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A generalized fractional diffusion equation (FDE) is presented, which describes the time-evolution of the

spatial distribution of a particle performing continuous time random walk (CTRW) on a fractal lattice. For a

case corresponding to the CTRW with waiting time distribution that behaves as ψ(t) ~ t −(α+1), the FDE is solved

to give analytic expressions for the Green’s function and the mean squared displacement (MSD). In agreement

with the previous work of Blumen et al. [Phys. Rev. Lett. 1984, 53, 1301], the time-dependence of MSD is

found to be given as < r2(t)> ~ t 2α/dw, where dw is the walk dimension of the given fractal. A Monte-Carlo

simulation is also performed to evaluate the range of applicability of the proposed FDE.

Key Words : Fractional diffusion equation, Continuous time random walk, Dispersive diffusion, Sierpinski

gasket, Percolation cluster

Introduction

Anomalous diffusion is frequently observed in disordered

media. It is characterized by non-linear time dependence of

the mean squared displacement (MSD),

, (1)

with . For the case with , the process is called

subdiffusive or dispersive and such an anomaly is found in

many physical systems including glasses, amorphous semi-

conductors, lipid bilayers, and living cells.1-5

One of the representative theories proposed to explain the

anomalous diffusion phenomena is that based on the

continuous time random walk (CTRW) model.2,6 In this

model the random walker makes a jump between lattice

points after a certain waiting time that is chosen randomly

from a distribution function ψ (t). For a power-law waiting

time distribution ψ (t) ~  with , the first

moment of ψ (t) diverges and the MSD is given by

. Such a subdiffusive CTRW occurring on the

regular lattice without spatial constraints has been shown to

be well described by the fractional diffusion equation (FDE)

or the fractional Fokker-Planck Equation (FFPE) for

intermediate to long time regime.7-10 The utility of a

fractional kinetic equation approach rests on the availability

of an analytic expression for the Green’s function, in terms

of which many dynamical quantities can be evaluated in a

straightforward manner.7 

Another source of subdiffusion is the spatial constraint

posed by heterogeneous molecular environments in dis-

ordered media. The fractals are often considered as a model

of such systems.1,11-14 For a particle moving along the fractal

lattice with a fixed jump frequency, the MSD is known to be

given by  where dw is the walk dimension

with dw > 2 in most cases.11,12 For the case of regular lattices

devoid of connectivity defects, dw is equal to 2 so that the

result for normal Fickian diffusion is recovered. To explain

this and other diffusion-related properties associated with

the fractal lattices, several diffusion equations have been

proposed with the respective Green’s functions.15-18

For the case involving both origins of subdiffusion - the

temporal constraint and the spatial constraint - Blumen et al.

applied the CTRW formalism to the fractal lattice and

derived the expression for γ in Eq. (1).14 The idea was to

separate the temporal and the spatial parts of MSD and link

them as

 (2)

where  is the average distance traveled in n steps and

 is the probability of having performed just n steps by

t. It was shown that the time exponent is given by 

. (3)

In this work we present a generalized fractional diffusion

equation (FDE), which describes the time-evolution of the

spatial distribution of a particle performing CTRW on a

fractal lattice. The proposed FDE is solved to give analytic

expressions for the Green’s function and the MSD. Although

this approach provides expressions for the particle distri-

bution and the MSD for all times, the range of applicability

of these expressions needs to be examined. We therefore

carry out Monte-Carlo simulations of CTRW on the

Sierpinski gasket and the percolation cluster. For both fractal

lattices, the MSD expression obtained from the proposed

FDE is in good agreement with the simulation result from

intermediate to long times. However, the particle dis-

placement distribution function is in agreement with the

simulation result only for the Sierpinski gasket case. For the

percolation cluster case, the simulation result displays a little

more dispersed distribution than that predicted by the

proposed FDE.
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Generalized Fractional Diffusion Equation

We consider a particle which performs CTRW on a fractal

lattice with the waiting time distribution ψ (t). If the spatial

and the temporal constraints are uncorrelated, the gener-

alized master equation describing the CTRW process can be

reduced in the continuum limit to the generalized fractional

diffusion equation.7,9 In Laplace domain, it can be written as

, (4)

where p(r,t) is the average probability density of finding the

particle at a position located at the radial distance r at time t,

and denotes the Laplace transform of f (t). L(r) is the

diffusion operator for a particle moving on the given fractal

lattice with a fixed jump frequency. O’Shaughnessy and

Procaccia15 obtained an expression for L(r) on the basis of a

scaling argument with the introduction of a distance-

dependent diffusion kernel. The expression is given by

, (5)

where df is the fractal dimension. Although it is known that

this diffusion operator may give inaccurate results when

 is large,16-19 it will be used here to get an analytic

solution to Eq. (4). For regular lattices, Dsp = l2/2D where l is

the spacing between adjacent lattice sites and D is the

dimension of the Euclidean space embedding the lattice. For

the case of Sierpinski gasket, O’Shaughnessy and Procaccia15

obtained an expression for Dsp that is given by 

. (6)

