Preparation of Diastereomeric $\boldsymbol{\beta}$-Aryloxymethylaminoalcohols Containing Nicotinic Acid Moiety and Their Binding Affinity to $\boldsymbol{\beta}_{3}$-Adrenoreceptors

Seung Kyu Kang, Jae Du Ha, Haye-Gyeong Cheon, Joong-Kwoon Choi, Chang Sung Hong, ${ }^{\dagger}$ and Eul Kgun Yum ${ }^{\dagger}{ }^{\dagger,}$
Medicinal Science Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong, Daejeon 305-600, Korea
${ }^{\dagger}$ Department of Chemistry, Chungnam National University, Yuseong, Daejeon 305-764, Korea

Received June 17, 2003

Key Words : Diastereomer, β-Aminoalcohol, Nicotinic acid, β_{3}-Adrenoreceptors

The identification of the third β-adrenergic receptor subtype ($\beta_{3} \mathrm{AR}$) led to the investigation of β_{3}-adrenoreceptor agonists as potential agents for the treatment of various metabolic diseases. ${ }^{1}$ Stimulation of β_{3}-adrenoreceptors on the surface of adipocytes evoked lipolysis and upregulation of the uncoupling protein (UCP1), which led to a net increase in energy utilization. ${ }^{2,3}$ Thus, β_{3}-adrenoreceptor agonists may prove useful for the treatment of obesity. ${ }^{3}$ In addition, the agonists have also demonstrated a direct improvement on glucose tolerance for treatment of Type II (non-insulin dependent) diabetes. Recently, many pharmaceutical companies have developed β_{3}-adrenoreceptor agonists, which have shown highly selective binding affinity to β_{3} adrenoreceptors (A-D). ${ }^{4}$ The literature reports have shown that the single diastereomer of β_{3}-adrenoreceptor agonists are often more potent or have less side effects compared to their racemates. ${ }^{5}$ Of the numberous methods for the preparation of chiral aryl substituted β-aminoalcohols, the most direct method is alkylation of the corresponding chiral amine with arylethylene oxide. ${ }^{6}$ However, direct alkylation in polar, protic solvents generally gave the desired products in low yields with significant amounts of regioisomer and multiply alkylated side products. ${ }^{7}$

A
BRL 26,830

B
BRL 3,5135

CL-316,243

Currently, heteroarylethanolamines have also been reported to show significant β_{3} agonist activity and minimal cross-reactivity at the β_{1} and β_{2} receptors. ${ }^{8}$ The β-aminoalcohol could contain various heterocycles such as oxazole, ${ }^{9}$ pyridine, ${ }^{10}$ and indole. ${ }^{11}$ In an effort to discover new lead compounds for β_{3}-adrenoreceptor agonist, we were posed with the problem of finding efficient and direct route to
prepare optically pure diastereomeric β-arylaminoalcohols. We describe herein simple diastereomeric preparation of heterocyclic β-arylaminoalcohols containing nicotinic acid moiety and their binding affinity to β_{3}-adrenoreceptors.

Chemistry

The synthetic procedures for the preparation of diastereomeric β-aminoalcohols are detailed in Scheme 1. The (S)-1-azido-3-phenoxypropane-2-ol (2) was obtained by the ring opening reaction of (S)-2-phenoxymethyloxirane (1) with NaN_{3} in $\mathrm{CH}_{3} \mathrm{CN}$ at $80^{\circ} \mathrm{C}$. The hydrogenation of 1-azido-3-phenoxypropane-2-ol (2) using Pd / C provided 1-amino-3-phenoxypropan-2-ol (3) in a quantitative yield. The 5-(3-oxobutyl)-nicotinic acid methyl ester (4) were prepared by palladium-catalyzed coupling reaction of 5-bromonicotinic acid methyl ester with 3-buten-2-ol in a $70-\%$ yield. ${ }^{12}$ The imino compound 5 was obtained by condensation of aminoalcohol 3 and ketone 4 by azeotrophic reflux in benzene. The diasteroisomeric mixture of $\mathbf{6 a}$ was prepared by hydrogenation of imine 5 with PtO_{2} catalyst under 60 psi hydrogen pressure in solvent. The Boc protected $\mathbf{6 c}$ and $\mathbf{6 d}$ were separated by MPLC with Merck Lobar RP-18 column and $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}=1: 1$ as eluant. The compound $\mathbf{6 c}$ and $\mathbf{6 d}$ were obtained by deprotection of Boc group and neutralization. Another set of diastereomeric compounds $\mathbf{6 e}$ and $6 \mathbf{f}$ were also prepared by the same procedure with Scheme 1 except for (R)-2-phenoxymethyl-oxirane as a chiral substrate (Scheme 2). The stereochemistry of $\mathbf{6 c - 6 f}$ were determined by comparison of literature spectra after ring formation to oxazolodinone with 1,1-carbonyldiimidazole. ${ }^{13}$

