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We study the relaxation kinetics of reversible reactions of the type A + B F C + B by applying the many-

particle kernel theory, which we have developed to investigate many-particle effects on general diffusion-

influenced reactions. It is shown that for the target model, where A and C molecules are immobile and their

interconversion is induced by the encounter with the B molecules that are present in much excess, the many-

particle kernel theory gives a result that coincides with the known exact result. 
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Introduction

For the last two decades, a great deal of effort has been

directed to investigate the many-particle effects on the

kinetics of reversible diffusion-influenced reactions.1-18 In

reversible reactions, reactant molecules that were extin-

guished by the forward reaction are regenerated by the

backward reaction. In general, the regenerated reactant

would see a non-equilibrium distribution of reactant partners

that depends on its previous reaction history. Accordingly,

the regenerated reactant would have a time-dependent

probability of encountering reaction partners. This fact

makes it difficult to develop a rigorous theory for the

kinetics of reversible reactions. 

By now, there are several theoretical frameworks dealing

with the kinetics of reversible reactions. Among these,

reduced distribution function (RDF) approach has been one

of the most popular one,1-4,9-12,17 which starts from a hierar-

chical set of evolution equations for the RDFs of the reactant

molecules. Explicit solution to the set of kinetic equations is

then obtained by introducing a truncation approximation

called the dynamic superposition approximation (SA).1,2,9-12,17

Due to its simplicity and flexibility, the SA-based RDF

approach has been applied to many types of reac-

tions,1,2,9-12,17,19,20 one of which is reversible association-

dissociation reaction, A + B F C.1,2,9-12 For this type of

reactions, the prediction of the SA-based RDF theory agrees

well with that of Brownian dynamics (BD) simulation,18 in

the asymptotic time region as well as at short times.21 

However, it was revealed by Yang, Lee, and Shin (YLS)

that for other simple reversible reactions of the type A + B F

C + B, the SA-based RDF theory shows large discrepancy

from the exact results.6 In addition, Gopich and Burshtein

reported that the quantum yield for the latter type of

reactions calculated by the SA-based RDF theory differs

much from the exact one.15 Instead of the SA-based RDF

theory, YLS presented another theoretical framework in

which memory equation for the one-particle reactant density

field is obtained by applying Mori projection operator

technique22 to formal master kinetic equation describing

complete many-particle reaction dynamics. Then the memory

function appearing in the resulting memory equation was

analyzed by fully renormalized kinetic theory developed by

Mazenko.23 The result of their theory was in better agree-

ment with the exact results than that of the SA-based RDF

theory, for the reactions of the type A + B F C + B. Also for

the reversible reaction of the type A + B  F  C, the YLS

theory was shown to provide a better qualitative explanation

on the BD simulation18 results than the SA-based RDF

theory did, except at long times;7 the YLS theory predicts an

incorrect amplitude of the asymptotic decay curve. More

recently, Gopich, Kipriyanov, and Doktorov applied the

modified integral encounter theory (MET) to the reversible

reaction of the type A + B F C + B.14 In MET, a formal

solution to the master kinetic equation is manipulated with

the density expansion of the propagator and sophisticated

diagrammatic technique. In the work, it was shown that the

MET and the YLS theory have the comparable accuracy. 

However, unfortunately, even the MET and the YLS

theory become inaccurate as the reactant density increases,

because low reactant density approximations are addressed

in both theories: the result of the former predicts a slower

relaxation and that of the latter predicts a faster relaxation

than the exact result. And neither of them reduces correctly

to the exact Smoluchowski result24 in the irreversible limit.

Therefore, there was acute need for developing more rigor-

ous theory for the reversible reaction kinetics.

Recently, we reported an advanced RDF theory that does

not rely on the dynamic SA.3,4 In the work, it was shown that

the RDF formalism gives a formally exact non-Markovian

rate equation and exact expressions for the time-dependent

reactant number densities. The rate kernels appearing in the

rate equation and the reactant number density expressions

involve a many-particle kernel (MPK) that carries the infor-

mation on the mean-field dynamical influence of surround-

ing reactant molecules on the reaction between a pair of
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reactant molecules. The expressions for the many-particle

kernels were determined in a systematic manner by consid-

ering the evolution equations for the three-particle RDFs.