An interesting model for dispersive transport in amorph-

ous semiconductors was presented by Jakobs and Kehr,20

which leads to a power-law waiting time distribution. In this

model, the release of the particle from a lattice site is

assumed to be an activated process. The release rate is given

by

, (7)

where E is the energy barrier at a given site. kB is the

Boltzmann constant and T is the absolute temperature. Then

the energy barriers are assumed to be distributed according

to an exponential distribution, 

, (8)

where  is a characteristic energy defining the distri-

bution. If we suppose that the particle is trapped at a lattice

site at time zero, then the probability that it is released from

the site at time t is given by 

, (9)

where  and γ is the incomplete gamma function.21

For  >> 1, the waiting time distribution ψ (t) in Eq. (9)

becomes

. (10)

The Laplace transform of the waiting time distribution ψ (t)

in Eq. (9) can be expressed in terms of the hypergeometric

functions,22 but its use in Eq. (4) leads to too complicated

equation. We will thus use the leading term approximation

for  in the small s limit,

. (11)

Substitution of Eqs. (5) and (11) into Eq. (4) yields 

. (12)

Here, the generalized diffusion coefficient  is given by

. (13)

For the CTRW on regular lattices, this expression reduces to

that obtained by Barkai et al. in Ref. 9. 

Using the fractional differential operator

 for , 

we can convert Eq. (12) back into time domain as

. (14)

Equation (14) is the generalized fractional diffusion equation

for describing the particle transport in disordered fractal

network.

Green’s Function and MSD

To solve Eq. (14), we set the substitution variables as β =

dw/2, ds = df /β, and y = rβ/β. Using these variables, Eq. (14)

can be rewritten as

. (15)

In this equation, we see that the spatial differential operator

has the familiar form of radial Laplacian, although the

fracton dimension ds is not an integer in general. Hence we

can expect that the solution of Eq. (15) may be represented

in terms of the Bessel functions in Laplace domain. With the

initial and the boundary conditions given by p(r,t = 0) = δ (r),
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 = 0, and , it can be shown

that the Green’s function is given by

×  , (16)

where  and 2−1.  is the Bessel

function of the second kind, and  is the

metric factor. 

The expression for the Green’s function in time domain

can be obtained from Eq. (16) as

  ×  ,  (17)

where  is the Fox H-function defined as the Mellin-

Barnes type path integral10

   

with the integral density

.

By using the property 

,

it can be shown easily that for the case of subdiffusion

occurring on the regular lattces with β = 1, Eq. (17) reduces

to Eq. (29) of Ref. 9:

.

 (18)

On the other hand, when the waiting time distribution has a

finite first moment (e.g.,  or 

), Eq. (12) becomes 

. 

(19)

Hence, by setting α = 1 and  in Eq. (17) and

by using the property , we can show

that Eq. (17) reduces to Eq. (5) of Ref. 15:

.

 (20)

The MSD expression can be obtained more easily from

inverse Laplace transformation of the spatial integral of Eq.

(16), , rather than by direct

integration of Eq. (17). We have

 (21)

This result is in agreement with that obtained by Blumen et

al.14; . If we set , Eq. (21) reduces to Eq.

(28) of Ref. 9 obtained for the case of subdiffusion occurring

on the regular lattces.

Comparison with Computer Simulation Results

To derive the FDE presented in Eq. (12), we have invoked

two approximations. The expressions for L(r) in Eq. (5) and

 in Eq. (11) are valid for intermediate to long times. We

therefore examine the range of applicability of the present

theoretical results by comparison with the Monte-Carlo

(MC) simulations.

We have simulated CTRW on the Sierpinski gasket, a

deterministic fractal, and on the incipient percolation cluster,

a random fractal. For each trajectory the initial position is

chosen randomly. To generate the waiting times in confor-

mity with the distribution in Eq. (9), we first generate the

trap energy E following the exponential distribution in Eq.

(8) with kBTc = 10. For this randomly chosen energy barrier,

the value of the release rate  is calculated from Eq. (7)

with kBT = αkBTc; for each fractal lattice, we carry out two

sets of simulations with α = 0.5 and 0.7. The waiting time is

then obtained by multiplying 1/νr(E) to an exponentially

distributed, positive, random deviate of unit mean.23 
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Figure 1. “Myopic ant” model for (a) Sierpinski gasket and (b)
percolation cluster.
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For the CTRW on the Sierpinski gasket [see Fig. 1(a)], the

particle may jump to any one of the four nearest neighboring

sites with equal probability of 1/4. After landing on a site at

time t, the waiting time Δt at the site is generated as

described above and upon moving to the neighboring site,

time advances to t + Δt. To avoid the system size effect, we

use a very large lattice whose side length is 222l. By

comparing the simulation results with those obtained for the

lattice with side length of 221l, we have checked that the size

effect is absent.