Screening Results

To determine the affinity of these β-aminoalcohols as $\beta_{3^{-}}$ adrenoreceptor agonists, the receptor binding assay was performed by using cell membrane expressing human β_{3} adrenoreceptors (RB-HBETA $)_{3}$. ${ }^{14}$ The data are summarized in Table 1. Unexpectedly, the heterocyclic aminoalcohols containing nicotinic ester have shown similar binding affinities except for (R, S)-isomer $\mathbf{6 e}$ which showed a quarter of the affinity compared to the other isomers.

Scheme 1

Scheme 2

Table 1. Comparison of the $\beta_{3} \mathrm{AR}$ Affinity of Diastereomeric β Aminoalcohols

Entry	Compound	Configuration	$\mathrm{IC}_{50}(\mu \mathrm{M})$	$\mathrm{Ki}(\mu \mathrm{M})$
1	$\mathbf{6 c}$	S, S	1.28	0.67
2	6d	S, R	1.15	0.61
3	6e	R, S	4.57	2.41
4	6 f	R, R	1.10	0.58
5	BRL-35135	S, S	3.62	1.91
6	CL-316243	S, S	1.17	0.62

Conclusions

The four diastereomers of heterocyclic β-aminoalcohols were easily prepared by separation of their Boc derivatives as the key step. The introduction of nicotinic acid moiety to β-aminoalcohols resulted in potent β_{3}-adrenergic receptor binding affinity. The nicotinic acid moiety could be a potential heterocyclic substrate for the development of β_{3} adrenoreceptor agonists.

Experimental Sections

All chemicals were purchased and used without any further purifications The ${ }^{1} \mathrm{H}$ NMR spectra were obtained on a Varian Gemini 200 MHz or Bruker 300 MHz NMR Spectrometer. The GC-MS spectral were obtained on a Shimazu QP 1000 mass spectrometer. Melting points were deterimined on MU-TEM apparatus and were uncorrected. BRL-35135 and CL-316243 were prepared literature procedures ${ }^{4 \mathrm{~b}}$ and used as reference compounds.
(S)-2-Phenoxymethyloxirane (1) ${ }^{\mathbf{1 5}}$. $\mathrm{NaH}(60 \%$ dispersion
in mineral oil, $0.72 \mathrm{~g}, 18 \mathrm{mmol}$) was added to a solution of phenol ($1.23 \mathrm{~g}, 13 \mathrm{mmol}$) in dry DMF (10 mL) and the resulting suspension was stirred for approximately 30 minutes until a clear solution was obtained. A solution of (S)-(+)-glycidyl 3-nitrobenzenesulfonate ($3.1 \mathrm{~g}, 12 \mathrm{mmol}$) in dry DMF (7 mL) was slowly added to phenoxide solution. The mixture was stirred for 6 hours at $20^{\circ} \mathrm{C}$ and poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (50 mL). The product was extracted with ethyl ether $(3 \times 20 \mathrm{~mL})$. The ethyl ether layer was dried over anhydrous MgSO_{4} and concentrated. The (S)-2-phenoxymethyl oxirane was obtained 86% yields by silica gel column chromatography.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.30-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.98-$ $6.89(\mathrm{~m}, 3 \mathrm{H}), 4.19$ (dd, $J=10.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=$ $11.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.73 (dd, $J=4.9,2.6 \mathrm{~Hz}, 1 \mathrm{H})$; Mass m/e (\%) $150\left(\mathrm{M}^{+}, 26\right)$, 119 (10), 107 (35), 94 (100), 77 (50), 65 (40).
(S)-1-Azido-3-phenoxypropane-2-ol (2). The mixture of 0.6 g (5 mmol) of (S)-2-phenoxymethyloxirane (1), 1.52 g (25 mmol) of NaN_{3}, and $\mathrm{H}_{2} \mathrm{O}$-acetonitrile ($1: 8,9 \mathrm{~mL}$) in 25 mL flask was stirred at $80^{\circ} \mathrm{C}$ for 4 hours. The mixture was poured into 20 mL of cold water. The product was extracted with ethyl ether $(2 \times 20 \mathrm{~mL})$. The organic layer was washed saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL) and water. The ethyl ether layer was dried over anhydrous MgSO_{4} and concentrated. The (S)-1-azido-3-phenoxypropane-2-ol was obtained 97% yields by silica gel column chromatography.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.31-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.00-$ $6.88(\mathrm{~m}, 3 \mathrm{H}), 4.16(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.50$ (m, 1H), 2.71 (brs, 1H); Mass m/e (\%) 167 ($\mathrm{M}^{+}, 3$), 149 (4), 123 (23), 94 (100), 77 (25).
(S)-1-Amino-3-phenoxypropan-2-ol (3). The mixture of
(S)-1-azidophenoxypropane-2-ol ($1.71 \mathrm{~g}, 8.9 \mathrm{mmol}$) and 5% $\mathrm{Pd} / \mathrm{C}(0.2 \mathrm{~g})$ and methanol $(15 \mathrm{~mL})$ in pressure bottle was hydrogenated under 60 psi of hydrogen for 4 h at room temperature. The resulting solution was filtered and concentrated. The was obtained 88% yields by silica gel column chromatography. mp 104-106 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.98-6.90(\mathrm{~m}, 3 \mathrm{H}), 4.01-$ 3.91 (m, 3H), 2.98 (dd, $J=12.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=$ $12.8,6.4 \mathrm{~Hz}, 1 \mathrm{H})$; Mass m/e (\%) 193 (9, M ${ }^{+}$), 119 (34), 107 (21), 94 (100), 77 (65), 65 (26).