This new solution procedure in the RDF formalism has been

widely cited as the MPK theory in ensuing literature.25,26

When it was applied to the reversible association reaction, A

+ B F C,3 the results of the MPK theory were better than

any previously reported theory and showed almost perfect

agreement with the BD simulation18 for the whole time

range and for any sets of reaction parameters. 

In the present work, we study the relaxation kinetics of

reversible reactions of the type A + B F C + B by applying

the MPK theory. It is shown that the striking success of the

MPK theory is not limited only to the reactions of the type A

+ B F C: the MPK theory turns out to give the known exact

results, when it is applied to the reactions of the type A + B

F C + B. 

Theory

The observable quantities are time-dependent number

densities of A and C molecules denoted by a(t) and c(t),

respectively. On the other hand, the number density of B

molecules assumed to be present in great excess of A and C

molecules would remain effectively constant and is denoted

by CB. For the sake of simplicity, we consider the reaction

system where the spherical A and C molecules with radius σ
are immobile while the B molecules are mobile point

particles and mutually independent. The chemical reaction

between A (or C) and B molecules is assumed to occur when

B molecules come into contact with A (or C) molecule. Only

for the just mentioned simple reaction model, the exact

analytic result is available.

According to reaction scheme, we can write down the

kinetic equations for the time-dependent reactant number

density as1

(1)

Here, κf and κr represent the inherent rate parameters for

the forward and the reverse bimolecular reaction. The first

and the second terms describe the changes in the time-

evolutions of the number densities due to the forward and

the reverse bimolecular reactions, respectively. The two-

particle RDF CAB(r,t) in the first term represents the averaged

product of the number densities of A and B molecules at

the two locations separated by r, and the other two-particle

RDF CCB(r,t) in the second term has the similar meaning.

The evolution equations for these functions are, in turn,

given by

(2)

(3)

L(r) in Eqs. (2) and (3) denotes the operators describing the

thermal motion of B molecules. In d spatial dimension, its

explicit expression is given as 

, where DB is the diffusion constant of B

molecules and U(r) is the potential of mean force (in units of

thermal energy) between A (or C) and B molecules. The

second terms on the right sides of Eqs. (2) and (3) take

account of the changes in the two-particle RDFs due to the

forward and the backward bimolecular reactions A + B F C

+ B. γd is the metric factor that depends on the

dimensionality, d, of the reaction system; it equals for 4π, for

d = 3, 2π  for d = 2, and 2 for d = 1. For the simpler one-

dimensional system where B molecules reside at one side of

an A or C molecule, γd = 1. The third and the fourth terms

describe the changes due to the competitive reactions of a

third B molecule with the A and C molecules whose pair

dynamics with the B molecule at a distance r is of primary

concern. These terms contain the three-particle RDFs, CABB

(r,r',t) and CCBB (r,r',t); CABB (r,r',t) denotes the averaged

product of the number density of A molecules and the

number densities of B molecules at the two locations

separated from the A by r and r', and CCBB (r,r',t) has the

similar physical meaning. In turn, the evolution equations

for these three-particle RDFs are given by 

(4)

(5)

Each term in the right sides of Eqs. (4) and (5) has a similar

physical meaning with the corresponding term in Eqs. (2)

and (3). In analogous manner, we can write down the

evolution equations for the higher-order RDFs up to N-th

order, where N is the number of B molecules in reaction

d

dt
-----a t( ) d

dt
-----c t( )– κfCAB σ t,( )– κrCCB σ t,( )+= =

d

dt
-----CAB r t,( ) L r( )CAB r t,( )=

+ 
δ r σ–( )
γdσ

d 1–
-------------------- κfCAB r t,( )– κrCCB

r t,( )+[ ]

κfCABB r σ t, ,( )– κrCCBB r σ t, ,( ).+

d

dt
-----CCB r t,( ) L r( )CCB r t,( )=

+ 
δ r σ–( )
γdσ

d 1–
-------------------- κfCAB r t,( )  κrCCB

– r t,( )[ ]

+ κfCABB r σ t, ,( )  κr– CCBB r σ t, ,( ).

