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Near the conical intersection for the 1,2 2A' states of H3 the derivative coupling vector is calculated and ana-
lyzed on the plane of internal coordinates, (U,V) or its polar coordinates (S,θ), based on the squares of the in-
ternuclear distances. It is shown that in the vicinity of the conical intersection the derivative coupling vector
behaves like θθ/2S, which is responsible for the sign changes of the real-valued electronic wave function when
the nuclear configuration traverses a closed path enclosing a conical intersection. The analytic property of the
wave functions is studied and especially the observation of the sign change in the configuration state function
(CSF) coefficients of the real-valued electronic wave functions is demonstrated.

Introduction

In a system with the Jahn-Teller effect1 two potential
energy surfaces exhibit a symmetry-required conical inter-
section. However the conical intersection is not derived by
symmetry. Even in a system, for instance LiNaK, which has
no symmetry, the conical intersection may be present.2 In the
vicinity of the conical intersection of adiabatic potential
energy surfaces I and J, the nonadiabatic derivative coupling
between the two electronic states ΨI and ΨJ,

(1)

becomes large near the conical intersection seam. Here the
integration is done over the electronic coordinate (r) space
and R denotes the nuclear coordinate. The standard Born-
Oppenheimer treatment3 breaks down when the nonadia-
batic interaction becomes great.

Highly symmetric case like H3 becomes a simple example
to study derivative coupling, since it has a conical intersec-
tion seam in equilateral triangle configuration due to the
Jahn-Teller effect. The simple system of three hydrogen
atoms has one of topological features that introduce a geo-
metric phase, which is related to the derivative coupling. The
geometric phase necessitates modification of the standard
nuclear Schrödinger equation.4-8 One would expect the state-
to-state cross sections to be particularly sensitive to any
phase shifts in the reaction amplitudes for systems, such as
D + H2 → DH + H. In Adelman et al.’s experiments9 plots of
reaction rates versus the final-state rotational quantum num-
ber (j) of DH, with H2 in the (v = 1, j = 1) state peaked at a
lower value of j than did those of the theoretical calcu-
lations10,11 in which the geometric phase was not included.
Kuppermann and Wu12 explained the discrepancies by the
effect of the geometric phase and their calculations also indi-
cate that the differential cross section is far more sensitive
than is the total cross section to the inclusion of the geomet-
ric phase. Information concerning the existence of conical
intersections and/or the behavior of the real-valued elec-
tronic wave function along closed loops is required to prop-
erly formulate the nuclear dynamics problem.13

For the 1,2 2A' states of H3 we calculate the derivative cou-
pling vector and analyze it on the plane of internal coordi-
nates based on the squares of the internuclear distances. We
obtain the asymptotic form of the derivative coupling vector
near the conical intersection, which can be used in dynamics
calculation later. We also study the change of the configura-
tion state function (CSF) coefficients of the real-valued elec-
tronic wave functions near the conical intersection.

Theoretical Approach, Results and Discussion

Coordinate System. Since we intend to study the geomet-
ric properties produced by conical intersection in D3h sym-
metry of H3, we follow a suggestion by Mead and Truhlar4

and employ the same coordinate system which is suitable for
our purpose. We deal with internal coordinates based on the
squares of the internuclear distances. We use a ring breathing
component

(2)

and two components of the E-type vibration

(3)

Instead of these coordinates, S and an angle θ, which are
defined in terms of the D3h symmetry coordinates U and V,
can be used as well: U = Scosθ , V = Ssinθ and

(4)

Here S(ô sQ) is a measure of the deviation from an equila-
teral triangle configuration (s = 0). As shown in Figure 1(a),
in the three dimensional space of the
physical region is a cone ( ) due to the triangular
relations among the interatomic distances. Cross section of
constant Q in the physical region is a circle on the U-V plane
as shown in Figure 1(b). Its boundary region (s= 1) describes
linear configurations of the triatomic molecule. 

