Notes

Eschenmoser-Claisen Rearrangement of Baylis-Hillman Adducts ${ }^{\dagger}$

Jeong Mi Kim, Sung Hwan Kim, and Jae Nyoung Kim*
Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757, Korea
*E-mail: kimjn@chonnam.ac.kr Received May 16, 2007

Key Words : Eschenmoser-Claisen rearrangement, Baylis-Hillman adducts, DMA-DMA

Johnson-Claisen rearrangement of the Baylis-Hillman adducts has been reported by Basavaiah and co-workers to produce alkyl alk-4-enoate derivatives stereoselectively. ${ }^{\text {1a }}$ Das and co-workers examined the Johnson-Claisen rearrangement of Baylis-Hillman adducts with triethyl orthoacetate and reported the applicability of $\mathrm{I}_{2} / \mathrm{SiO}_{2}$ or $\mathrm{NaHSO}_{4} / \mathrm{SiO}_{2}$ systems. ${ }^{1 \mathrm{lb}, \mathrm{c}}$ We also examined the reaction of $a z a$-BaylisHillman adducts ${ }^{2 \mathrm{a}}$ and Baylis-Hillman adducts ${ }^{2 \mathrm{~b}}$ with $\mathrm{N}, \mathrm{N}-$ dimethylformamide dimethylacetal (DMF-DMA), and we obtained cinnamyl amine derivatives in both cases. ${ }^{2}$

However, literature survey revealed that EschenmoserClaisen rearrangement ${ }^{3}$ of Baylis-Hillman adducts has not been reported. ${ }^{2 \mathrm{~b}}$ Thus, we decided to examine the Eschen-moser-Claisen rearrangement of Baylis-Hillman adducts ($\mathbf{1 a - c}, \mathbf{1 g}$, and $\mathbf{1 h}$) and cinnamyl alcohol derivatives ($\mathbf{1 d - f}$) with N, N-dimethylacetamide dimethylacetal (DMA-DMA) and report herein the results (Scheme 1 shows the synthesis of $\mathbf{2 a}$ and $\mathbf{2 d}$ as representative examples)
Required starting materials $\mathbf{1 a - h}$ were synthesized accord-
ing to the reported methods. ${ }^{1,2,4}$ The reaction conditions including the amounts of DMA-DMA, solvent, and temperature were examined and we found that optimum yields were obtained with 2.0 equiv of DMA-DMA in toluene at around $80-90^{\circ} \mathrm{C}$. The results are summarized in Table 1 and the reaction mechanism is depicted in Scheme 1. For the secondary alcohol derivatives $\mathbf{1 a - c}$, some ester compounds (3a: 5% in entry 1 and $\mathbf{3 b}: 4 \%$ in entry 2) were formed together (due to the competitive formation of intermediate III) and the yields of desired products $\mathbf{2 a - c}$ were moderate ($69-71 \%$). The products $\mathbf{2 a}$ and $\mathbf{2 b}$ were isolated as E / Z mixtures ($c a .9: 1$) as in the Johnson-Claisen rearrangement of the Baylis-Hillman adducts. ${ }^{1}$ The product $\mathbf{2 c}$ was obtained as a pure Z isomer, however, 2-dimethylaminomethyl-3phenylacrylonitrile $(4, Z \text {-form })^{2 b}$ was isolated together (13\%). The primary alcohol derivatives 1d-f were cleanly converted into 2d-f in moderate to good yields (75-84\%) and we could not find the corresponding ester derivatives in these cases. The Baylis-Hillman adducts of 2-cyclohexen-1-

Scheme 1

[^0]Table 1. Eschenmoser-Claisen rearrangement of Baylis-Hillman adducts

${ }^{a}$ Isolated yields. ${ }^{b}$ The reaction was carried out in toluene with DMADMA (2.0 equiv) at $80-90^{\circ} \mathrm{C}$ for $2 \mathrm{~h} .{ }^{c}$ The ratio of E / Z was determined based on ${ }^{1} \mathrm{H}$ NMR. ${ }^{d} \mathrm{Ar}$ is 4-nitrophenyl.
one, $\mathbf{1 g}$ and $\mathbf{1 h}$, were also converted into $\mathbf{2 g}$ and $\mathbf{2 h}$, respectively, in moderate yields.
In summary, we disclosed the Eschenmoser-Claisen rearrangement of Baylis-Hillman adducts ${ }^{5}$ and cinnamyl alcohol derivatives with N, N-dimethylacetamide-dimethylacetal (DMA-DMA) in toluene to produce 2-benzylidene 1,5-dicarbonyl compounds and 2-methylene 1,5-dicarbonyl derivatives in moderate yields.

