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Near the conical intersection for the #2 states of Hthe derivative coupling vector is calculated and ana-
lyzed on the plane of internal coordinaté$\M) or its polar coordinate§@), based on the squares of the in-
ternuclear distances. It is shown that in the vicinity of the conical intersection the derivative coupling vector
behaves likdd2S, which is responsible for the sign changes of the real-valued electronic wave function when
the nuclear configuration traverses a closed path enclosing a conical intersection. The analytic property of the
wave functions is studied and especially the observation of the sign change in the configuration state function
(CSF) coefficients of the real-valued electronic wave functions is demonstrated.

Introduction For the 1,2A' states of Hwe calculate the derivative cou-
pling vector and analyze it on the plane of internal coordi-

In a system with the Jahn-Teller effettvo potential nates based on the squares of the internuclear distances. We
energy surfaces exhibit a symmetry-required conical interobtain the asymptotic form of the derivative coupling vector
section. However the conical intersection is not derived bynear the conical intersection, which can be used in dynamics
symmetry. Even in a system, for instance LiNaK, which hasalculation later. We also study the change of the configura-
no symmetry, the conical intersection may be presierthe  tion state function (CSF) coefficients of the real-valued elec-
vicinity of the conical intersection of adiabatic potential tronic wave functions near the conical intersection.
energy surfacelsandJ, the nonadiabatic derivative coupling
between the two electronic statélsand ¥, Theoretical Approach, Results and Discussion

fr (R)=C¥(r;R)| % Wy(r;R)J, (1) Coordinate System Since we intend to study the geomet-

o ric properties produced by conical intersectiobp sym-
becomes large near the conical intersection seam. Here tieetry of H, we follow a suggestion by Mead and Truhlar
integration is done over the electronic coordinajespace and employ the same coordinate system which is suitable for
and R denotes the nuclear coordinate. The standard Bormsur purpose. We deal with internal coordinates based on the
Oppenheimer treatmeénbreaks down when the nonadia- squares of the internuclear distances. We use a ring breathing
batic interaction becomes great. component

Highly symmetric case like $+becomes a simple example Q= R+ R+ R @)
to study derivative coupling, since it has a conical intersec- AB T TBC T TCA
tion seam in equilateral triangle configuration due to theand two components of tiietype vibration
Jahn-Teller effect. The simple system of three hydrogen U=R:. + Ré _ o2
atoms has one of topological features that introduce a geo- BC A AB
metric phase, which is related to the derivative coupling. The V= f?;(Rgc— Ré A)- 3)
geometric phase necessitates modification of the standard
e e s eined 1 ems of 1, symmety coninaed sl

¥an be used as well = Scod, V = Ssinf and

phase shifts in the reaction amplitudes for systems, such as
D + H; - DH + H. In Adelmaret al’s experimentSplots of S=U"+V
reaction rates versus the final-state rotational quantum num- _ 2 2 2 2 2 (2 2 2 \2
ber (j) of DH, with Hy in the ¢=1,j = 1) state peaked ata 2[(Rag—Rec) *+(Rec—Rea) +(Rea—Rap) 1. (4)
lower value ofj than did those of the theoretical calcu- HereS(= sQ) is a measure of the deviation from an equila-
lationg®! in which the geometric phase was not included.teral triangle configuratiors(= 0). As shown in Flzgure 1(a),
Kuppermann and W explained the discrepancies by the in the three dimensional space (RAB, RBC, R:p) the
effect of the geometric phase and their calculations also indphysical region is a con®d&s<1 ) due to the triangular
cate that the differential cross section is far more sensitiveelations among the interatomic distances. Cross section of
than is the total cross section to the inclusion of the geometonstanQ in the physical region is a circle on tdeV plane
ric phase. Information concerning the existence of conicads shown in Figure 1(b). Its boundary reg®n {) describes
intersections and/or the behavior of the real-valued elecdinear configurations of the triatomic molecule.
tronic wave function along closed loops is required to prop- Consider a molecular configuration such that each atom of
erly formulate the nuclear dynamics probl&m. Hs describes a circle of radiws whose center is at each

Instead of these coordinaté&sand an anglé, which are
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(@) RZ (b) be explained more in the following section.