L r( )f r( ) = DBr
1−d

d/dr( )rd−1

e U– d/dr( )eUf r( )

∂
∂t
----CABB r r′ t, ,( ) L r( ) L r′( )+[ ]CABB r r′ t, ,( )=

    + 
δ r σ–( )
γdσ

d 1–
-------------------- κfCABB r r′ t, ,( )– κrCCBB r r′ t, ,( )+[ ]

    + 
δ r′ σ–( )
γdσ

d 1–
--------------------- κfCABB r r′ t, ,( )– κrCCBB r r′ t, ,( )+[ ]

     κfCABBB r r′ σ t, , ,( )– κrCCBBB r r′ σ t, , ,( ).+

∂
∂t
----CCBB r r′ t, ,( ) L r( ) L r′( )+[ ]CCBB r r′ t, ,( )=

     
δ r σ–( )
γdσ

d 1–
--------------------– κfCABB r r′ t, ,( )– κrCCBB r r′ t, ,( )+[ ]

     
δ r′ σ–( )
γdσ

d 1–
---------------------– κfCABB r r′ t, ,( )– κrCCBB r r′ t, ,( )+[ ]

   + κfCABBB r r′ σ t, , ,( ) κr– CCBBB r r′ σ t, , ,( ).
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system. For treating the macroscopic system where N is

order of Avogadro number, we introduce a truncation

approximation, instead of solving the whole set of

hierarchical equations. 

Before doing this, let us look for the formally exact

solutions. The method of solution can be delineated more

clearly in the Laplace domain. Denoting the Laplace trans-

form of a function f(t) by , we can

rewrite Eq. (1) as

(6)

where we have defined an auxiliary function . a0 and c0
denote the initial value of a(t) and c(t). Next by defining a

many-particle kernel according to the equation 

(7)

we can obtain the formally exact formula for the two-

particle RDFs as

(8)

(9)

from Eqs. (2) and (3) respectively. In Eqs. (8) and (9),

 and 

, where g(r) denotes the equilibrium

pair correlation function obeying L(r)g(r)=0. The initial pair

correlation of A-B or C-B pair are assumed to be given by g(r)

so that  and .

Then, by substituting Eqs. (8) and (9) into Eq. (6), we get a

rate equation as

(10)

where

(11)

(12)

Here,  and  denote equilibrium forward and backward

reaction rate constants given by  and ,

respectively. Note that the forward and the backward rate

kernels  and  defined in Eq. (11) satisfy the

detailed balance condition 

exactly, irrespective of the specific form of evolution

operator L(r) and the many-particle kernel . In terms

of the rate kernels, we can obtain the following expressions

for  and  from Eqs. (6) and (10):

(15)

(16)

where

(17)

(18)

(19)

(20)

with . Here,  is the

probability that an A molecule at time 0 is found still as A

molecule at a later time t, while  is the probability

that an A molecule at time 0 is found to be C molecule at a

later time t.  and  have the similar

meanings. An exact reciprocal relation holds between

 and . By comparing Eqs. (18) and (19),

we get

(21)

In addition, we can also get the exact generalized mass

action law, i.e.

(22)

(23)

Note that we have not yet made any approximation and the

results obtained up to now are exact. However, as in Eqs.

(12) and (13), the complicated many-particle effects are

incorporated into the rate kernels  and  through

the many-particle kernel  that is not yet determined. 

To determine the many-particle kernel   as defined in

Eq. (7), we should evaluate   and .

From Eqs (4) and (5), we can derive

(24)

f̂ s( )   te
st–

f t( )d
0

∞
∫≡[ ]

sâ s( ) a
0

– sĉ s( ) c
0

–[ ]–=

                  κfĈAB σ s,( )– κrĈCB σ s,( ) α̂ s( )≡+=

α̂ s( )

α̂ s( )CB ξ̂ r s,( ) g r( )+[ ]

κfĈABB r σ s, ,( )– κrĈCBB r σ s, ,( ),+=

ΔĈAB r s,( ) α̂ s( )
s L r( )–
-------------------

δ r σ–( )
γdσ

d 1–
-------------------- CBξ̂ r s,( )+=

ΔĈCB r s,( )  
α̂ s( )

s L r( )–
-------------------–

δ r σ–( )
γdσ

d 1–
-------------------- CBξ̂ r s,( )+=

ΔĈAB r s,( ) ĈAB r s,( ) a s( )CBg r( )–= ΔĈCB r s,( )=
ĈCB r s,( ) ĉ s( )CBg r( )–

