Efficient Introduction of Aryl Acetylenes to Quinolinium and Pyridinium Salts: Synthesis of 1-Acyl-1,2-dihydroquinolines and 1-Acyl-1,2-dihydropyridines

Ka Young Lee, Mi Jung Lee, and Jae Nyoung Kim*
Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757, Korea
*E-mail: kimjn@chonnam.ac.kr
Received January 18, 2005

Key Words : Aryl acetylene, 1-Acyl-1,2-dihydroquinoline, 1-Acyl-1,2-dihydropyridine, Quinolinium salts

Recently, we reported the alkynylation of N -tosylimines with aryl acetylenes promoted by ZnBr_{2} and N, N-diisopropylethylamine (DIEA) in acetonitrile. ${ }^{1}$ In the reaction, in situ generated zinc acetylide was added to N-tosylimine to afford the corresponding N -tosyl propargylamines in good yields. ${ }^{1}$ As a continuing work we presumed that we could synthesize 1-acyl-1,2-dihydroquinolines and 1-acyl-1,2dihydropyridines when we used 1-acylquinolinium salts or 1 -acylpyridinium salts as the electrophile.
Synthesis of 1-acyl-1,2-dihydroquinolines and 1-acyl-1,2dihydropyridines have received much attention due to the usefulness of them for the synthesis of natural products and as useful building blocks for alkaloid synthesis. ${ }^{2,3}$ The most straightforward method for the synthesis of substituted dihydroquinolines and dihydropyridines is the addition of Grignard reagents to 1-acylquinolinium and 1-acylpyridinium salts. ${ }^{4 \mathrm{~b}, 4 \mathrm{c}}$ Besides organomagnesium reagents, other organometallic reagents involving indium, ${ }^{5 a, 5 \mathrm{c}}$ tin, ${ }^{5 \mathrm{~b}}$ silver, ${ }^{4 \mathrm{a}}$ copper, ${ }^{4 \mathrm{~d}, 6}$ and $z i n c^{4 e}$ were reported as the efficient reagents for the reaction. However, the addition of alkynyl moiety to 1 -acylquinolinium or 1-acylpyridinium salts was rather limited. ${ }^{4}$
Initially, we tried the reaction of 1-ethoxycarbonylquinolinium chloride and phenylacetylene in acetonitrile in the presence of ZnBr_{2} and DIEA (N, N-diisopropylethylamine, Hunig's base) as shown in Scheme 1. The starting material 1-ethoxycarbonylquinolinium chloride was generated in situ instantaneously by simply mixing quinoline (1a) and ethyl chloroformate in acetonitrile at room temperature. As expected we obtained 1-ethoxycarbonyl-1,2-dihydroquino-
line derivative $\mathbf{2 a}$ in 70% isolated yield.
Encouraged by the successful results we tried other entries as shown in Table 1 and obtained moderate to good yields of products. As the substrates, we examined quinoline (entries $1-4$), pyridine (entries 5-6), and isoquinoline (entry 7). We used ethyl chloroformate (entries 1-3, 5, 7) and benzoyl chloride (entries 4 and 6) as the activators. As the acetylenes, we chose phenylacetylene (entries 1, 4-7), 4-ethynyltoluene (entry 2), and 1-ethynyl-4-methoxybenzene (entry 3) as the representative examples. As shown in Table 1, we obtained the desired products $\mathbf{2 a - g}$ in $63-79 \%$ isolated yields. Identification of the structure of 2a-g was carried out by their IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, mass, and/or by comparison with the reported data. ${ }^{1,4 \mathrm{a}, 4 \mathrm{~d}, 6}$ The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra showed broad peaks in some cases presumably due to the line broadening effect of nitrogen atom as easily can be seen in a similar system. ${ }^{1,6}$

In summary, we disclosed in this paper that the combination of aryl acetylene, ZnBr_{2}, and DIEA could be used for the efficient introduction of acetylene moiety toward activated pyridines, quinolines, and isoquinolines.