Transformed Derivative Coupling. The electronic calcu-
lations reported here, 2A' and 2°A' potential energy sur-
faces of Hand the 1°A-2 2A' derivative couplings, are
parallel to the work of Yarkony. The adiabatic wave func-
tions and derivative couplings were determined from second
order Cl wave functions based on a three-electron, three-
orbital active space. The molecular orbitals were determined
from a complete active space state-averaged multiconfigura-
tional self consistent field procedure in which 880 states
) were averaged with weights (0.505, 0.495) based on

Rie (6s3pld contracted Gaussian basis sets on the hydrogens.
Figure 1. (a) In the space of LEFTRGs, Rac, Re, ) the physical The derivative couplings were determined using an analytic
region is a cone. (b) Cross section of cons€ann the physical  gradient techniqu¥'
region is a circle. Yarkony*® reported the transformed derivative coupling

for nuclear configurations [near the lowest energy point on
equilateral triangular point (with the length of the sida), the seam of conical intersection] of a few closed loops
as shown in Figure 2(a). The circular motions of these atomenclosing a conical intersection in standard Jacobi coordi-
are correlated: the vectors of their displacements are shiftatates R, r, ). Here we extend the work to the whalz¢on-
in phase through an angle affd. At any instant of time the stant)U-V plane in the symmetric coordinate systesn \,
equilateral triangle is distorted into an isosceles triangle, an®) and intend to find the limiting formula of the derivative
this distortion travels as a wave around the triangle’s geoeoupling vectors near the conical intersection. The deriva-
metric centers=0 point in Figure 1(b). Using geometric tive couplings in a limoleculefa, fg andfc, were evaluated
parameters, e and 6, the variation of thés, symmetry  in terms of six atom centered displacements. IiDdaesym-
coordinates@, U, V[9)) for the molecule during the internal metry coordinate systenJ(V, Q) which we have chosen,

Rac=0

2
. Réa

rotational motion is given by the evaluated couplings are transformed to six paranigters
Q=9@+e) I\r/é:?éfg? n]f]); 'filgr?-fY via the inverse process of the following
U = 18aecod '
V = 18aesind rug
S=1&e 5) 0

VO

The nuclear configuration performs a rotation along the dfag EDAU OaV OaQ Oag OpX OpY A
circle of a radiussS on the constar plane of Figure 1(b). %BB: 00gU OgV OgQ Oge OgX OgY B (6)
Figure 2(b) illustrates the derivative coupling vectors which 3 [ o0
can be determined using an analytic gradient techifdte. ¢ DOcU HeV OcQ Hep DX Y J
is interesting to see that the direction of each derivative cou- 3 E
pling vector is tangent to each atomic circular displacement Y

described in Figure 2(a), which can be seen by overlappin%herefW(R) = W, (riR) | <2 W (1R forW=U,V,Q, @
- | ) J ) i - 1 Yy 1 )

J
e et o e et Coupg et g e . X an. HereX and r€he molctarpane component
9 Ping 9 of the vector Ra+ Re + Rc)/3 and ¢ is the rotation angle

cular path is increased as the nuclear configuration performgbout the system’s center of mass in the molecular plane, (
the internal rotation. With the geometric phase this point will Y P '

+ @+ @)/3,sothall @ =zx Ry/(3|zx RA|2).

Normal and tangential components of the couplings to the
(b) Ha circle of a radiusS on the U-V plane, (s, (1/9fe), are
obtained from the transformation ofiy( fv) to polar coordi-
nates. In addition to the derivative couplinds, fv fo) due
to the internal{, V, Q) coordinates, the derivative coupling
f, due to the rotation in the molecular plane is determiged.
can also be obtained alternatively from the following equa-

tion,
Hg P
ffR) = T (riR)| 55,¥(riR)T
He = (rR)[(Ryx Oa+ Rg x Og + Rg x Og) | ¥ (1 R)
Figure 2. (a) The geometry of the triatomic molecule as a = Rpxfp+Rgxfg+Rsxfe )

distortion of eqilateral triangle. (b) The derivative coupling vectors
evaluated in terms of atom centered displacements. which were confirmed by taking the inverse of the transfor-
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mation matrix in Eq. (6) using a symbolic mathematical pro-and fg] are even [odd] functions of and they can be
gram Maple. The couplinfy is a transformation property of expanded in Fourier cosine [sine] series of peri8:2

