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The explicit form of time correlation function between fluctuating concentrations is obtained for the model of metabolic
system with negative feedback near a stable(or marginally stable) steady state.

Introduction

The metabolic mechanism is a complex network of en-
zyme catalyzed reactions which transform substrate mole-
cules into a variety of products. One kind of the most inter-
esting metabolic mechanisms is that which shows a bioche-
mical oscillation. Even though such mechanisms are very
complex, Goodwin’ has proposed a simple model of a bioche-
mical metabolic oscillation for protein synthesis. The gener-
alized model of metabolic system with negative feedback was
given by Griffith? and Tyson and Othmer®,

The purpose of the present paper is to obtain the time cor-
relation functions between fluctuating concentrations near a
stable(especially, marginally stable) steady state for the
model of metabolic system with negative feedback.

In the next section we diagonalize the Langevin equation
with a suitable eigenvector® and obtain the corresponding
linear Fokker-Planck equation. Introducing a function and
using the creation and annihilation operators, the probability
distribution may be expressed in terms of the coupled Her-
mite polynomials.*® Then, we may obtain the explicit form of
the time correlation functions, which is easily applicable to
any metabolic system near a stable (or marginally stable)
steady state.

Theory

The concentration X; of a substance S; in a negative feed-
back system is assumed to satisfy a Langevin equation as
follows™®
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where C, is the rate constant of the initial substance S;in the
absence of the product S,; v is the cooperativity of the feed-
back inhibition; &/s are the rate constants; K is the equilib-

rium constant of the following reaction which yields inactive
S
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Here E denotes the enzyme. The random force ¢, is assumed
to satisfy the Gaussian condition, that is,
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where D; is the diffusion coefficient of the ith species, d; the
Kronecker delta and 5(t-t’) the Dirac delta function. Since the
magnitudes of the rate constants are arbitrary, we shall
assume that all the rate constants are equal to k. Let X/ be
the steady state value of X, Expanding Eq.(1) in terms of
x;= X; - X/ and linearizing it, we have
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The Fokker-Planck equation corresponding to Eq.(4) is
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where E; is the ith row vector of the drift term in Eq.(%).

Let the eigenvalue of M and its corresponding right and
left eigenvectors be — A4, ¥%and ¥?, respectively. Then, we
obtain 4

An=Fk{1- (yc%l)liexpi[Zm—l-l)%]}.
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The stability of the system depends on the parameters v, ¢
and 7.° When v(c-1)/c<sec2m + 1)x/n, the system is sta-
ble, while it is unstable in the opposite sign. If ¥(c-1)/c = sec®
(2m + 1)n/ n, the system shows the sustained oscillation.
With the aid of Eq.(7), Eq.(4) may be rewritten as follows
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The Fokker-Planck equation equivalent to Eq.(8) is
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In order to obtain a general solution of the Fokker-Planck
equation let us introduce a new function defined as

Pla, 2,2 t) =exp (2 2) Py, 300 8). (12)

where
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Using Eq.(12), Eq.(11) reduces to
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The creation and annihilation operators with respect to z; are
defined as®
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The operators satisfy the following commutation relations
(b, b)Y =0, (b, b)=0, (b, b;)=0. (16)
Let the eigenfunction of B; b , be }_’N,(zi). Then, we have
bPy(2) =N/*Py (), b1 Py (2) = (N+1)* By, (2),
17

where N; is zero or positive integer and the eigenfunction is
expressed in terms of the Hermite polynomials

P, (z)= Tﬁ”—)lp-z],—/z—exp (- %23) H, (2,/2'"); (18)
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The operator in Eq.(14) is given as
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A general solution of Eq.(14) may be expressed as
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where the summation notation and Cyy, are
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The above solution indicates that the eigenfunctions are
coupled each other through C; ;) and eigenvalue.

Let N=N;+Ny+--+ N, to obtain the eigenvalue. Then,
Eq.(20) may be rewritten as
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where N2N; 20 and the prime in the sum and C; w;) means
that one of the N/s is omitted. Substitution of Eq. (22) into
Eq. (16) leads to
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From the above equation we may obtain the recurrence tor-
mula for the eigenvalue

(Z A1 N= 4) Gy =0, when N=0 or 1, (24a)
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In Eq.(24a) N = 0 describes the steady state of the system.
Now, let us define the time correlation function between
2, and X, near a steady state*

Gy,x, () =<xexp (E1) x, >4 (25)

where <>, denotes the average over the probability
distribution at a steady state. With the aid of Egs.(9) and (13)
we have
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where |¥| is the determinant of the matrlx consisted of the
eigenvectors ¥ ( = 1,2,---,m) and |7)%" ;" is the cofactor of the
element T'l in the determinant |¥}. Using Egs.(17), (22),
(24a) and (26) the correlation function betwen x; and x, be-
comes
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The above result holds unless the state is unstable. The re-
laxation time is defined as the inverse of real part of A,
which is, in general, complex. At the marginally stable steady
state the relaxation time becomes infinite. This means that
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the system at the marginal state does not relax to the stable
steady state but always oscillates on the closed trajectory.

In a forthcoming paper we shall apply the general result
to a specific model, that is, the Goodwin model for protein
synthesis' and then in detail discuss the physical and biologi-
cal meanings of the results.
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New methods for the reduction of carboxylic acid salts to aldehydes with 2 equiv of thexylbromoborane-dimethy! sulfide
(ThxBHBr-SMey) or 9-borabicyclo[3.3.1]nonane (9-BBN) are described. Both these reagents provide the corresponding
aldehydes from various sodium and lithium salts of carboxylic acids in high yields both at room temperature, Such facile
reductions are explained as the simple substitution for the bromo group of ThxBHBr by a carboxylate to form thexyl-
(acyloxy)borane followed by reduction with excess reagent and the formation of an ate complex followed by reduction with

excess 9-BBN.

Introduction

Transformation of carboxylic acid derivatives, such as
esters, amides, acid chlorides, nitriles, etc., to the correspon-
ding aldehydes is of great importance because of their ver-
satile utility in organic synthesis. Various useful methods for
preparation of aldehydes from carboxylic acid derivatives
have been developed’, however there have been no report for
the direct conversion of metal salts of carboxylic acid to alde-
hydes. Very recently, we have reported that thexylbromobo-
rane-dimethyl sulfide (ThxBHBr-SMe,)? and 9-borabicyclo-
[3.3.1lnonane (9-BBN)® can achieve the direct conversion of
carboxylic acids to the corresponding aldehydes in high
yields (eqs 1-3). This result intrigued us. Consequently, we
have investigated to find out the new methodology for the
direct conversion of carboxylic acid salts to aldehydes using
such unique reducing agents.

In this paper, we describe details of such apparently first
development for the direct conversion of sodium and lithium
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excess H—BHBI" SMe2
RCOCH > RCHO (1)

(R=aliphatic and aromatic)
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salts of carboxylic acids to aldehydes, which have already re-
ported in a forn of communication®* including the mecha-
nistic considerations as well as the isolation method of alde-
hyde products.

(3)
= 9-borabicyclol3.3.1llnonane = 9-BBEN)



