Approximate Electronic Solutions for Clusters

Co0;-, on the oxidation of CO is determined by the degree
of nonstoichiometry due to the incorporation of foreign atom
such as Sr.
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The Approximate Electronic Solutions in A Closed Form,
for f.c.c.,, b.c.c. and h.c.p. Clusters
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A cluster made of N4, Np and Ncatoms in the x, y and z directions respectively, is treated with Hiickel method.
We obtain the approximate expressions for the eigenvalues and eigenvectors of fc.c., b.c.c. and h.c.p. clusters in
closed forms. The maximum and minimum values of the band so obtained converge to those derived from the
Bloch sum in the limit of infinite extension. For a small cluster (of 9X9X5 atoms, for instance), LDOS from the
analytical {approximate) solution manifests better agreement at the surface, than inside the bulk.

Introduction

There are two main streams in assessing the interaction
between an adsorbate and a solid substrate. The methods
of solid state physics'™® treat the substrate as a semi-infinite
solid, which has infinite extent in the +x, +y, and —z direc-
tion and has surface at z=0, or as slab, which is a solid
of finite thickness Az but has infinite extent in the +x and
+y directions. On the other hand, the methods of molecular
quantum theory*~® approximate the metal substrate as a clu-
ster of finite number of atoms.

One question which immediately comes to mind with re-
gard to cluster representing a metal substrate is: how many
atoms are needed in the cluster to describe the metal ?
The answer to this question will obviously depend upon
which properties of metal one wishes to describe. Empirica-
11y, it is known that localized effects, such as metal-adsor-
bate bonding, can be treated successfully with a moderate
size of cluster which is within a computational reach through
most molecular orbital methods. However a cluster of 50
atoms or less, which is already quite a computational feat,

would be sorely inadequate for the discussion of a number
of solid state aspects of the substrate, such as bulk cohesive
energies and work functions. In practice, therefore, one
should investigate and justify the convergence of results as
a function of cluster size. It would be very convenient, if
one has an analytical measure, to treat a cluster of an arbit-
rary size, in a consistent way. In a limit of infinite size.
the method should reproduce the results derived from bulk
solid.

- Using simple Hiickel theory, Messmer!® had shown that
for a simple cubic (s.c.) array of atoms, the eigenvalues and
eigenvectors can be obtained in a closed form for any size
of cluster up to the infinite solid.

Here an extension of this to other lattices is intended.
That is, the solution of closed form is persued, within a
framework of Hiickel theory. The major obstacle is a large
coordination number (12 for face centered cubic, while 6
for simple cubic) which leads to an unfavorable form of the
secular matrix. A cluster of average configuration is thus
conjectured, and there results energy matrix of manageable
form. Analytic (Hiickel type) solutions for face centered cubic
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(f.c.c), body centered cubic (b.c.c.) and hexagonal close-pack-
ed (h.cp) lattices are derived. In the limitting case of an
infinite extension, the maximum and minimum eigepvalues
from the present method can be identified with those from
the Bloch function" describing the infinite lattice.

Theory

It is started with a simple one-electron Hamiltonian I-}
within a tight-binding linear combination of atomic orbital
approximation. If one chooses a cluster with one atomic s-
orbital x per site for simplicity and only interactions from
the nearest neighbors are taken into account, then the sys-
tem is completely characterized by its Hamiltonian matrix
elements given by

Gl H ) =e o
Gul H o= {t (if u and v are the nearest neighbors)

0 (otherwise)
2)
The subscript is a label for the site of atomic orbitals. As
it is common in the tight-binding approximation, the overlap
integrals are neglected, ie,

G | %0 =8y 3)

Assuming that the cluster consists of Ny, Nz and N¢ atoms
in the %, y and z directions, respectively, one can arrive
at a secular equation

(H—&)D=0 Y

of dimension N NgN¢XNiNpNe. The matrix H contains the
matrix elements of Egs.(1) and (2), the matrix ¢ is the unit
matrix multiplied with g; D is the eigenvector matrix (co-
lumn vector), which is made of the linear coefficients d,p
of the atomic orbitals such that

\I’B:Zdugxﬁ B:L 2, -+, NaNpNc (5
Then the eigenvalues are obtained by the solution of
ICl=1H-¢g]| =0 (6)

The index ! of each atom in the cluster is given by
=G j R )

where i=1,---Ny, j=1,“Ng, =1,-Nc, and 4, j and k provide
a sequential label for the positions along the x, ¥ and z axes,
respectively. The serial number of the atom is

a=(k—1) NpNs+(—1 Nati (8)

The fc.c. cluster stacked with (1, 0, 0) planes (Figure 1)
is considered.