Consider a molecular configuration such that each atom of
H3 describes a circle of radius e, whose center is at each
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equilateral triangular point (with the length of the side a),
as shown in Figure 2(a). The circular motions of these atoms
are correlated: the vectors of their displacements are shifted
in phase through an angle of 4π/3. At any instant of time the
equilateral triangle is distorted into an isosceles triangle, and
this distortion travels as a wave around the triangle’s geo-
metric center, s= 0 point in Figure 1(b). Using geometric
parameters a, e and θ, the variation of the D3h symmetry
coordinates (Q, U, V [S]) for the molecule during the internal
rotational motion is given by

Q = 9(a2 + e2)
U = 18aecosθ
V = 18aesinθ
S = 18ae. (5)

The nuclear configuration performs a rotation along the
circle of a radius S on the constant Q plane of Figure 1(b).
Figure 2(b) illustrates the derivative coupling vectors which
can be determined using an analytic gradient technique.14 It
is interesting to see that the direction of each derivative cou-
pling vector is tangent to each atomic circular displacement
described in Figure 2(a), which can be seen by overlapping
the two Figures 2(a) and 2(b). The phase obtained from the
line integral of the derivative coupling vector along the cir-
cular path is increased as the nuclear configuration performs
the internal rotation. With the geometric phase this point will

be explained more in the following section.
Transformed Derivative Coupling. The electronic calcu-

lations reported here, 1 2A' and 2 2A' potential energy sur-
faces of H3 and the 1 2A'-2 2A' derivative couplings, are
parallel to the work of Yarkony.13 The adiabatic wave func-
tions and derivative couplings were determined from second
order CI wave functions based on a three-electron, three-
orbital active space. The molecular orbitals were determined
from a complete active space state-averaged multiconfigura-
tional self consistent field procedure in which two 2A' states
were averaged with weights (0.505, 0.495) based on
(6s3p1d) contracted Gaussian basis sets on the hydrogens.
The derivative couplings were determined using an analytic
gradient technique.14

Yarkony13 reported the transformed derivative coupling
for nuclear configurations [near the lowest energy point on
the seam of conical intersection] of a few closed loops
enclosing a conical intersection in standard Jacobi coordi-
nates (R, r, γ). Here we extend the work to the whole (Q-con-
stant) U-V plane in the symmetric coordinate system (U, V,
Q) and intend to find the limiting formula of the derivative
coupling vectors near the conical intersection. The deriva-
tive couplings in a H3 molecule, fA, fB and fC, were evaluated
in terms of six atom centered displacements. In the D3h sym-
metry coordinate system (U, V, Q) which we have chosen,
the evaluated couplings are transformed to six parameters fU,
fV, fQ, fφ, fX and fY via the inverse process of the following
transformation:

(6)

where fW(R) =  for W= U, V, Q, φ ,
X and Y. Here X and Y are the molecular plane components
of the vector (RA + RB + RC)/3 and φ is the rotation angle
about the system’s center of mass in the molecular plane, (φA

+ φB + φC)/3 , so that 
Normal and tangential components of the couplings to the

circle of a radius S on the U-V plane, (fS, (1/S)fθ), are
obtained from the transformation of (fU, fV) to polar coordi-
nates. In addition to the derivative couplings (fU, fV, fQ) due
to the internal (U, V, Q) coordinates, the derivative coupling
fφ due to the rotation in the molecular plane is determined. fφ
can also be obtained alternatively from the following equa-
tion,

=

(7)

which were confirmed by taking the inverse of the transfor-
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Figure 1. (a) In the space of LEFT ( ) the physical
region is a cone. (b) Cross section of constant Q in the physical
region is a circle.
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Figure 2. (a) The geometry of the triatomic molecule as a
distortion of eqilateral triangle. (b) The derivative coupling vectors
evaluated in terms of atom centered displacements.
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mation matrix in Eq. (6) using a symbolic mathematical pro-
gram Maple. The coupling fφ is a transformation property of
a system under rotations of the nuclear system only, which is
not the total system [nuclei + electrons]. It follows that the
commutators of  and  (the z component of total elec-
tron and nuclear angular momentum operators, respectively)
with the electronic hamiltonian have the relation