5-(3-Oxobutyl)nicotinic acid methyl ester (4). To a $10-$ mL vial containing a magnetic stirring bar was added the following reagents; $\mathrm{Pd}(\mathrm{OAc})_{2}(0.025 \mathrm{mmol})$, KOAc (1.0 $\mathrm{mmol}), \mathrm{LiCl}(0.5 \mathrm{mmol}), 3$-buten-2-ol (1.0 mmol), methyl 5bromonicotinate (0.5 mmol) and DMF (5 mL). The vial was sealed with a septum. The mixture was stirred at the $110^{\circ} \mathrm{C}$ for 4 hours. The resulting mixture was diluted with ethyl acetate (20 mL) and washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $(2 \times 20 \mathrm{~mL})$. The ethyl acetate layer was dried over anhydrous MgSO_{4} and concentrated. The product was obtained 70% yields by flash column chromatography. mp: $53-54{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \boldsymbol{\delta} 8.96(\mathrm{~d}, 1 \mathrm{H}, J=2.0$ Hz), $8.66(\mathrm{t}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 8.05(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 3.87$ $(\mathrm{s}, 3 \mathrm{H}), 2.89(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 2.76(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz})$, 2.09 (s, 3H); Mass m/e (\%) 207 (13, M ${ }^{+}$), 164 (75), 150 (14), 132 (32), 104 (24), 77 (14), 43 (100).
5-[3-(2-Hydroxy-3-phenoxypropylamino)butyl]nicotinic acid methyl ester (6a). A mixture of (S)-1-amino-3-phenoxypropan-2-ol (3) (1.0 mmol), 5-(3-oxobutyl)nicotinic acid methyl ester (4) (1.0 mmol), molecular sieve (2 g) and benzene (20 mL) in 50 mL flask was heated under azeotropic reflux for 20 hours. The resulting solution was filtered and concentrated. The 5-[2-(2-hydroxy-3-phenoxypropylimino)propyl]nicotinic acid methyl esters (5) was obtained 80% yields as oil. The crude imine (5) and PtO_{2} (50 $\mathrm{mg})$ were added to methanol (15 mL) in pressure bottle. The mixture was hydrogenated under 70 psi hydrogen for 4 h at room temperature. The resulting solution was filtered and concentrated. The aminoalcohol (6a) was obtained 63% yields by silica gel column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 9.02(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 8.60(\mathrm{t}, 1 \mathrm{H}, J$ $=2.0 \mathrm{~Hz}), 8.11(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 7.24(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz})$, 6.89-6.87 (m, 3H), 4.15-3.91 (m, 3H), 3.88 (s, 3 H), 3.63 m , $2 \mathrm{H}), 2.89-2.70(\mathrm{~m}, 5 \mathrm{H}), 1.86-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.19-1.16$ (m, $3 \mathrm{H})$; Mass m/e (\%) 359 ($100, \mathrm{M}^{+1}$), 332 (12), 181 (6), 149 (12), 111(13), 96 (14), 68 (13), 55 (12), 44 (37).