The matrix C of Eq.(6) for the cluster is
B s 0s 0p 0Op -
oo s B Uz O
0s s B tfz 0Op oooeee ©)]

0 Op E]BB % ......
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Figure 1. The f.c.c. cluster. The open circles denote atoms at
first, third, ..layers and the shaded are for second, fourth, ...pla-
nes of (1, 0, 0).

where the matrix Jj is the transpose of the matrix /s, and
the matrix Opis a null matrix with the dimension of the
matrix B. The C is an N¢o XN matrix when written in terms
of these B, J5, Jz and Og matrices of the identical dimension.
The matrices B and Jp are

A t, 0, O0f oo

tH, A Hy 04 -
B= (10)
()A t[A A HA ......

and
Fa 0r 04 oo
Jo Ja 04 e
Js= an
00 Ja Jo e

which again have elements which are themselves matrices.
In terms of A, J4, I, and O, the matrices B, Jz and Zg are
of - dimension NpXNp. The matrices Iy and O, are the unit
and null matrices, respectively, with the dimension of A. The
matrices A and J, are

Ey—€ t 0 0 eeeeee
¢ g—~e ¢ 0 e

A= (12
O t &—¢ t ......

and

1 O 0 ......
1 1 0 eeeees

Ja= (13)
0 1 1 e
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Figure 2. The f.c.c. clusters with four different configurations.
The solid line depicts the odd-numbered layers and the broken
line represents the even-numbered layers.

which have dimension of Ny XN, The matrix C, of a single
configuration, has overall dimension of NsNgNcXNsNpNc.

Here, the matrix C is not a very convenient form for analy-
tic diagonalization. Four clusters (Ns=Np) are taken, which
are created by rotation of 90 degrees about the z-axis from
previous one successively, (Figure 2).

Labeling of the atoms, and atomic orbitals, in each layer
starts from the upper left corner to the lower right corner
(see Figure 1). The four configurations, which are physically
equivalent, then give slightly different forms of secular ma-
trices. The arithmetical mean of the four matrices is a fairly
simple form as follows.

t
B ZKB 04 0p  eeee W
t t
ZKB B ZKB 0 oo
C = 14)
t t
Ox ZKB B ZKB ......

In terms of the element B and t——KB, the matrix C is of
dimension NcXN¢. The matrix Kz is

2KA KA OA OA ......

K. 2K: Ki 0y -

Kp= (15)
0. K, 2Ki Ky <+

The matrix Kz 1s of dimension N4y XN, with each element
being itself a matrix. The matrix K, is

Ki= (16)
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with the dimension of NsXN,. Thus the matrix C’ has oqg—‘
rall dimension of NyN,NeXNiNJNC.

The procedure one will adopt to obtain the solution of
[C'] =0, may not be the most elegant derivation, but it
has an advantage of being straightforward. To solve the pro-
blem, it is only necessary to obtain the eigenvalues and the
eigenvectors of the following type of #Xn matrix:

a b 0 0 e
b a b 0 e an

They are given as follows':

kn
A =a+2b cos 1 (18)
and
X(k)_ Xsk)
Xge)
(19)
X;lk)
2 . kyn
h (k) — 172
where x=Cr sin (20)
=12 -, n |
k=1, 2 -, n

Now, one can obtain the eigenvalues and the eigenvectors
of the matrix C’:

B,=B+ 1K, cos—""
" 5 B C SNC+1 2n
knn
1/2 :
ulk, m)= (N+1) N1 22)
k=12 - N,
n:]., 2, oy Nc

bl
Q

>
(o]

B,= 23

where a=A-+tK, cos (24)

nn
NA+1

(25)

b= tIA + = tKACOS

nn
N+1

The eigenvalues and eigenvectors are
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nn mm
A+ — +
A=A t(KA cos N+l COSNA+1

X @I+ K, cosN+1)) (26)
. Lo . Jmm
A = 27
us(s, my=( =y I singry @n
J=1,2, -, Nu
m 1, 2, . NA
respectively.
A, 1s an Ny XN matrix of the form,
c d O 0 e
d c d 0 e
Apn= (28)
0 d ¢ d e
where
nn mn
c= ao+2t(ccaN +1+COSNC+ +oos ) cos N+1’ (29)
d=H1+cos— +cosr  cosr | 30)

N+1 Na+1 NA+1’