(8)

and thus

(9)

Therefore the magnitude of coupling fφ must equal the
interstate matrix element of . Since the evaluation of the
matrix element does not involve the analytic gradient tech-
nique, the equivalence of the two approaches provides a
measure of the precision of the derivative couplings. In the
work of Yarkony,13 whose method we employ in the compu-
tation of energy and derivative coupling, it was reported that
the two approaches agree to 1× 10−6. Here we are not inter-
ested in fX and fY which may have a similar transformation
property of a system under translation of the nuclear system
only. 

Due to D3h symmetry in a H3 molecule, all the transformed
coupling values are oscillating with the period of 2π/3 as the
nuclear configuration traverses along the circle of a constant
S on U-V plane. Since the nuclear configuration of θ = 0 is
an isosceles triangle as in Figure 2(a), E2−E1, fθ and fφ [SfS

and fQ] are even [odd] functions of θ and they can be
expanded in Fourier cosine [sine] series of period 2π/3:

(10)

In a constant-Q plane, where the equilateral triangle con-
figuration with the side of R(H−H) = 4.55901a0 has the
degenerate electronic energy E1 = E2 = −1.504951 hartree,
the Fourier coefficients of energy difference and the trans-
formed couplings, C3n(s)[S3n(s)], are tabulated for various s
in Tables 1-4.

When transported along a closed loop enclosing a conical
intersection, the sign changes of the real-valued electronic
wave function result from the geometry dependent phase
factor in the electronic wave function, exp (−i ).
Since H3 molecule has a conical intersection seam in the
equilateral triangle configuration, it is noted that for a circle
of radius S on the U-V plane the circulation of derivative
coupling vectors along the path gives the geometric phase π,
that is

(11)

which is contributed only from the coefficient C0(s)[=0.5] of
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Table 1. Fourier coefficients of E2-E1, the energy difference between 1 2A' and 2 2A' potential energy surfaces of H3, for various s

n s
E2−E1 

C0 C3 C6 C9 C12 C15

1 0.00174533 0.0000907 -0.0000001
2 0.00349065 0.0001813 -0.0000006
3 0.00523596 0.0002719 -0.0000013
4 0.00698126 0.0003626 -0.0000024
5 0.00872654 0.0004532 -0.0000037
6 0.01047178 0.0005439 -0.0000054
7 0.01221700 0.0006346 -0.0000073
8 0.01396218 0.0007253 -0.0000096
9 0.01570732 0.0008161 -0.0000121

10 0.01745241 0.0009068 -0.0000150 -0.0000001
11 0.03489950 0.0018169 -0.0000599 -0.0000005
12 0.05233596 0.0027335 -0.0001351 -0.0000017
13 0.06975647 0.0036598 -0.0002410 -0.0000039 -0.0000001
14 0.08715574 0.0045993 -0.0003780 -0.0000076 -0.0000003
15 0.10452846 0.0055551 -0.0005468 -0.0000132 -0.0000007
16 0.12186934 0.0065307 -0.0007484 -0.0000208 -0.0000012 -0.0000001
17 0.13917310 0.0075294 -0.0009836 -0.0000309 -0.0000020 -0.0000002
18 0.15643447 0.0085546 -0.0012538 -0.0000437 -0.0000032 -0.0000003
19 0.17364818 0.0096098 -0.0015602 -0.0000596 -0.0000049 -0.0000005 -0.0000001
20 0.34202014 0.0226013 -0.0070237 -0.0004281 -0.0000694 -0.0000133 -0.0000030
21 0.50000000 0.0427320 -0.0187582 -0.0011862 -0.0002965 -0.0000789 -0.0000252
22 0.64278761 0.0740009 -0.0405568 -0.0019575 -0.0007743 -0.0002470 -0.0000985
23 0.76604444 0.1197297 -0.0770070 -0.0015297 -0.0016047 -0.0005311 -0.0002497
24 0.86602540 0.1802027 -0.1310965 -0.0022964 -0.0031173 -0.0007804 -0.0005256
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fθ in Table 2. The phase can also be obtained directly from
the derivative coupling vectors before the coordinate trans-
formation as long as we find the geometric parameters a, e
and θ via Eqs. (2), (3) and (5). For a geometry in the middle
of the internal rotational motion shown in Figure 2(a) the
calculated derivative coupling vectors may be displayed as
in Figure 2(b). Generally the direction of each derivative