Experimental Section

Typical procedure for the synthesis of 1-ethoxy-carbonyl-1,2-dihydroquinoline derivative 2a: To a stirred solution of quinoline ($130 \mathrm{mg}, 1 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ was added ethyl chloroformate ($141 \mathrm{mg}, 1.3 \mathrm{mmol}$), phenylacetylene ($122 \mathrm{mg}, 1.2 \mathrm{mmol}$), $\mathrm{ZnBr}_{2}(270 \mathrm{mg}, 1.2 \mathrm{mmol})$,

Scheme 1

Table 1. Synthesis of dihydroquinolines, dihydropyridines, and dihydroisoquinolines
Entry
and finally DIEA ($155 \mathrm{mg}, 1.2 \mathrm{mmol}$) successively at room temperature. After 30 min the reaction mixture was poured into cold water. After normal workup with ether, removal of solvent, flash column chromatographic purification (hexanes/ ether, $40: 1$) we obtained the desired 1-ethoxycarbonyl-1,2dihydroquinoline derivative $\mathbf{2 a}, 213 \mathrm{mg}$ (70%). The spectroscopic data of the synthesized compounds are as follows.
2a: 70\%; clear oil; IR (KBr) 2222, 1705, $1489 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 4.20-$ $4.41(\mathrm{~m}, 2 \mathrm{H}), 6.06-6.12(\mathrm{~m}, 2 \mathrm{H}), 6.52-6.58(\mathrm{~m}, 1 \mathrm{H}), 7.03-$ $7.31(\mathrm{~m}, 8 \mathrm{H}), 7.67(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 14.60,44.72,62.67,83.54,85.83,122.63,124.45$, $124.53,125.26,126.05,126.71,126.72,127.93,128.19$, $128.40,131.93,134.49,153.94 ;$ Mass (70 eV) m / z (rel intensity) 76 (17), 114 (21), 128 (28), 202 (16), 230 (100), 274 (15), $303\left(\mathrm{M}^{+}, 8\right)$.

2b: 79\%; clear oil; IR (KBr) 2218, $1705 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H})$, 4.20-4.39 (m, 2H), 6.05-6.11 (m, 2H), 6.50-6.56 (m, 1H), 6.98-7.26 (m, 7H), $7.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.63,21.54,44.81,62.67,83.71,85.13$, 119.59, 124.50, 124.52, 125.42, 125.96, 126.73, 126.77, 127.92, 128.98, 131.85, 134.55, 138.53, 153.99.

2c: 73\%; clear oil; IR (KBr) 2218, $1705 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$, 4.20-4.40 (m, 2H), 6.08-6.10 (m, 2H), 6.51-6.57 (m, 1H), $6.73(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.06-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.27(\mathrm{~m}$, $3 \mathrm{H}), 7.66(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}+$ 2 drops of DMSO-d 6) $\delta 14.57,44.74,55.28,62.59,83.41$, 84.36, 113.80, 114.65, 124.41, 124.45, 125.45, 125.79, $126.65,126.70,127.84,133.35,134.46,153.92,159.68$.

2d ${ }^{1,4 \mathrm{a}}$: 74%; clear oil; IR (KBr) 2218, $1651 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR
($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.19-6.24(\mathrm{~m}, 2 \mathrm{H}), 6.65-6.70(\mathrm{~m}, 2 \mathrm{H})$, $6.90(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{td}, J=7.5$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.17-7.45 (m, 11H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 44.42$, 83.66, 85.07, 122.38, 125.10, 125.61, 125.71, 126.13, $126.53,126.84,127.12,127.98,128.06,128.25,128.98$, $130.58,131.79,134.94,135.15,169.38$; Mass (70 eV) m/z (rel intensity) 77 (52), 105 (100), 129 (18), 230 (14), 306 (13), $335\left(\mathrm{M}^{+}, 7\right)$.

2e ${ }^{4 \mathrm{~d}}: 72 \%$; clear oil; IR (KBr) 2221, $1716 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.33(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 4.28(\mathrm{q}, J=6.9$ $\mathrm{Hz}, 2 \mathrm{H}), 5.36(\mathrm{~m}, 1 \mathrm{H}), 5.66-5.83(\mathrm{~m}, 2 \mathrm{H}), 6.01(\mathrm{ddt}, J=9.3$, 5.7 , and $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-6.85(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.41(\mathrm{~m}, 5 \mathrm{H})$; Mass (70 eV) m/z (rel intensity) 43 (100), 55 (98), 77 (55), 115 (60), 128 (43), 167 (69), 202 (36), 230 (33), 252 ($\mathrm{M}^{+}-1,27$). 2f $^{4 \mathrm{4a,6}}$: 63\%; clear oil; IR (KBr) 2222, 1720, $1639 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.43$ (br s, 1H), 5.81 (br s, 1 H), 6.07-6.12 (m, 2H), $6.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.28-7.60(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 42.92,82.99,86.10,106.72$, $119.99,122.31,122.55,126.64,128.06,128.28,128.33$, 128.63, 130.91, 131.89, 133.87, 169.42.