Therefore the eigenvalues and eigenvectors of the matrix
A are given by:

- ( mm nn
Eimn _s°+2t(‘C0°NA+ 1 +COSNA+1 +cos N
In mn In mn
X(14cos = Nitl +COSNA+1 + OS—NA+1COSNA+1)
31
o 2 e . dlm
iD= NA+1'] SN 1 (32)
1, I=1, 2, «-, N4
The label B of the state is given similarly to a:
B=(—DNNy+m—DN+1 (33)

where [, m, n=1, 2, ..., Na
Then the final results of an eigenvalue problem for f.c.c.
cluster of arbitrary size are given by:

In mn nn
£g—so+2t(cosNA+1 +COS_NA+1 +COS—NC+1

In mn In _mn

X (14 cos —— N+l +cosN T +cosN4+lcosNA+l))
(34)
dep=uclk, n) ug(y, m) us@, I (35)

2 v o Um

where w4, D= N +1) sm(NA+1) (36)
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us(j, m)=( 2 sin(—‘mu ) @37

uclk, n)=| 2 e sin (38)

Nc+1’

Due to the averaging process of the four secular matrices,
as stated earlier, the center of the atomic orbital x, located
at an atom of even-numbered layer is not well defined. The
shortcoming is nothing but a price one has to pay to obtain
an analytical form of eigenvalues. The matter is taken up
later at the section of discussion.

One can derive the eigenvalues and the eigenvectors of
b.c.c. and h.c.p. cluster, similarly to the case of f.c.c. cluster,
The eigenvalues are:

nn i In mn
=g,+ L + e
gp= g+ 2t ST {1+ cos Notl +COSN4+1
ln _mn
)
+cosN NA+1 39
for b.c.c. cluster;
_ / In nn
83_8°+2ﬂ‘C0°NA+ +COSN5+1 +COSNC+1
+cos Im il +cos mn cos AT
NA+1 NB+1 Ng+1 Nc+1
+ In | Cos T )
oSy ] O+ 1 (40)

for h.c.p. cluster.

The eigenvectors are of the same forms as those of fc.c.
cluster (Egs. 35-38). However, the molecular functions wy;
are quite different since the positions of s-orbitals are charac-
teristic of each lattice.

Discussion

In infinite solid, Bloch functions which are periodic in k-
space satisfy the relation,

Y,k D=V, (k+ky, 7) @1

where 7,k and %, are a displacement in the real spece, a
wave vector and a primitive translation in the reciprocal
space, respectively. The Bloch functions can therefore be
represented as a Fourier series

Lo, 1 Lo .
¥k, = /X Dan(R,, 7) explk-R,) (42)

where N and R, are the number of unit cell and the primitive
translation in real lattice. The functiion a,,,(R 7) in the expan-
sion is the Wannier function. With the tight-bonding model,
the Wannier function an(r- R) can be approximated by the
atomic orbital x(7- R,,) Taking only nearest neighbor interac-
tion into account, one can show that!!

E.(B)=E&+ [x3Ve)— V] xu@dr
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+ Y explit-R)EOVA~VE—R)] yulr—Ro)dr.
nearest ( 43)

neighbars

If s-orbital is exclusively considered as an atomic function,
the integrals in the sum on the right-hand side are equal.
If @ is the lattice constant, Eq.(43) can be written with further
abbreviations,*
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Table 2. Convergence of b.c.c. Cluster Analytical Solution (in

E, (B)=E2+C,+ 4t(cos% k. cos

+ cos% ky cos % k. + cosi2 k, cosi2 k) (44)
for f.c.c;
ER=E;+C,+8t cosi2 k, cosi2 k, cos (45)
for b.c.c, where
Co= [RHPLVE) — VO I (46)