Experimental Section

Typical procedure for the synthesis of $2 a$ and the
spectroscopic data of $\mathbf{2 a - h}, \mathbf{3 a}, \mathbf{3 b}$, and 4 are as follows. A mixture of $\mathbf{1 a}$ ($192 \mathrm{mg}, 1.0 \mathrm{mmol}$) and DMA-DMA (266 $\mathrm{mg}, 2.0 \mathrm{mmol}$) in toluene (3 mL) was stirred at $80-90^{\circ} \mathrm{C}$ for 2 h . After removal of solvent desired product was separated by column chromatographic purification process (hexanes/ EtOAc, 3:5) as pale yellow oil, $183 \mathrm{mg}(70 \%)$.

Compound 2a: $70 \%(E / Z=9: 1)$; pale yellow oil; IR (film) 2950, 1708, 1654, 1648, $1250 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 2.53-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.86-2.90(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H})$, $3.00(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 7.25-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 23.52,32.77,35.34,37.16$, $52.05,128.65,128.66,129.29,131.61,135.20,140.24$, 168.62, 171.97 .

Compound 2b: ${ }^{2 \mathrm{~b}}$ 69\% ($E / Z=9: 1$); pale yellow oil; IR (film) 2935, 1704, $1650 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ $\delta 1.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.53-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.73-2.76(\mathrm{~m}$, 2H), $2.94(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 4.28(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.30-7.42 (m, 5H), $7.73(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ $\delta 14.29,23.51,32.78,35.29,37.14,60.84,128.55,128.61$, $129.25,130.87,135.25,139.92,168.09,172.00$.

Compound 2c: 71\% (Z); yellow solid, mp 47-49 ${ }^{\circ} \mathrm{C}$; IR (film) 2919, 2203, 1650, $1644 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 2.66(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $2.96(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.44(\mathrm{~m}, 3 \mathrm{H})$, 7.70-7.74 (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 31.45$, 31.64, 35.49, 37.11, 109.82, 118.64, 128.61, 128.76, 130.03, 133.59, 144.71, 170.63.

Compound 2d: 82%; white solid, mp $73-74^{\circ} \mathrm{C}$; IR (film) 2945, 1720, 1654, 1648, $1642 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300$ $\mathrm{MHz}) \delta 2.77-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 3.66$ (s, 3H), $4.53(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H})$, 7.16-7.30 (m, 5H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 35.46$, 37.15, 38.06, 43.06, 51.83, 124.33, 126.63, 127.81, 128.41, 142.03, 142.89, 166.98, 170.67.

Compound 2e: 84%; white solid, $\mathrm{mp} 63-64^{\circ} \mathrm{C}$; IR (film) 2976, 2925, 1716, 1651, $1649 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300$ $\mathrm{MHz}) \delta 1.18(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.77-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{~s}$, $3 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 4.04-4.15(\mathrm{~m}, 2 \mathrm{H}), 4.52(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 7.16-7.30(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 14.00,35.47,37.17,38.04,43.14,60.69$, 123.97, 126.60, 127.86, 128.36, 142.16, 143.17, 166.53, 170.74.

Compound 2f: 75%; pale yellow solid, mp $71-72{ }^{\circ} \mathrm{C}$; IR (film) 2924, 2211, $1647 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ 2.77-3.08 (m, 2H), $2.93(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H}), 4.24-4.29(\mathrm{~m}$, $1 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.38(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 35.59,36.80,37.20,46.05,117.92$, 126.10, 127.43, 127.60, 128.97, 131.29, 140.16, 169.54.

Compound 2g: 73\%; pale yellow oil; IR (film) 2936, 1681, $1643 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.83-2.04$ $(\mathrm{m}, 4 \mathrm{H}), 2.25-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.58-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H})$, $2.92(\mathrm{~s}, 3 \mathrm{H}), 4.01-4.08(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.48(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 19.21,27.49,33.34,35.38,35.95$, 37.11, 40.51, 128.63, 128.78, 129.84, 134.94, 135.02, 141.34, 170.54, 202.97.

Compound 2h: 43\%; pale yellow oil; IR (film) 2930, $1689,1644 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.88-2.04$
$(\mathrm{m}, 4 \mathrm{H}), 2.23-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.72$ (m, 2H), $2.93(\mathrm{~s}, 6 \mathrm{H}), 4.00-4.04(\mathrm{~m}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.60$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 19.39,27.76,33.76,35.58,35.74,37.26$, $40.79,123.88,130.43,131.75,141.59,144.94,147.29$, 170.06, 202.78.

