-IV

NH ₂ O										
$ \begin{array}{c} F \\ F \\ R \end{array} \begin{array}{c} N \\ N \\ N \end{array} \begin{array}{c} N \\ N \\ N \end{array} \begin{array}{c} n \\ n $										
R	Compd $(n = 1)$	% inh. at 100 nM	IC_{50} , nM^a	Compd (n = 2)	% inh. at 100 nM	$IC_{50},$ nM^{a}	$\begin{array}{c} \text{Compd} \\ (n=3) \end{array}$	% inh. at 100 nM	IC_{50} , nM^a	
N N H	5-3	11.51		6-3	5.65		7-3	51.71	95.07	
S N H	5-33	ND		6-33	11.88		7-33	7.70		
OMe NH	5-34	ND		6-34	18.27		7-34	34.96		
N OMe	5-35	ND		6-35	19.62		7-35	52.82	93.20	
O N H OMe	5-36	ND		6-36	25.12		7-36	10.77		
N N N N N N N N N N N N N N N N N N N	5-37	ND		6-37	7.14		7-37	49.82		
O N H	5-38	ND		6-38	15.16		7-38	42.59		
O N H	5-39	ND		6-39	18.73		7-39	66.19	47.90	
A A A A A A A A A A A A A A A A A A A	5-40	ND		6-40	13.08		7-40	38.04		
O V V K K K K K K K K K K K K K	5-41	ND		6-41	18.44		7-41	28.58		
OCF3	5-42	ND		6-42	20.77		7-42	19.20		
NO ₂	5-43	ND		6-43	21.05		7-43	43.87		
O M M CI CI CI CI	5-44	ND		6-44	5.68		7-44	26.99		
OCI NH CI	5-45	ND		6-45	9.35		7-45	7.58		
MK-0431				I	$C_{50} = 65.42 \text{ nM}$					

^{*a*}IC₅₀ values were determined from direct regression curve analysis.

2134 Bull. Korean Chem. Soc. 2008, Vol. 29, No. 11

5-carbonyl)-1,2-diazepan-1-yl)-4-(2,4,5-trifluorophenyl)butan-1-one hydrochloride (40 mg, 90%) as a solid.

¹H NMR (DMSO-d₆, 500 MHz) δ 8.23 (s, 1H), 8.14 (s, 1H), 7.57-7.51 (m, 2H), 7.13-7.10 (m, 1H), 7.04-7.03 (m, 1H), 6.98-6.77 (m, 1H), 6.12 (s, 2H), 4.00-3.90 (m, 1H), 3.88-3.86 (m, 1H), 3.75-3.72 (m, 2H), 3.17-3.07 (m, 1H), 3.03-2.88 (m, 3H), 2.81-2.73 (m, 1H), 1.78-1.47 (m, 6H).

Determination of Inhibitory Activity against DPP-IV. 10 μ L of Caco-2 cell lysate was suspended in Tris-HCl (pH 7.5), and then 40 μ M Ala-Pro-AFC (ICN Biomedicals, Inc) was added. After treatment of compounds, the mixture was incubated for 60 min at 24 °C. AFC as a indicator of DPP-IV activity was detected at 405/510 nm (Ex/Em) by Fluorometer, Synergy HT (Biotek). IC₅₀ was calculated by Prism 4.0 software (GarphPad Software, Inc).

Acknowledgments. This research was supported by the Center for Biological Modulators of the 21st Century Frontier R&D Program, Ministry of Education, Science and Technology, Korea.

Reference and Notes

- Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. *Diabetes Care* 2004, 27, 1047.
- (a) Knudsen, L. B. J. Med. Chem. 2004, 47, 4128. (b) Drucker, D. J. Endocrinology 2001, 142, 521.
- (a) Holst, J. J.; Deacon, E. F. *Curr. Opin. Pharmacol.* 2004, *4*, 589.
 (b) Drucker, D. J. *Gastroenterology* 2002, *122*, 531.

- (a) Kieffer, T. J.; McIntosh, C. H. S.; Pederson, T. A. *Endocrinology* **1995**, *136*, 3585. (b) Deacon, C. F.; Nauck, M. A.; Toff-Nielson, M.; Pridal, L.; Willms, B.; Holst, J. J. *Diabetes* **1995**, *44*, 1126.
- 5. Mentlein, R. Regulatory Pept. 1999, 85, 9.
- (a) Ahren, B.; Holst, J. J.; Martensson, H.; Balkan, B. *Eur. J. Pharmacol.* 2000, 404, 239. (b) Deacon, C. F.; Hughes, T. E.; Joist, J. J. *Diabetes* 1998, 47, 764. (c) Pospisilik, J. A.; Stafford, S. G.; Demuth, H.-U.; Brownsey, R.; Parkhous, W.; Finegood, D. T.; McIntosh, D. H; Pederson, R. A. *Diabetes* 2002, 51, 943.
- 7. (a) Thornberry, N. A.; Weber, A. E. Current Topics in Medicianl Chemistry 2007, 7, 557. (b) Idris, I.; Donnelly, R. Diabetes, Obesity and Metabolism 2007, 9, 153. (c) Kim, D.; Kowalchick, J. E.; Brockunier, L. L.; Parmee, E. R.; Eiermann, G. J.; Fisher, M. H.; He, H.; Leiting, B.; Lyons, K.; Scapin, G.; Pater, S. B.; Petrov, A.; Pryor, K. D.; Roy, R. S.; Wu, J. K.; Zhang, X.; Wyvratt, M. J.; Zhang, B. B.; Zhu, L.; Thornberry, N. A.; Weber, A. E. J. Med. Chem. 2008, 51, 589. (d) Kondon, T.; Nekado, T.; Sugimoto, I.; Ochi, K.; Takai, S.; Kinoshita, A.; Hatayama, A.; Yamamoto, S.; Kawabata, K.; Nakai, H.; Toda, M. Bioorg. Med. Chem. 2008, 16, 190. (e) Kondo, T.; Nekado, T.; Sugimoto, I.; Ochi, K.; Takai, S.; Kinnoshita, A.; Hatayama, A.; Yamamoto, S.; Kishikawa, K.; Nakai, H.; Toda, M. Bioorg. Med. Chem. 2008, 16, 1613. (f) Wallace, M. B.; Feng, J.; Zhang, Z.; Skene, R. J.; Shi, L.; Caster, C. L.; Kassel, D. B.; Xu, R.; Gwaltney, S. L. Bioorg. Med. Chem. Lett. 2008, 18, 2362. (g) Edmondson, S. D.; Wei, L.; Xu, J.; Shang, J.; Xu, S.; Pang, J.; Chaudhary, A.; Dean, D. C.; He, H.; Leiting, B.; Lyons, K. A.; Patel, R. A.; Patel, S. B.; Scapin, G.; Wu, J. K.; Beconi, M. G.; Thornberry, N. A.; Weber, A. E. Bioorg. Med. Chem. 2008, 18, 2409.
- Ahn, J. H.; Shin, M. S.; Jung, S. H.; Kang, S. K.; Kim, K. R.; Rhee, S. D.; Kang, N. S.; Kim, S. Y.; Sohn, S. K.; Kim, S. G; Jin, M. S.; Lee, J. O.; Cheon, H. G; Kim, S. S. *Bioorg. Med. Chem. Lett.* 2007, *17*, 2622.