Table 1. Convergence of fc.c. Cluster Analytical Solution (in

iky

units of-t)
No. of E. Eou Band Width Fraction of
atoms surface atoms

3 27 —6.949747 2949748 9.899495 962963
4 64 —8531153 3.295085 11.826238 875000
5 125 —9495190 3.495191 12.990381 784000
6 216 —10.115506 3.621547 13.737054 703704
7 343 —10.534652 3.706225 14.240876 635569
8 512 —10.829783 3.765606  14.595389 578125
9 729 —11.044850 3.808783 14.853633 529492
10 1000 —11.206135 3.841121  15.047255 488000
11 1331 —11.330048 3.865946  15.195994 452292
12 1728 —11427231 3.885407 15.312638 421296
13 2197 —11504813 3.900837 15405750 394174
14 2744 —11567706 3.913525 15481231 370262
15 3375 —11.619383 3923865  15.543249 349037
16 4096 —11.662351 3.932462 15.594814 330078
17 4913 —11.698456 3.939686  15.638142 313047
18 5832 —11.729081 3.945812 15.674893 297668
19 6859 —11.755279 3.951053 15.706332 283715
20 8000 —11.777861 3.955570  15.733431 271000
21 9261 —11.797463 3.959491  15.756954 259367
22 10648 —11.814585 3.962916  15.777501 248685
23 12167 —11.829628 3.965925  15.795552 238843
24 13824 —11.842915 3.968582 15.811497 229745
25 15625 —11.854708 3.970941  15.825649 221312
26 17576 —11.865224 3973044 15.838268 213473
27 19683 —11.874639 3.974927  15.849567 206168
28 21952 -—11.883102 3976620 15.859723 199344
29 24389 —11.890738 3.978147 15.868885 .192956
30 27000 —11.897649 3.979530  15.877179 186963
40 64000 —11.941402 3988280  15.929682 142625
50 125000 —11.962103 3.992421 15.954523 115264
60 216000 —11.973499 3.994700 15.968199 096704
70 343000 —11.980434 3.996087 15976521 083289
80 512000 —11.984965 3996993 15.981958 073141
90 729000 —11.988086 3.997617 15.985704 065196
100 1000000 —11.990328 3.998066 15.988394 058808

units of-t)
No. of E,. E.. Band Width Fraction of
atoms surface atoms
3 27 —4.121320 4.121321 8.242641 .962963
4 64 —5.295085 5.295085 10.590170 .875000
5 125 —6.031089 6.031089 12.062178 .784000
6 216 6511631 6.511631 13.023262 703704
7 343 —6.839134 6.839134 13.678267 .635569
8 512 -—7.071013 7.071013  14.142026 578125
9 729 —7240624  7.240625 14481249 529492
10 1000 —7.368163  7.368163  14.736326 488000
11 1331 7466345 7466345 14.932689 452292
12 1728 —7.543464 7.543464 15.086928 421296
13 2197 —7.605101 7.605101  15.210202 394174
14 2744 —7.655116 7655116  15.310232 370262
15 3375 —7.696242 7.696242  15.392485 .349037
16 4096 —7.730459  7.730459  15.460918 .330078
17 4913 —7.759225  7.759225 15.518450 313047
18 5832 —7.783636 7.783636  15.567272 297668
19 6859 —7.804525  7.804526  15.609051 283715
20 8000 —7.822538 7.822538 15.645076 271000
21 9261 —7.838177 7.838177 15.676354 259367
22 10648 —7.851841  7.851841 15.703682 248685
23 12167 —7.863848  7.863849  15.727697 .238843
24 13824 —7.874456  7.874456  15.748912 229745
25 15625 —7.883873  7.883873 15.767746 221312
26 17576 —7.892270 7.892270 15.784541 213473
27 19683 —7.899790 7.899790  15.799581 206168
28 21952 —7.906551 7906551 15.813101 199344
29 24389 —7912650 7912650 15.825300 192956
30 27000 —7918172 7918172 15.836344 .186963
40 64000 —7.953139 7.953139 15.906278 142625
50 125000 —7.969689 7.969689 15.939378 115264
60 216000 —7.978803 7.978803 15.957606 096704
70 343000 —7.984349 7984349 15.968698 083289
80 512000 —7.987973 7987973 15975946 073141
90 729000 —7.990470 7.990470  15.980940 065196
100 1000000 —7.992263  7.992263  15.984526 058808
i /
9y ° /
!
9 \\ /
N/
-12
w L r X w K

Figure 3. S-type band structure of the face centered cubic (f.c.c.)

lattice, computed by Eq.(44).

and the wave vector k is limited to Brillouin zone.
The analytic solutions of finite clusters(Table 1, 2) conver-
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Figure 4. S-type band structure of the body centered cubic (b.c.
c.) lattice, computed by Eq.(45).

ge to the results of Egs.(44) and (45) of infinite lattice cases
(Figure 3, 4), in the minimum and maximum of the energy
(band width).