Separation of Boc protected 6c and 6d. 5-[3-(2-Hy-droxy-3-phenoxypropylamino)butyl]nicotinic acid methyl ester ($\mathbf{6 a}, \mathrm{mmol}$) and $(\mathrm{Boc})_{2} \mathrm{O}$ were dissolved in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction mixture was stirred about 12 h at room temperature. The Boc protected 6a was obtained quantitatively by concentration. The Boc protected diastereomers of $\mathbf{6 c}$ and $\mathbf{6 d}$ were separated by MPLC with Merck Lobar RP18 column ($440 \times 37 \mathrm{~mm}$, \#10626) and $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}=$ $1: 1$ eluent (UV-254 nM and $10 \mathrm{~mL} / \mathrm{min}$). The diastereoselectivity of $\mathbf{6 c}$ and $\mathbf{6 d}(44: 56)$ was determined by HPLC with Waters Spherisor S 10 ODS2 $(250 \times 4.6 \mathrm{~mm}$,
\#PS832515) and $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}=1: 1$ eluent (UV-254 nM and $1.0 \mathrm{~mL} / \mathrm{min}$). Boc-protected $\mathbf{6 c}$: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200\right.$ $\mathrm{MHz}) \delta 9.05(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.60(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz})$, 8.10 (t, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.30-7.22 (m, 2H), 6.90-6.85 (m, $3 \mathrm{H}), 4.90$ (brs, 1 H), 4.13-4.02 (m, 4H), 3.91 (s, 3H), 3.42 (brs, 2H), $2.67(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.94(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{~m}$, $2 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.21(\mathrm{~d}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz})$. Boc-protected 6d: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 9.06(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $8.58(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 8.10(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, 2 \mathrm{H}$, $J=6.8 \mathrm{~Hz}), 6.90(\mathrm{~m}, 3 \mathrm{H}), 4.90(\mathrm{brs}, 1 \mathrm{H}), 4.20-3.91(\mathrm{~m}, 4 \mathrm{H})$, 3.91 ($\mathrm{s}, 3 \mathrm{H}$), 3.42 (brs, 2H), 2.67 (t, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$), 1.94 (m, $1 \mathrm{H}), 1.77(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.21(\mathrm{~d}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz})$.
(S,S)-5-[3-(2-Hydroxy-3-phenoxypropylamino)butyl]nicotinic acid methyl ester (6c). The Boc-protected 6c (1 mmol) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The trifluoroacetic acid (5 eqiuv) was added to the solution. The reaction mixture was stirred for 12 h at room temperature and neutralized with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution. The organic layer was separated and concentrated. The compound $\mathbf{6 c}$ was obtained 85% yields as oil by silica gel column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 8.96(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.53(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 8.04(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26$ $(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 6.85(\mathrm{~m}, 3 \mathrm{H}), 4.01-3.89(\mathrm{~m}, 3 \mathrm{H}), 3.86(\mathrm{~s}$, $3 \mathrm{H}), 2.85-2.62(\mathrm{~m}, 7 \mathrm{H}), 1.67(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.08(\mathrm{~d}, \mathrm{~J}$ $=6.3 \mathrm{~Hz}, 3 \mathrm{H}$); Mass (m / e) 358 ($8, \mathrm{M}^{+}$), 221 (100), 194 (27).
(S,R)-5-[3-(2-Hydroxy-3-phenoxypropylamino)butyl]nicotinic acid methyl ester (6d). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200\right.$ $\mathrm{MHz}) \delta 8.97(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz})$, $8.04(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.80(\mathrm{~m}$, $3 \mathrm{H}), 4.03-3.83(\mathrm{~m} \mathrm{3H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.97-2.60(\mathrm{~m}, 7 \mathrm{H}), 1.68$ $(\mathrm{m}, 2 \mathrm{H}), 1.08(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$; Mass $(\mathrm{m} / \mathrm{e}) 358\left(5.6, \mathrm{M}^{+}\right)$, 221 (100), 194 (29).
(R, S)-5-[3-(2-Hydroxy-3-phenoxypropylamino)butyl]nicotinic acid methyl ester (6e). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200\right.$ $\mathrm{MHz}) \delta 8.97(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz})$, $8.04(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.80(\mathrm{~m}$, $3 \mathrm{H})$, 4.03-3.83 (m, 3H), $3.87(\mathrm{~s}, 3 \mathrm{H}), 2.97-2.60(\mathrm{~m}, 7 \mathrm{H})$, $1.68(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$; Mass (m/e) 359 (70, M^{+1}), 221 (100), 194 (30.1).
(R,R)-5-[3-(2-Hydroxy-3-phenoxypropylamino)butyl]nicotinic acid methyl ester (6f). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200\right.$ $\mathrm{MHz}) \delta 8.96(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.53(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz})$, $8.04(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 6.85(\mathrm{~m}$, $3 \mathrm{H}), 4.01-3.89(\mathrm{~m}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.85-2.62(\mathrm{~m}, 7 \mathrm{H})$, $1.67(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.08(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$; MS (m / e), 359 ($68.0, \mathrm{M}^{+1}$), 221 (100), 194 (25.3).