The 2-dimensional incipient percolation cluster as shown

in Figure 1(b) is generated on the 2000 × 2000 square lattice.

The sites are selected randomly with the probability of

0.5927, and the CTRW is performed on the biggest cluster

generated. Again, we have confirmed the absence of the

system size effect by comparing simulation results with

those obtained for a little smaller or larger lattice. The results

appear to converge for the percolation clusters generated on

square lattices larger than the 1500 × 1500 lattice. The initial

position of the particle is randomly selected among the

lattice sites located around the center of gravity of the whole

cluster. In addition, for better statistics new clusters are

generated for every 400 trajectories. The particle moves to

the available nearest neighboring sites with equal prob-

ability, which is the reciprocal of the coordination number as

shown in Figure 1(b). This move algorithm is called the

‘myopic ant’ model.12

In Figures 2 and 3, MC simulation results for MSD are

compared with the analytical results from Eq. (21). We use

the following reduced variables; x = r/l and τ = t/tD with tD =

(l2β/Dαfβ2)1/α. The solid lines represent the analytic results,

while the dotted curves are the simulation results obtained

from 20,000 trajectories. In both figures, the upper curves

are for the case with α = 0.7, while the lower curves for the

case with α = 0.5.

For the CTRW on Sierpinski gasket (Fig. 2), the analytic

results are in good agreement with simulations for times

larger than 3. In this case, values of the fractal dimensional

parameters are given as follows: df = ln 3/ln 2, ds = ln 9/ln 5,

and β = df /ds.
12 The generalized diffusion coefficient Dαf is

determined from Eqs. (6) and (13) without any adjustable

variables. Hence the agreement between the MC simulations

and Eq. (21) requires the correctness of the amplitude factor

as well as the time exponent.

For the case of percolation cluster (Fig. 3), df = 91/48, ds =

1.327, and β = df /ds,
12 but an analytic expression for Dsp has

not been given. To determine the value of Dsp, we perform

independent simulations of a simple random walk with ψ(t)

= δ (t − τ1) on the percolation cluster. Dsp can be determined

by fitting the simulation results to the following equation,

  with , (22)

which can be derived from Eq. (20). We find that Dsp =

0.4775. This value is then substituted into Eq. (13) to

calculate Dαf. For the CTRW on percolation cluster, we see

that MSD values calculated from the analytic expression in

Eq. (21) are in agreement with simulations at longer times

compared to the Sierpinski gasket case.

In Figures 4 and 5, MC simulation results for particle

distribution  calculated from 70,000

trajectories are compared with the results obtained from the

analytic expression in Eq. (17). The Fox H-function is

y
2

〈 〉  = 2dsDsp t/τ
1

( ) y = r
β
/β

p x, τ( )γdf x
df 1–

Figure 2. The mean squared displacement < x
2> as a function of

time τ on Sierpinski gasket.

Figure 3. The mean squared displacement < x
2> as a function of

time τ on incipient percolation cluster.

Figure 4. Particle distributions  for CTRW on
Sierpinski gasket. The waiting time distribution exponent α is set to
0.7.

p x,τ( )γdf x
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evaluated by using the series expression,24

 × .

(23)

The plots are given for several values of τ with α = 0.7. For

the case of Sierpinski gasket, the agreements between theory

and simulations are excellent. However, for the case of

incipient percolation cluster, the simulation results show that

the particle distributions are more dispersed to longer

distance than the analytical expression predicts. 

Concluding Remarks

In this work we presented a generalized FDE for

describing the particle transport in disordered media, which

involve trapping sites with random energy barriers as well as

spatial constraints. As a model we considered the CTRW on

fractal lattices. Analytic expressions for Green’s function of

the FDE and the MSD were obtained. In agreement with the

previous work,14 the time exponent appearing in the MSD

expression was found to be 2α /dw, which reveals both

origins of subdiffusion related to spatial and temporal

constraints. Our approach provided an explicit expression

for the generalized diffusion coefficient that determines the

amplitude factor of MSD. Monte-Carlo simulations were

also performed to evaluate the range of applicability of the

proposed FDE. For the CTRW on Sierpinski gasket, the

FDE provides an excellent description of the transport

dynamics for intermediate to long times. However, in the

percolation cluster case, only the MSD is reasonably

reproduced by the FDE. The actual particle distribution

observed in MC simulations deviates from that predicted by

the FDE.
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incipient percolation cluster. The waiting time distribution
exponent α is set to 0.7.
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