2g: 71\%; clear oil; IR (KBr) 2218, $1716 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 1.23(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 4.21(\mathrm{q}, J=$ $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.05(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.41(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 14.69,47.34,62.88,83.69,87.40,108.70,122.70$, $124.59,125.97,126.36,127.50,128.21,128.42,128.53$, $129.73,130.11,131.98,152.97$; Mass (70 eV) m/z (rel intensity) 43 (39), 101 (32), 128 (40), 202 (23), 230 (100), 274 (11), $303\left(\mathrm{M}^{+}, 25\right)$.

Acknowledgments. This work was supported by Korea Research Foundation Grant (KRF-2002-015-CP0215). Spectroscopic data was obtained from the Korea Basic Science Institute, Gwangju branch.

References and Notes

1. Lee, K. Y.; Lee, C. G.; Na, J. E.; Kim, J. N. Tetrahedron Lett. 2005, 46, 69.
2. For the usefulness of 1-acyl-1,2-dihydropyridines and 1-acyl-1,2dihydroquinolines as synthetic intermediates, see (a) Stout, D. M.; Meyers, A. I. Chem. Rev. 1982, 82, 223. (b) Comins, D. L.; Brown, J. D. Tetrahedron Lett. 1986, 27, 4549. (c) Comins, D. L.; Brown, J. D. Tetrahedron Lett. 1986, 27, 2219. (d) Comins, D. L.; Abdullah, A. H. Tetrahedron Lett. 1985, 26, 43. (e) Natsume, M.; Utsunomiya, I.; Yamaguchi, K.; Sakai, S. I. Tetrahedron 1985, 41, 2115. (f) Orawa, M.; Natsume, M. Heterocycles 1985, 23, 831. (g) Comins, D. L.; Abdullah, A. H.; Mantlo, N. B. Tetrahedron Lett. 1984, 25, 4867. (h) Nakazono, Y.; Yamaguchi, R.; Kawanisi, M. Chem. Lett. 1984, 1129. (i) Raucher, S.; Lawrence, R. F. Tetrahedron Lett. 1983, 24, 2927.
3. For the usefulness of 1-acyl-1,2-dihydropyridines and 1-acyl-1,2dihydroquinolines in alkaloid synthesis, see (a) Comins, D. L.; Delghani, A. Tetrahedron Lett. 1991, 32, 5697. (b) Comins, D. L.; Al-awar, R. S. J. Org. Chem. 1992, 57, 4098. (c) Yamaguchi, R.; Hata, E.-i.; Matsuki, T.; Kawanisi, M. J. Org. Chem. 1987, 52, 2094. (d) Natsume, M.; Utsunomiya, I.; Yamaguchi, K.; Sakai, S. Tetrahedron 1985, 41, 2115 and further references cited therein.
4. For the introduction of metal acetylide to acylpyridinium salts or acylquinolinium salts, see (a) Agawa, T.; Miller, S. I. J. Am. Chem. Soc. 1961, 83, 449. (b) Yamaguchi, R.; Nakazono, Y.; Matsuki, T.; Hata, E.-i.; Kawanisi, M. Bull. Chem. Soc. Jpn. 1987, 60, 215. (c) Yamaguchi, R.; Nakazono, Y.; Kawanisi, M. Tetrahedron Lett. 1983, 24, 1801. (d) Lee, P. H.; Park, J. J. Korean Chem. Soc. 1996, 40, 148. (e) Fischer, C.; Carreira, E. M. Org. Lett. 2004, 6, 1497.
5. For the introduction of organometallic compounds to acylpyridinium salts or acylquinolinium salts, see (a) Loh, T.-P.; Lye, P.L.; Wang, R.-B.; Sim, K.-Y. Tetrahedron Lett. 2000, 41, 7779. (b) Yamaguchi, R.; Moriyasu, M.; Yoshioka, M.; Kawanisi, M. J. Org. Chem. 1985, 50, 287. (c) Lee, S. H.; Park, Y. S.; Nam, M. H.; Yoon, C. M. Org. Biomol. Chem. 2004, 2, 2170.
6. For the copper-catalyzed coupling of imine, acid chloride, and alkyne, see: Black, D. A.; Arndtsen, B. A. Org. Lett. 2004, 6, 1107.