Measurement of $\boldsymbol{\beta}$-adrenoceptor binding affinity. To determine the binding affinity of $\mathbf{6 c} \mathbf{c} \mathbf{6 f}$ on β_{3}-adrenorecetor, RB-HBETA3 membrane was incubated with [${ }^{125}$ I]iodocyanopindolol ($1.4 \mathrm{nM}, 2200 \mathrm{Ci} / \mathrm{mmol}$) and unlabeled ligand for 10 min at $37^{\circ} \mathrm{C}$. Propranolol $(1 \mathrm{mM})$ was used to define non-specific binding. Incubation mixture was filtered over glass fiber (Wallac 140-521), washed and measured for radioactivity.

Acknowledgments. This work was supported by Ministry of Science and Technology and Bioneer Corporation.

References

1. Arch, J. R. S.; Kaumann, A. J. Medcinal Resarch Review 1993, 13, 663.
2. (a) Arch, J. R.; Ainsworth, A. T.; Cawthorne, M. A.; Piercy, V.; Sennitt, M. V.; Thody, V. E.; Wilson, C.; Wilson, S. Nature 1984, 309, 163. (b) Lowell, B. B.; Filer, J. S. Annu. Rev. Med. 1997, 48, 307. (c) Strosberg, A. D.; Pietri-Rouxel, F. Trends Pharmacol. Soc. 1996, 206, 373
3. Arch, J. R. S.; Wilson, S. Int. J. Obesity 1996, 20, 191.
4. (a) Claus, T. H.; Bloom, J. D. Annual Reports in Medicinal Chemistry 1995, 30, 189. (b) Howe, R. Drug of the Future 1993, 18, 529.
5. Devocelle, M.; Morteux, A.; Agbossou, F.; Dormoy, J.-R. Tetrahedron Lett. 1999, 40, 4551 and references therein.
6. Hett, R.; Fang, Q. K.; Gao, Y.; Hong, Y.; Butler, H. T.; Nie, X.; Wald, S. A. Tetrahedron Lett. 1997, 38, 1125 and references therein.
7. Atkins, R. K.; Frazier, J.; Moore, L. L.; Weigel, L. O. Tetrahedron Lett. 1986, 27, 2451.
8. Mathvink, R. J.; Tolman, S. M.; Chitty, D.; Candelore, M. R.; Cascieri, M. A.; Colwell, L. F.; Deng, J. L.; Feeney, W. P.; Forrest, M. J.; Hom, G. J.; MacIntyre, D. E.; Miller, R. R.; Stearns, P. A.; Tota, L.; Wyvratt, M. J.; Fisher, M. H.; Weber, A. E. J. Med. Chem. 2000, 43, 3832.
9. Biftu, T.; Feng, D. D.; Ling, G. B.; Kuo, H.; Qina, X.; Naylor, E. M.; Colandrea, V. J.; Candelore, M. R.; Casieri, M. A.; Colwell, L. F.; Forrest, M. J.; Hom, G. J.; MacIntyre, D. E.; Miller, R. R.; Stearns, P. A.; Tota, L.; Wyvratt, M. J.; Fisher, M. H.; Weber, A. E. Bioorg. Med. Chem. Lett. 2000, 10, 1431.
10. (a) Ok, H. O.; Reigle, L. B.; Candelore, M. A.; Colwell, L. F.; Deng, L.; Feeney, W. P. F.; Forrest, M. J.; Hom, G. J.; MacIntyre, D. E.; Strader, C. D.; Tota, L.; Wang, M. J.; Wyvratt, M. J.; Fisher, M. H.; Weber, A. E. Bioorg. Med. Chem. Lett. 2000, 10, 1531. (b)