CAB r 0,( ) a
0
CBg r( )= CCB r 0,( ) c

0
CBg r( )=

α̂ s( ) κfĈAB σ s,( )– κrĈCB σ s,( )+≡

          k̂f s( )â s( )CB– k̂r s( )ĉ s( )CB+=

k̂f s( )
kf

eq
----------- k̂r s( )

kr

eq
------------

1

F̂ s( )
-----------;= =

F s( ) 1
κf κr+

s L r( )–
-------------------

∂ r σ–( )
γdσ

d 1–
-------------------- CBξ̂ r s,( )+

r σ=

+=

kf

eq
kr

eq

κf g σ( ) κrg σ( )

k̂f s( ) k̂r s( )
k̂f s( ) k̂r s( )⁄ kf

eq
kr

eq
Keq≡⁄=

ξ̂ r s,( )

â s( ) ĉ s( )

â s( ) ŶA s A( )a
0

ŶA s C( )c
0

+=

ĉ s( ) ŶC s A( )a
0

ŶC s C( )c
0

+=

ŶA s A( ) s k̂r s( )CB+[ ] Q⁄=

ŶA s C( ) k̂r s( )CB Q⁄=

ŶC s A( ) k̂f s( )CB Q⁄=

ŶC s C( ) s k̂f s( )CB+[ ] Q⁄=

Q s
2

s k̂f s( )CB k̂r s( )CB+[ ]+= YA t A( )

YC t A( )

YC t C( ) YC t A( )

YA t C( ) YC t A( )

ŶC s A( )
ŶA s C( )
--------------------

k̂f s( )
k̂r s( )
------------ Keq.= =

YA t A( ) YA t C( )Keq 1=+

YC t A( )Keq  

1–
YC t C( ) 1=+

k̂f s( ) k̂r s( )
ξ̂ r s,( )

ξ̂ r s,( )
ĈABB r r̂ s, ,( ) ĈCBB r r̂ s, ,( )

ĈABB r r s, ,( ) â s( )CB

2
g r( )g r′( )=

+ 
α̂ s( )CB

s L r( )– L r′( )–
-------------------------------------

δ r σ–( )
γdσ

d 1–
-------------------- g r′( ) ξ̂ r′ s,( )+[ ]

+ 
α̂ s( )CB

s L r( )– L r′( )–
-------------------------------------

δ r′ σ–( )
γdσ

d 1–
--------------------- g r( ) ξ̂ r s,( )+[ ]

+ 
α̂ s( )CB

2

s L r( )– L r′( )–
-------------------------------------[g r( )ξ̂ r′ s,( ) g r′( )ξ̂ r s,( )+

+ ξ̂ r s,( )ξ̂ r′ s,( )]

ĈCBB r r s, ,( ) ĉ s( )CB

2
g r( )g r′( )=

 
α̂ s( )CB

s L r( )– L r′( )–
-------------------------------------–

δ r σ–( )
γdσ

d 1–
-------------------- g r′( ) ξ̂ r′ s,( )+[ ]



Many-Particle Effects in Diffusion-Influenced Reactions  Bull. Korean Chem. Soc. 2005, Vol. 26, No. 12     1989

(25)

with the use of the following approximation to truncate the

hierarchy at the level of three-particle reaction dynamics:

(26)

Then by substituting Eqs. (6), (8), (9), (24) and (25) into Eq.

(7), we can obtain the following integral equation for

:

(27)

Then, according to the appendix of Ref. 4,  defined in

Eq. (13) in terms of many-particle kernel satisfying Eq. (27)

can be approximately given by

(28)

Here,  is the survival probability of A molecules

undergoing the irreversible reaction A+B → B with the

effective equilibrium forward rate constant given by

 The exact expression for  is given by  

(29)

where  is the time-dependent rate coefficients that

can be derived from the Smoluchowski approach for  the

irreversible reaction. The expression for  are given by

        (d=1) (30)

 =

 (d=2) (31)

  (d=3) (32)

where   =

(x2)erfc(x), and Jn, and Yn are the nth order Bessel functions

of the first and the second kind, respectively.27 The effective

contact distance σD are defined by 

(33)

When the effect of potential of mean force is negligible,

, the expressions for kSM given by Eqs. (30)-(32)

becomes exact. We now have the expressions for the time-

dependence of the reactant number densities in the Laplace

domain, given by Eqs. (15)-(20) with the rate kernels in Eqs.