a system under rotations of theclearsystem only, which is -

not the total system [nuclei + electrons]. It follows that the f%s, 6) = Zo Cs (s)coq )

commutators oL; and, (trecomponent of total elec- n=

tron and nuclear angular momentum operators, respectively) ) 2 .
with the electronic hamiltonian have the relation (s 6) = an Can(s)sin(3n6). (10)
[Ls, H5(r;R)] = - [L), H(r;R)] (8) In a constan® plane, where the equilateral triangle con-

figuration with the side ofR(H-H)=4.5590%h, has the
degenerate electronic ener@y = E; =-1.504951 hartree,
Ew,(r;R)‘Lg‘ Y(r;R)Q=- D-P,(r;R)‘LrZ“ Yi(r;R)g . (9 the Fourier coefficients of energy difference and the trans-
Therefore the magnitude of couplifig must equal the ;‘gr_rrr;l %?egollizhngSC3”(S)[&”(S)]’ are tabulated for various

interstate matrix element &ff . Since the evaluation of the . .
. : ; : When transported along a closed loop enclosing a conical
matrix element does not involve the analytic gradient tech: ; . .
. . . intersection, the sign changes of the real-valued electronic
nique, the equivalence of the two approaches provides a

measure of the precision of the derivative couplings. In th wave function resuit from the geometry dependent phase

work of Yarkony** whose method we employ in the compu—(;fa.Ctor in the electronic wave fur_10t|o_n, eXp fo LR, )
. o o ince H molecule has a conical intersection seam in the
tation of energy and derivative coupling, it was reported tha?

the two approaches agree ts 10°. Here we are not inter- equilateral triangle configuration, it is noted that for a circle

X . L . of radiusS on theU-V plane the circulation of derivative

ested infx andfy which may have a similar transformation : : X

. coupling vectors along the path gives the geometric plsase
property of a system under translation of the nuclear syster,[rF]at is
only.

Due toD3z, symmetry in a kimolecule, all the transformed f Z f, R, :f [fo R, + fg HRg + f HRE]

coupling values are oscillating with the period mf®as the
nuclear configuration traverses along the circle of a constant = Jf) a fed0=m (12)
SonU-V plane. Since the nuclear configurationgof O is

an isosceles triangle as in Figure 2&);E;, fg andf, [S&  which is contributed only from the coefficieB§(s)[=0.5] of

and thus

Table 1 Fourier coefficients dEx-E1, the energy difference betweeRAl and 22A' potential energy surfaces o Hor variouss

E-E;
n S
Co Cs Cs Co C2 Cis

1 0.00174533 0.0000907 -0.0000001

2 0.00349065 0.0001813 -0.0000006

3 0.00523596 0.0002719 -0.0000013

4 0.00698126 0.0003626 -0.0000024

5 0.00872654 0.0004532 -0.0000037

6 0.01047178 0.0005439 -0.0000054

7 0.01221700 0.0006346 -0.0000073

8 0.01396218 0.0007253 -0.0000096

9 0.01570732 0.0008161 -0.0000121
10 0.01745241 0.0009068 -0.0000150 -0.0000001
11 0.03489950 0.0018169 -0.0000599 -0.0000005
12 0.05233596 0.0027335 -0.0001351 -0.0000017
13 0.06975647 0.0036598 -0.0002410 -0.0000039 -0.0000001
14 0.08715574 0.0045993 -0.0003780 -0.0000076 -0.0000003
15 0.10452846 0.0055551 -0.0005468 -0.0000132 -0.0000007
16 0.12186934 0.0065307 -0.0007484 -0.0000208 -0.0000012 -0.0000001
17 0.13917310 0.0075294 -0.0009836 -0.0000309 -0.0000020 -0.0000002
18 0.15643447 0.0085546 -0.0012538 -0.0000437 -0.0000032 -0.0000003
19 0.17364818 0.0096098 -0.0015602 -0.0000596 -0.0000049 -0.0000005 -0.0000001
20 0.34202014 0.0226013 -0.0070237 -0.0004281 -0.0000694 -0.0000133 -0.0000030
21 0.50000000 0.0427320 -0.0187582 -0.0011862 -0.0002965 -0.0000789 -0.0000252
22 0.64278761 0.0740009 -0.0405568 -0.0019575 -0.0007743 -0.0002470 -0.0000985
23 0.76604444 0.1197297 -0.0770070 -0.0015297 -0.0016047 -0.0005311 -0.0002497
24 0.86602540 0.1802027 -0.1310965 0.0022964 -0.0031173 -0.0007804 -0.0005256
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Table 2 Fourier coefficients ofy , the 12A'-2 2A' derivative  Table 4 Fourier coefficients df andf,
couplings of H for variouss