Compound 3a: 5\%; colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 2.54-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.91(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H})$, $3.83(\mathrm{~s}, 3 \mathrm{H}), 7.28-7.43(\mathrm{~m}, 5 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H})$.
Compound 3b: 4\%; colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 1.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.54-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.85-$ $2.90(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 4.28(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-$ $7.43(\mathrm{~m}, 5 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H})$.
Compound 4: ${ }^{\text {b }} 13 \%$; colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 2.34(\mathrm{~s}, 6 \mathrm{H}), 3.22(\mathrm{~s}, 2 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 7.27-7.45$ $(\mathrm{m}, 3 \mathrm{H}), 7.77-7.81(\mathrm{~m}, 2 \mathrm{H})$.

Acknowledgments. This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, KRF-2006-311-C00384). Spectroscopic data was obtained from the Korea Basic Science Institute, Gwangju branch.

References and Notes

1. For the Johnson-Claisen rearrangement of Baylis-Hillman adducts, see: (a) Basavaiah, D.; Pandiaraju, S.; Krishnamacharyulu, M. Synlett 1996, 747-748. (b) Das, B.; Majhi, A.; Reddy, K. R.; Venkateswarlu, K. J. Mol. Catal. A: Chem. 2007, 263, 273-275.
(c) Das, B.; Majhi, A.; Banerjee, J. Tetrahedron Lett. 2006, 47, 7619-7623. (d) Chapuis, C.; Buchi, G. H.; Wuest, H. Helv. Chim. Acta 2005, 88, 3069-3088. (e) Basavaiah, D.; Pandiaraju, S. Tetrahedron Lett. 1995, 36, 757-758.
2. (a) Lee, H. J.; Kim, H. S.; Kim, J. N. Tetrahedron Lett. 1999, 40, 4363-4366. (b) Lee, H. J.; Chung, Y. M.; Lee, K. Y.; Kim, J. N. Bull. Korean Chem. Soc. 2000, 21, 843-844 and the synthesis of compound $\mathbf{2 b}$ was described therein.
3. For the reviews and some recent papers on Eschenmoser-Claisen rearrangements, see: (a) Martin Castro, A. M. Chem. Rev. 2004, 104, 2939-3002. (b) Gilbert, M. W.; Galkina, A.; Mulzer, J. Synlett 2004, 2558-2562. (c) Qu, H.; Gu, X.; Min, B. J.; Liu, Z.; Hruby, V. J. Org. Lett. 2006, 8, 4215-4218. (d) Schepens, W.; Haver, D. V.; Vandewalle, M.; Bouillon, R.; Verstuyf, A.; De Clercq, P. J. Org. Lett. 2006, 8, 4247-4250. (e) Loh, T.-P.; Hu, Q.Y. Org. Lett. 2001, 3, 279-281. (f) Gradl, S. N.; Kennedy-Smoth, J. J.; Kim, J.; Trauner, D. Synlett 2002, 411-414. (g) Kundig, E. P.; Laxmisha, M. S.; Cannas, R.; Tchertchian, S.; Ronggang, L. Helv. Chim. Acta 2005, 88, 1063-1072. (h) Hill, R. K.; Soman, R.; Sawada, S. J. Org. Chem. 1972, 37, 3737-3740. (i) Chen, C.-Y;; Hart, D. J. J. Org. Chem. 1993, 58, 3840-3849. (j) Kundig, E. P.; Cannas, R.; Laxmisha, M.; Ronggang, L.; Tchertchian, S. J. Am. Chem. Soc. 2003, 125, 5642-5643.
4. For the synthesis of starting materials including rearranged alcolols and Baylis-Hillman adducts of cyclohexen-2-one, see: (a) Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Bull. Korean Chem. Soc. 2004, 25, 413-414. (b) Lee, K. Y.; Gong, J. H.; Kim, J. N. Bull. Korean Chem. Soc. 2002, 23, 659-660.
5. For our recent papers on Baylis-Hillman adducts, see: (a) Lee, K. Y.; Lee, H. S.; Kim, J. N. Tetrahedron Lett. 2007, 48, 2007-2011. (b) Lee, K. Y.; Lee, Y. J.; Kim, J. N. Bull. Korean Chem. Soc. 2007, 28, 143-146. (c) Gowrisankar, S.; Lee, H. S.; Kim, J. N. Bull. Korean Chem. Soc. 2006, 27, 2097-2100. (d) Lee, K. Y.; Park, D. Y.; Kim, J. N. Bull. Korean Chem. Soc. 2006, 27, 1489-1492.

[^0]: ${ }^{\dagger}$ This paper is dedicated to Professor Sang Chul Shim on the occasion of his honorable retirement.