coupling vector, fA, fB and fC, tends to be tangent to each
atomic circular displacement of radius e. The norm of each
coupling vector is about e/6 so that the complete line integral
in Eq. (11) can give the phase value π. Eq. (11) is satisfied
for any closed loop, not just in the infinitesimal vicinity of
the conical intersection as long as the loop encloses a conical
intersection seam.

Especially in the vicinity of the conical intersection, as a
consequence of  = 1/2 and  = 0 in Tables 2

and 3, it follows that the derivative coupling vector in the U-
V plane behaves like

(12)

where θθ is the unit vector in the direction of increasing azi-
muthal angle. The directions of the coupling vectors on the
U-V plane are tangent to the circle of a radius S as shown in
Figure 3. The definite sign in Eq. (12) is immaterial because
of an arbitrary choice in the signs of the electronic wave
functions ΨI(r; R) and ΨJ(r; R) in Eq. (1). The circulating
behavior of the coupling vector is responsible for the sign
change of the involved electronic wave functions after one
turn around the intersection point in the nuclear configura-
tion space. If system is transported along a straight path C on
the U-V plane in Figure 3 the component of the derivative
coupling to the moving direction has the Lorentzian shape:

(13)

where a denotes the closest distance to the conical intersec-
tion seam in the path and b denotes a perpendicular displace-
ment from the closest point. The derivative coupling also
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Table 2. Fourier coefficients of fθ , the 1 2A'-2 2A' derivative
couplings of H3 for various s

n
fθ 

C0 C3 C6 C9 C12 C15

1 0.500000 0.002476 0.000004
2 0.500000 0.004952 0.000016
3 0.500000 0.007427 0.000037
4 0.500000 0.009903 0.000065
5 0.500000 0.012378 0.000102 0.000001
6 0.500000 0.014853 0.000147 0.000001
7 0.500000 0.017328 0.000200 0.000002
8 0.500000 0.019803 0.000261 0.000003
9 0.500000 0.022277 0.000331 0.000005

10 0.500000 0.024751 0.000408 0.000007
11 0.500000 0.049457 0.001631 0.000054 0.000002
12 0.500000 0.074077 0.003662 0.000181 0.000009
13 0.500000 0.098567 0.006489 0.000427 0.000028 0.000002
14 0.500000 0.122885 0.010096 0.000828 0.000068 0.000006
15 0.50000 0.146993 0.014463 0.001420 0.000139 0.000014
16 0.50000 0.170851 0.019568 0.002235 0.000255 0.000030
17 0.50000 0.194422 0.025381 0.003302 0.000430 0.000057
18 0.5000 0.217673 0.031874 0.004647 0.000678 0.000101
19 0.5000 0.240572 0.039012 0.006292 0.001015 0.000168

Table 3. Fourier coefficients of SfS

n
SfS

S3 S6 S9 S12 S15

1 0.000825 -0.000001
2 0.001651 -0.000005
3 0.002476 -0.000012
4 0.003301 -0.000022
5 0.004125 -0.000034
6 0.004950 -0.000049 -0.000001
7 0.005774 -0.000067 -0.000001
8 0.006599 -0.000087 -0.000001
9 0.007423 -0.000110 -0.000002