Now, the last but the most important question to be ans-
wered is: how well the analytic solution based on the “ave-
rage configuration” does represent the real lattice ? Since
the density of states, especially the local one, depends on
both the set of eigenvalues and eigenvectors, it would be
logical to compare those(DOS and LDOS) from the numerical
solution of the lattice of the configuration I of Figure 2, with
those from the analytical solution obtained by the “average”
configuration, for the moderate size of the cluster. The DOS
and LDOS at the atom with index a is given by

o(E)= ;g(E —gg)  (for DOS) 47

paE)=2 | doy I*S(E—&g)  (for LDOS) (48)
B

For finite clusters, one can replace the delta function by
a Gaussian of the width parameter o. Thus Eqgs.(47) and
(48) become

pE)=(2nc?) "2 expl —(E —ep)/20%] (for DOS) 49
0

PUE)=2nc?) V2> | dus 17 expl —(E —gp)/206%] (for LDOS)
B
(50)

The =0 and ¢=0.075 (in units of ¢) are taken in the
present work.

Figure 5 compares the DOS'’s obtained by numerical solu-
tion with the analytical one, for the f.c.c. cluster of 5X5X5,
7X7X5 and 9X9X5 respectively. In the case of 100X100X
100 cluster, the energy eigenvalues derived from Eq.(44) are
used instead of the numerical solutions, ze. the Brillouin
zone is divided into 10° segments, and at center of each seg-
ment E,(k) of Eq.(44) is computed. For small clusters (up
to 9X9X5 atoms), DOS’s of the analytical solution agree with
those of the numerical one. Since, for those clusters, the
fractions of the surface atoms are relatively large (more than
50%), DOS may not be too different from LDOS at a surface
atom. Consequently, one may interpret the close agreement

Gean-Ha Ryu and Hojing Kim

101

ALYLPLT AN
-8 -4 -2
Energy (in units of -t}

(b}

(@)

104

54

12 10 H M 4 2 0E,E 2 4
Energy (In units of ~t)

Figure 5. Density of states (DOS) of the face centered cubic
(f.c.c.) clusters of (a) 5X5X35, (b) 7X7X5, (¢) 9X9X5, (d) 100X
100X 100, atoms respectively. The solid line denotes the DOS
from the analytical solution and the dashed line corresponds
to the one from the numerical solutions for (a), (b) and (c), and

Bloch sum for (d). E; and E; are Fermi levels.
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0.5

{b)
0.4

8 03]

0.2

0.1

42 -10

07
0.6 !
0. {d)
0.4

0.31

0.21

0.14

Figure 6. The local density of states (LDOS) of 9X9%5 fcc. cluster at (a) (1, 1, 1), (b) G, 1,1, (@ (55 D@ G5 2 and
(e) (5, 5, 3). The position index is defined by Eq.(7) of the text. The solid line denotes the analytical solution and the dashed line

corresponds to the numerical solution (See text).

between DOS'’s as the agreement between LDOS at a surface
atom. On the other hand for a large cluster of 100X 100X
100, where the fraction of surface atoms is mere 6 percent
DOS from the analytical solution poorly copies the result
from the Bloch sum, especially in the region of near and
above the Fermi level. It means that the analytical solution
is inadequate to describe the bulk properties which may de-
pend sensitively on the DOS profile near the Fermi level.
The above observation of Figure 5 also is consistent with
the fact, which Figure 6 will show shortly, that the LDOS
from the analytical solution agrees with that from the numer-
ical one better at surface than inside.
The advantage of the present work lies in the simplicity

of calculation: the computation of eigenvalues for 10°-atomic
cluster, which is nearly impossible by the numerical method,
requires only a few hours in PC. LDOS’s (see Figure 6) from
the analytic solution shows relatively good fit for that from
the numerical solution at the region of the surface.

The work, however, has problems too. First, the analytical-
ly-obtained DOS agrees fairly well, for the cluster of atoms
with singly occupied s-orbital, with numerical one nearly up
to Fermi level, but doesn't around above Fermi level (see
Figure 5). Therefore the solution may not be useful for trea-
ting bulk properties (cohesive energy, work function etc) and
any effects associated with Fermi surface. Secondly, because
the cubium cluster model used here is based on 1, 0, 0)
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0.41 (b)
0.3+
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0.21
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Figure 7. (a) The density of states (DOS) and (b) the local density of states (LDOS) at (6, 6, 1), of 11X11X11 fcwc. cluster, com-

puted with Eqs.(34) and (35) (See text.).

1800 (a)

1200

8001
400
[} Y T T T T T
-8 -8 -4 2 4 6 €

0 2
Bnergy {in units of ~t)

2 (b)
1.54
1.
) AA_W’“J
[} v v \\N‘M"AT r
8 6 4 4 [ B

2 0 2
Energy (in units of -t)

Figure 8. (a) DOS and (b) LDOS at (6, 6, 1), of 11X11X11 b.cc. cluster, computed with Egs.(35) and (39) (See text).