N fQ f(P

0 fo N S S & G

Co Cs Cs Co Cw Cis 1 0.000004 0.055011
1 0.500000 0.002476 0.000004 2 0.000008 0.055011
2 0.500000 0.004952 0.000016 3 0.000012 0.055011
3 0.500000 0.007427 0.000037 4 0.000016 0.055011
4 0.500000 0.009903 0.000065 5 0.000019 0.055011
5 0.500000 0.012378 0.000102 0.000001 6 0.000023 0.055011
6 0.500000 0.014853 0.000147 0.000001 7  0.000027 0.055010
7 0.500000 0.017328 0.000200 0.000002 8 0.000031 0.055010
8 0.500000 0.019803 0.000261 0.000003 9 0.000035 0.000001 0.055009
9 0.500000 0.022277 0.000331 0.000005 10  0.000039 0.000001 0.055009
10 0.500000 0.024751 0.000408 0.000007 11 0.000078 0.000003 0.055001
11 0.500000 0.049457 0.001631 0.000054 0.000002 12  0.000116 0.000006 0.054989 0.000001
12 0.500000 0.074077 0.003662 0.000181 0.000009 13 0.000154 0.000010 0.000001 0.054971 0.000002
13 0.500000 0.098567 0.006489 0.000427 0.000028 0.00000214 0.000191 0.000016 0.000001 0.054948 0.000003
14 0.500000 0.122885 0.010096 0.000828 0.000068 0.000006(5 0.000227 0.000022 0.000002 0.054920 0.000005
15 0.50000 0.146993 0.014463 0.001420 0.000139 0.00001416 0.000262 0.000030 0.000003 0.054885 0.000009
16 0.50000 0.170851 0.019568 0.002235 0.000255 0.00003017 0.000296 0.000039 0.000005 0.000001 0.054844 0.000013

[EnY
~

0.50000 0.194422 0.025381 0.003302 0.000430 0.00005718 0.000328 0.000049 0.000007 0.000001 0.054797 0.000018

18 0.5000  0.217673 0.031874 0.004647 0.000678 0.00010119 0.000359 0.000059 0.000010 0.000002 0.054743 0.000024
19 0.5000 0.240572 0.039012 0.006292 0.001015 0.000168
coupling vectorfa, fg andfc, tends to be tangent to each
Table 3. Fourier coefficients oB§ atomic circular displacement of radiesThe norm of each
St coupling vector is abo@6 so that the complete line integral
n in Eg. (11) can give the phase valmeEq. (11) is satisfied
Se Se So Si2 Sis for any closed loop, not just in the infinitesimal vicinity of
1 0.000825 -0.000001 the conical intersection as long as the loop encloses a conical
2 0.001651 -0.000005 intersection seam.
3 0.002476 -0.000012 Especially in the vicinity of the conical intersection, as a
4 0.003301 -0.000022 consequence °§m0f9 =1/2 arétanSfS = 0 in Tables 2
5 0.004125 -0.000034 . v LT . .
6 0004950 -0.000049 -0.000001 3nssﬁétgglrllzv\\gstr;ﬁaéthe derivative coupling vector inlthe
7 0.005774 -0.000067 -0.000001
8 0.006599 -0.000087 -0.000001 0
9 0.007423 -0.000110 -0.000002 lim (S, 6) == (12)
10 0.008246 -0.000136 -0.000002 s-0 25
11 0.016453 -0.000543 -0.000018 -0.000001 where@ is the unit vector in the direction of increasing azi-
12 0.024584 -0.001217 -0.000060 -0.000003 muthal angle. The directions of the coupling vectors on the
13 0.032601 -0.002150 -0.000141 -0.000009 -0.000001 U-V plane are tangent to the circle of a rad@s shown in
14 0.040469 -0.003334 -0.000274 -0.000022 -0.000002 Figure 3. The definite sign in Eq. (12) is immaterial because
15 0.048154 -0.004758 -0.000467 -0.000046 -0.000004 of an arbitrary choice in the signs of the electronic wave
16 0.055625 -0.006406 -0.000732 -0.000084 -0.000009 functions ¥(r; R) and ¥y(r; R) in Eq. (1). The circulating
17 0.062853 -0.008265 -0.001075 -0.000140 -0.000018 behavior of the coupling vector is responsible for the sign
18 0.069814 -0.010316 -0.001504 -0.000219 -0.000031 change of the involved electronic wave functions after one
19 0.076484 -0.012543 -0.002023 -0.000326 -0.000051 turn around the intersection point in the nuclear configura-