Shih, T. L.; Candelore, M. R.; Cascieri, M. A.; Chiu, S. L.; Colwell, L. F.; Deng, J. L.; Feeney, W. P.; Forrest, M. J.; Hom, G. J.; MacIntyre, D. E.; Miller, R. R.; Stearns, P. A.; Tota, L.; Wyvratt, M. J.; Fisher, M. H.; Weber, A. E. Bioorg. Med. Chem. Lett. 1999, 9, 1251. (c) Naylor, E. M.; Parmee, E. R.; Colandrea, V. J.; Perkins, L.; Brockunier, L.; Candelore, M. R.; Cascieri, M. A.; Colwell, L. F.; Mathvink, R. J.; Deng, J. L.; Feeney, W. P.; Forrest, M. J.; Hom, G. J.; MacIntyre, D. E.; Strader, C. D.; Tota, L.; Wang, P.-R.; Wyvratt, M. J.; Fisher, M. H.; Weber, A. E. Bioorg. Med. Chem. Lett. 1999, 9, 755. (d) Parmee, E. R.; Naylor, E. M.; Perkins, L.; Colandrea, V. J.; Ok, H. O.; Colandrea, V. J.; Cascieri, M. A.; Deng, J. L.; Feeney, W. P.; Forrest, M. J.; Hom, G. J.; MacIntyre, D. E.; Miller, R. R.; Stearns, R. A.; Strader, C. D.; Tota, L.; Wang, P.-R.; Wyvratt, M. J.; Fisher, M. H.; Weber, A. E. Bioorg. Med. Chem. Lett. 1999, 9, 749.
11. Mathvink, R. J.; Barritta, A. M.; Candelore, M. R.; Cascieri, M. A.; Deng, L.; Tota, L.; Strader, C. D.; Wyvratt, M. J.; Fisher, M. H.; Weber, A. E. Bioorg. Med. Chem. Lett. 1999, 9, 1869.
12. Yum, E. K.; Kang, S. K.; Choi, J.-K. Bull. Korean Chem. Soc. 2001, 22, 644.
13. Sher, P. M.; Plainsboro, N. J. 1996, US5,488,064.
14. Fisher, M. H.; Amend, A. M.; Bach, T. J.; Baker, J. M.; Brady, E. J.; Candelore, M. R.; Carroll, D.; Cascieri, M. A.; Chiu, S.-H. L.; Deng, L.; Forrest, M. J.; Hegarty-Friscino, B.; Guan, X.-M.; Hom, G. J.; Hutchins, J. E.; Kelly, L. J.; Mathvik, R. J.; Metzger, J. M.; Miller, R. R.; Ok, H. O.; Parmee, E. R.; Saperstein, R.; Strader, C. D.; Stearns, R. A.; Thompson, G. M.; Tota, L.; Vicario, P. P.; Weber, A. E.; Woods, J. W.; Wyvratt, M. J.; Zafian, P. T.; MacIntyre, D. E. J. Clin. Invest. 1998, 101, 2387.
15. (a) McClure, D. E.; Arison, B. H.; Baldwin, J. J. J. Am. Chem. Soc. 1979, 101, 3666. (b) Klunder, J. M.; Onami, T.; Sharples, K. B. J. Org. Chem. 1989, 54, 1295. (c) Fisher, M. H.; Parmee, E. R.; Mathvink, R. J.; Weber, A. E.; Ok, H. O. 1994, EP 0611003A1.