700

6001
(a)

%2 40 8 ® 4 2 o8 2z  a

Energy (in units of ~t)

Figure 9. (a) DOS and (b) LDOS at (6, 6, 1), of 11X11X11 h.c.p.

Miller index plane, it is not feasible to represent diverse
surface other than this plane.

With the analytic cluster solution, The density of states
(DOS) and local density of states (LDOS) for the clusters
of 1331 atoms, which is a 11X11X11 array, have been com-
puted. The DOS’s of f.c.c. (Figure 7a) and h.c.p. (Figure 9a)
seem to be unsymmetric; the minimum energy is farther
apart than the maximum one from the origin, but the states
are more densely distributed at high energy than at low
energy. But the DOS of b.c.c. (Figure 8a) appears to be sym-
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0.14
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cluster, computed with Eqs.(35) and (40) (See text).

metric to the origin. In the b.cc. lattice, the present model
is rather inadequate since the nearest neighbors don’t exist
in a layer and so the off-diagonal elements of the matrix
are far apart from the diagonal elements. The LDOS (Figure
7, 9) of each lattice has a general profile which is qualitati-
vely similar to the DOS of itself, but the deviation, of each
LDOS computed with analytic solution, from the one with
numerical means becomes greater from surface to the inside
of the bulk. Therefore, the analytic solution may be adequate
for problems of adsorbate-substrate interactions, but may not
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be so for bulk properties.
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A Study on Spin-Lattice Relaxation of Methyl Protons in
2,6-Dichlorotoluene and N-Methyl Phthalimide

Jo Woong Lee*, Man-Ho Lim, and Jung-Rae Rho

Department of Chemistry, Seoul National University, Seoul 151-742, Received August 10, 1990

Spin-lattice relaxation of methyl protons in 2,6-dichlorotoluene and N-methyl phthalimide, each dissolved in CDCl,,
has been studied at 34T and the contribution from spin-rotation interaction to the relaxation process has been separa-
ted from that due to dipole-dipole interactions among methyl protons. The results show that the spin-rotational
contributions to the initial rate of relaxation in 2,6-dichlorotoluene and N-methyl phthalimide amount to 18 and 31%,
respectively, of the total relaxation rate at 34C. The method of separating the spin-rotational contribution from that
of dipolar interactions adopted in this paper is based on the well known fact that in an A; spin system such as
methyl protons in liquid phase dipolar relaxation mechanism gives non-exponential decay of the z-component of
total magnetization of protons while the random field fluctuation such as spin-rotational mechanism causes exponertial

decay.

Introduction

It is nowadays a well-established fact that the study of
nuclear magnetic relaxation can provide valuable informa-
tions regarding inter- and intramolecular interactions and
their dynamical characters in bulk materials.! Relaxation of
nuclear spins in a molecule is known to be caused by random-
ly fluctuating magnetic fields produced at the nuclear sites
by various inter- and intramolecular interactions. Among
these the most pronounced are (inter- and/or intramolecular)
nuclear magnetic dipole-dipole interactions, spin-rotation in-
teractions, nuclear electric quadrupole-electric field gradient
interactions, chemical shift anisotropy interactions, scalar
couplings of the first and second kind, and interactions due
to the presence of paramagnetic molecular species.?

For protons in small organic molecules dissolved in a deu-
terated solvent such as CDC1;, it is known that only inter-

*To whom correspondence should be addressed

and intramolecular dipole-dipole interactions and the spin-ro-
tation interactions are the two major relaxation mechanisms
to be considered and the contributions from other causes
can safely be ignored.3* The dipolar interactions are usually
a dominating factor; however, if the molecule is of highly
symmetrical shape and can undergo easy rotational motions
in bulk phase, the spin-rotational contribution may be appre-
ciable in magnitude® Such seems to be the case also for
protons located on a methyl group which can undergo rapid
internal rotation about its own axis of symmetry with respect
to the molecular frame.

Since dipolar and spin-rotational contributions are known
to provide different kinds of molecular motional informations
between them, it is of great importance to distinguish one
from the other® Many NMR investigators have probably had
more or less frustrating experiences that for protons on a
methyl group they did not have an easy and legitimate
means at hand by which they could separate dipolar contri-
butions from those due to spin-rotation interactions in their