tion space. If system is transported along a straight path C on
the U-V plane in Figure 3 the component of the derivative
fo in Table 2. The phase can also be obtained directly fronsoupling to the moving direction has the Lorentzian shape:
the derivative coupling vectors before the coordinate trans-
. . . _ a2

formation as long as we find the geometric parametegs fa(b) = 5—
and@via Egs. (2), (3) and (5). For a geometry in the middle a +b
of the internal rotational motion shown in Figure 2(a) thewherea denotes the closest distance to the conical intersec-
calculated derivative coupling vectors may be displayed aton seam in the path atdlenotes a perpendicular displace-
in Figure 2(b). Generally the direction of each derivativement from the closest point. The derivative coupling also

(13)
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Figure 3. The derivative coupling vectors on tbeV plane in the e
vicinity of the conical intersection. 2
E 0.0
. . . . . w (a) 1A’ State
dlsplays the Lorentzian shape near avoid crossing region (o CsF10)
potential energy curves for diatomic molecules. o5l CSF[201] —&-
CSF Coefficients in Electronic Wave FunctionsCon- COSFLI) e
cerning the presence of conical intersections, we may als
examine the behavior of the electronic wave functions alon¢

closed loops without calculating the derivative coupling vec- 0 60 120 180 240 300 360
tors. Rudenber§*® pointed out the possibility that informa- . o '
tion about the presence of conical intersections may bfFigure 4. The dominant CSF coefficients for (afA and (b) 2
found out from the configuration state function (CSF) coeffi- A’ states of Has a function of the geometric paraméter
cients of the real-valued electronic wave functions.

In this section we concentrate on the variation of the CSEEomparing Figures 4(a) and 4(b), it is noticed that the
coefficients along a closed loop in a lower level calculationphases of the CSF coefficients fo#2 state are shifted b
for the 1,2°A" states of K which has a conical intersection from those for FA' state. Therefore it can be said that the
seam inDsz, symmetry. The wave functions were obtainedupper electronic state of geometric ph#sis analytically
from state-averaged multiconfiguration self-consistent fieldclose to the lower state of pha8e rr rather thanf. The
(SA-MCSCF) calculations using the GAMESS progtaim  upper electronic state of pha8ean be obtained from the
the full valence space consisting of 240 CSKSsiThe two  lower electronic state of phae rrby analytic continuation
states were averaged with equal weights. We calculated 1rRoving through (rather than going around) the conical inter-
A states at 36 consecutive points around the circular loopection point to the opposite position in the nuclear configu-
outlined by the points in Figure 1(b). The energy differencesation space. This fact agrees to the mention of Btaa!®
between 1,ZA' states for the configurations in the chosenthat the two surfaces having a conical intersection may be
loop is about 5.8 mhartree. The variation of the CSF coefficonsidered as two Riemann sheets of the same analytic func-
cients of the dominant electron configurations in the wavdion.
functions were monitored. All the optimized orbitals remain Acknowledgment The author thanks D. R. Yarkony for
almost thesameas the nuclear configuration changes, so thathis work. This work was supported by grant No. 1999-2-
we need to examine the variation of CSF coefficients for any21-005-3 from the interdisciplinary Research program of

change in the 1A' and 2%A' states. the KOSEF.
Figure 4 displays the variation of three dominant CSF
coefficients, CSFs [210, 201, 111], fofA' and 22A’ states References
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