(11) and (28). These Laplace domain results can be

converted numerically to the time domain with the use of a

numerical inverse-Laplace transform routine.28

Results and Discussion

As can be verified from Eqs. (15)-(20), the equilibrium

value of a(t) and c(t) are [≡ aeq] and

[≡ ceq], respectively, and the

reactant number densities relax to the equilibrium values

according to the following relaxation law

(34)

where  and  When

the expressions of the rate kernels given by Eqs. (11) and

(28) are substituted into Eq. (34), the result can be put down

in the time domain as 

(35)

In fact, for the simple reversible reactions of the type A + B

F C + B, there exist an easy way to prove the relaxation

predicted by Eqs. (29) and (35) is exact one.15 However,

none of general purpose many-particle theories for

reversible reactions succeeded in recover the exact result for

this type of reactions. 

In the present theory, the error in the truncation

approximation, Eq. (26) that was introduced to derive the

equation for  in a closed form is exactly cancelled by

that in Eq. (28) which relates the diffusion effect function

 to the irreversible survival probability. Fortunately,

this type of error cancellation also occurs in parallel when

MPK theory is applied to other type of reactions.3,4
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α̂ s( )CB

s L r( )– L r′( )–
-------------------------------------–

δ r′ σ–( )
γdσ

d 1–
--------------------- g r( ) ξ̂ r s,( )+[ ]

 
α̂ s( )CB

2

s L r( )– L r′( )–
-------------------------------------– [g r( )ξ̂ r′ s,( ) g r′( )ξ̂ r s,( )+

+ ξ̂ r s,( )ξ̂ r′ s,( )]

κf ĈABBB r r′ σ s, , ,( )– κr ĈCBBBB r r′ σ s, , ,( )+

 CB g r( ) ξ̂+ r s,( )[ ][ κf ĈABB r′ σ s, ,( )–≅

        + κr ĈCBBB r′ σ s, ,( )]

α s( )CB

2
g r( ) ξ̂+ r s,( )[ ] g r′( ) ξ̂+ r′ s,( )[ ]=

ξ̂ r s,( )

ξ̂ r s,( )
kf
eq

kr
eq

+

s L r( )–
--------------------

δ r σ–( )
γdσ

d 1–
-------------------- ξ̂ r s,( )CB+=

   
κf κr+

s L r( )– L r′( )–
-------------------------------------[

δ r σ–( )
γdσ

d 1–
-------------------- ξ̂ r′ s,( )–

 
δ r′ σ–( )
γdσ

d 1–
--------------------- ξ̂ r s,( ) ξ̂ r′ s,( )ξ̂ r s,( )CB]+ +

F̂ s( )

F̂ s( )  
kf
eq

kr
eq

+( )CBŶA
ir eff,

s( )

1 sŶA
ir eff,

s( )–
-----------------------------------------------------≅

ŶA
ir eff,

s( )

kf
eq

kr
eq

.+ ŶA
ir eff,

s( )

YA

ir eff,
t( ) exp CB  τkSM τ( )d

0

∞
∫–[ ]=

k
SM

t( )

k
SM

t( )

k
SM

t( )
kf
eq

kr
eq

+
-------------------- Ω k t tD⁄( )=

k
SM

t( )
kf
eq

kr
eq

+
--------------------

k
2

π
---

⎝ ⎠
⎛ ⎞

2
dx

x
------

0

∞
∫

exp x
2
t tD⁄–( )

xJ
1
x( ) kJ

0
x( )+[ ]2 xY

1
x( ) kY

0
x( )+[ ]2+

--------------------------------------------------------------------------------------------------

k
SM

t( )
kf
eq

kr
eq

+
--------------------

1

1 k+
------------ 1 kΩ 1 k+( ) t tD⁄[ ]+{ }=

k kf
eq

kr
eq

+( ) γdσD

d 2–
DB, tD σD

2
/DB Ω x( ),=⁄=

σD  r U r( )[ ]r 2–
expd

σ

∞

∫
⎩ ⎭
⎨ ⎬
⎧ ⎫

1–

=

U r( ) 0≅

kr
eq

a
0

c
0

+( )/ kf
eq

kr
eq

+( )
kf
eq

a
0

c
0

+( )/ kf
eq

kr
eq

+( )

Δâ s( )
Δa 0( )
---------------

Δĉ s( )
Δc 0( )
--------------

1

s kf s( ) kr s( )+[ ]CB+
--------------------------------------------------= =

Δa t( ) a t( ) aeq–= Δc t( ) c t( ) ceq.–=

Δa t( )
Δa 0( )
---------------

Δc t( )
Δc 0( )
-------------- Y A

ir eff,
t( ).= =

ξ̂ r s,( )

F̂ s( )
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