10 0.008246 -0.000136 -0.000002
11 0.016453 -0.000543 -0.000018 -0.000001
12 0.024584 -0.001217 -0.000060 -0.000003
13 0.032601 -0.002150 -0.000141 -0.000009 -0.000001
14 0.040469 -0.003334 -0.000274 -0.000022 -0.000002
15 0.048154 -0.004758 -0.000467 -0.000046 -0.000004
16 0.055625 -0.006406 -0.000732 -0.000084 -0.000009
17 0.062853 -0.008265 -0.001075 -0.000140 -0.000018
18 0.069814 -0.010316 -0.001504 -0.000219 -0.000031
19 0.076484 -0.012543 -0.002023 -0.000326 -0.000051

Table 4. Fourier coefficients of fQ and fφ

n
fQ fφ

S3 S6 S9 S12 C0 C3

1 0.000004 0.055011
2 0.000008 0.055011
3 0.000012 0.055011
4 0.000016 0.055011
5 0.000019 0.055011
6 0.000023 0.055011
7 0.000027 0.055010
8 0.000031 0.055010
9 0.000035 0.000001 0.055009

10 0.000039 0.000001 0.055009
11 0.000078 0.000003 0.055001
12 0.000116 0.000006 0.054989 0.000001
13 0.000154 0.000010 0.000001 0.054971 0.000002
14 0.000191 0.000016 0.000001 0.054948 0.000003
15 0.000227 0.000022 0.000002 0.054920 0.000005
16 0.000262 0.000030 0.000003 0.054885 0.000009
17 0.000296 0.000039 0.000005 0.000001 0.054844 0.000013
18 0.000328 0.000049 0.000007 0.000001 0.054797 0.000018
19 0.000359 0.000059 0.000010 0.000002 0.054743 0.000024
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displays the Lorentzian shape near avoid crossing region of
potential energy curves for diatomic molecules.

CSF Coefficients in Electronic Wave Functions. Con-
cerning the presence of conical intersections, we may also
examine the behavior of the electronic wave functions along
closed loops without calculating the derivative coupling vec-
tors. Rudenberg15,16 pointed out the possibility that informa-
tion about the presence of conical intersections may be
found out from the configuration state function (CSF) coeffi-
cients of the real-valued electronic wave functions.

In this section we concentrate on the variation of the CSF
coefficients along a closed loop in a lower level calculation
for the 1,2 2A' states of H3 which has a conical intersection
seam in D3h symmetry. The wave functions were obtained
from state-averaged multiconfiguration self-consistent field
(SA-MCSCF) calculations using the GAMESS program17 in
the full valence space consisting of 240 CSFs in Cs. The two
states were averaged with equal weights. We calculated 1,2
2A' states at 36 consecutive points around the circular loop
outlined by the points in Figure 1(b). The energy differences
between 1,2 2A' states for the configurations in the chosen
loop is about 5.8 mhartree. The variation of the CSF coeffi-
cients of the dominant electron configurations in the wave
functions were monitored. All the optimized orbitals remain
almost the same as the nuclear configuration changes, so that
we need to examine the variation of CSF coefficients for any
change in the 1 2A' and 2 2A' states.

Figure 4 displays the variation of three dominant CSF
coefficients, CSFs [210, 201, 111], for 1 2A' and 2 2A' states
of H3 as the molecular geometry changes along the circular
path. The lowest energy orbital has D3h symmetry and the
second and third ones have single nodes perpendicular to
each other. All CSF coefficients vary smoothly like sinusoi-
dal functions and change sign after one revolution, which
results from the presence of a conical intersection seam
inside the loop. This method can be used to check whether
there exists a conical intersection seam inside a chosen loop.

Comparing Figures 4(a) and 4(b), it is noticed that the
phases of the CSF coefficients for 2 2A' state are shifted by π
from those for 1 2A' state. Therefore it can be said that the
upper electronic state of geometric phase θ is analytically
close to the lower state of phase θ - π rather than θ. The
upper electronic state of phase θ can be obtained from the
lower electronic state of phase θ - π by analytic continuation
moving through (rather than going around) the conical inter-
section point to the opposite position in the nuclear configu-
ration space. This fact agrees to the mention of Blais et al.18

that the two surfaces having a conical intersection may be
considered as two Riemann sheets of the same analytic func-
tion.
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